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Abstract—Serverless computing enables service developers to
focus on creating useful services, without being concerned about
how these services would be deployed and provisioned. Many
developers reuse existing open-source serverless functions to
create their own functions. However, existing technologies for
searching open-source software repositories have not taken into
consideration the unique features of serverless functions. This
paper presents a novel approach to searching for serverless func-
tions, called Open-Source Serverless Search (0S®) that maximizes
the utility of the returned serverless functions by (1) basing the
search process on both descriptive keywords and library usages,
thus increasing the search results’ precision and completeness;
(2) filtering and ranking the search results based on the software
license, to accommodate the unique requirements of deploying
serverless functions on dissimilar platforms, including cloud and
edge computing. Implemented in 3K lines of Python, with a
search space of 5,981 serverless repositories from four major
serverless platforms, OS> outperforms existing search approaches
in terms of the suitability of the search results, based on our
evaluation with realistic use cases.

Index Terms—Serverless Computing, Open Source Code
Search, Serverless Dataset

I. INTRODUCTION

Serverless computing provides powerful abstractions of the
underlying infrastructure management (e.g., load balancing,
scaling-on-demand, etc.), rapid prototyping, and flexible pay-
as-you-go model, thus relieving application developers from
the concerns related to the low-level aspects of deploying and
provisioning remote service code. Due to seemingly infinite
cloud resources allocated at runtime, this model allows for
the infinite elasticity of serverless functions, so developers
can focus on the high-level design aspects of service-oriented
applications [1]. From the software engineering standpoint,
serverless promotes reusability, as service developers naturally
produce modular service components, to be reused across
multiple projects, rather than monolithic services, tailored for
specific projects.

To be able to compose their software solutions out of
existing serverless functions, application developers need to
be able to find serverless functions that are the most suitable
for the task at hand. As it turns out, this is a formidable task
due to two main complications. First, the high heterogeneity of
vendors and platforms rules out a one-stop platform for service
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developers to share their serverless functions. The serverless
ecosystem is highly fragmented across multiple infrastructure
providers, including Microsoft Azure, IBM Cloud, AWS,
Google Cloud, and open-source serverless frameworks ! that
support multiple infrastructure providers. AWS 2 maintains its
own platform for developers to share open source repositories,
Google Cloud maintains 51 sample functions 3, while devel-
opers of other serverless platforms open source their functions
on Github. Second, the existing search facilities for serverless
functions rely on keyword-based searching heuristics, which
alone are insufficient to find the functions based on their
suitability for a given task.

To be able to effectively search for serverless functions, a
search facility must take into account their unique characteris-
tics such as (1) library usage, a critical issue for serverless as
compared with traditional services; and (2) software licensing,
which imposes legal restrictions on how serverless functions
can be used. Without considering these characteristics, existing
search facilities cannot identify the most fitting serverless
functions. Driven by these insights, this paper presents a novel
approach to searching for serverless functions. Dubbed OS?3,
our approach maximizes the suitability of returned serverless
functions by incorporating the unique characteristics above.
For (1), it improves the precision and completeness of the
search results by complementing keyword-based search results
with library usage; for (2), it filters out license-problematic
repositories based on expected usage scenarios. The reference
implementation of OS? searches for open-source serverless
functions across multiple vendor platforms. Its search space
comprises 5,981 serverless repositories, filtered out from over
60K repositories, collected for 4 major vendors from GitHub.
0S? not only improves the precision and completeness of
keyword-based search, but also identifies repositories protected
by appropriate software licenses, thus returning search results
that are most suitable for the task at hand. This paper makes
the following contributions:

1) We collect a dataset of 60K serverless repositories for
Thttp://github.com/serverless/serverless/

Zhttp://serverless- repo.aws.amazon.com/applications
3http://cloud.google.com/functions/docs/samples/



4 major serverless vendors from GitHub*. We carefully
study the data and identify several unique aspects of
searching for serverless functions.

2) We carefully analyze the key features of the collected
dataset, including the heretofore unexplored angle of
software licensing. Our findings suggest that the library
usages in serverless repositories correlate closely with
their functionalities; further, certain licenses might restrict
how serverless repositories can be used in edge comput-
ing environments.

3) We build the first search engine for cross-platform, open-
source serverless functions. We introduce a clustering-
based algorithm that improves keyword-based search by
considering library usage; it refines the search results of
existing search algorithms by removing false positives
and appending repositories that were originally missing.
It also filters out repositories whose licenses make them
inapplicable for edge/cloud computing environments.

The rest of the paper is organized as follows: Section II
introduces our data collection and processing methodology as
well as discusses how a search facility for serverless functions
should take into account their unique characteristics. Section
IIT presents the design and implementation details of our
search engine, respectively. Section IV compares our engine’s
search results with those of existing search engines. Section V
discusses related works. Section VI concludes the paper and
discusses future work directions.

II. DATA COLLECTION AND ANALYSIS

In this section, we discuss the main considerations we
made when collecting our dataset. Serverless repositories have
not been studied in great detail, so the collected datasets of
serverless functions are not sufficiently comprehensive [2],
[3]. To fill this knowledge gap, we collected a dataset of
over 60K serverless repositories from GitHub and analyzed
the resulting dataset to inform the design of our search engine.

A. Data Collection and Cleaning

Having examined numerous datasets, we identified the re-
cently published Wonderless dataset [3] with 1,877 serverless
repositories to be the most comprehensive among its peers.
Despite its large size, this dataset’s only source of repositories
is through the Serverless framework and the criteria for
cleaning data are overly strict. With these criteria in place,
Wonderless removes multiple repositories that might still have
a recommendation value and as such be useful to developers
for reuse considerations.

Hence, to create our dataset, we obtained data through
different means rather than only via the Serverless framework
as is the case with the Wonderless Dataset. We consider
different kinds of configuration files and their peculiarities to
search for repositories on GitHub for different platforms. To
identify the repositories that use the Serverless framework,
we search for a configuration file “serverless.yml”;

“https://github.com/edgeumd/serverless_dataset

the ones that use AWS, “template.yml”; the ones that
use Azure, “function. json”; and the ones that use IBM
functions “manifest.yml”. Some configuration files (e.g.,
function. json, manifest.yml) are frequently seen in
software repositories that are not related to serverless. To
avoid collecting irrelevant repositories, we use configuration
peculiarities that help in validating whether a repository is
actually used for implementing a serverless function. We
compiled these peculiarities based on the documentation for
their respective platforms (Table I). We also remove toy
repositories that include keyword phrases such as example,
demo, and test in their Readme files. By following this
process, we collected a total of 67,744 repositories with the
following composition: 29,995 for the Serverless framework,
14,164 for AWS, 21,523 for Azure and 2,062 for IBM.

TABLE I
PLATFORM VALIDATION USING CONFIG FILES

Platform | Configuration File | Validation Check

AWS template.yml AWSTemplateFormatVersion
Azure function.json direction

IBM manifest.yml actions

We then filter all repositories by first removing the unli-
censed repositories, a step not performed when creating the
Wonderless dataset. The removal of unlicensed repositories
is important for recommending serverless functions, as it is
the owner alone that reserves all rights for an unlicensed
repository, which as such cannot be reused or modified without
the owner’s explicit permission. Furthermore, we remove all
duplicate repositories.

Having performed all the aforementioned cleaning and
filtering steps, we narrow down our dataset to a total of
5,981 repositories with 5,220 repositories using the Serverless
framework, 498 developed for AWS, 241 for Azure and
22 for IBM. We note that our numbers of repositories for
different platforms are in alignment with the popularity of
these platforms [4].

B. Usages of Externally Managed API

We observe that 88% of serverless functions depend on
externally managed APT’s, including S3 3, DynamoDB 6
Lex 7, Polly 8, SQS ? etc. Developers use DynamoDB for
persist state updates, S3 for storage, and Lex for chatbots.

We also observe that developers of serverless functions
are more likely to avoid importing unnecessary libraries as
compared with other software developers. On average for
serverless functions, we find 2.8 library imports per serverless
function, whereas for standard software, the number is much
higher with an average of 11.6 library imports per project [5].
This difference is mainly due to the following reasons: 1)

Shttps://aws.amazon.com/s3/
Ohttps://aws.amazon.com/dynamodb/
7https://aws.amazon.com/lex/
8https://aws.amazon.com/polly/
“https://aws.amazon.com/sqs/



serverless functions are usually developed following the mi-
croservice software architecture, in which monolithic software
is partitioned into smaller components, so each component is
encapsulated as a serverless function. 2) the pay-as-you-go
pricing model of serverless requires that serverless developers
be very cautious about the size of their serverless containers,
as a larger container takes longer to ship and more memory to
deploy, thus increasing its execution costs. These reasons force
developers to make their code efficient and only include those
libraries that are truly used in the functionality of a serverless
function.

Hence, one feature of serverless functions is that externally
managed libraries are widely used and such library usages
are more correlated with their functionalities as compared
with other types of software. This observation motivates us
to consider serverless repositories’ library usages in OS3.

Most of the aforementioned externally managed APIs have
their corresponding versions on other platforms as well. We
have compiled representative sets of equivalent APIs for
different platforms in Table II.

TABLE 11
EQUIVALENT MANAGED SERVICES

AWS Azure IBM
1183 Blob Storage COS
2 | DynamoDB | Cosmos DB DB2
3 | SNS Event Grid Cloud Event Notification Service
4 | SQS Storage Queues | MQ
5 | SES SendGrid APP Connect
6 | Kinesis Event Hubs Streams
7 | Lex Bot Service ‘Watson
8 | Polly Text to Speech Watson Text to Speech

These equivalent APIs can help finding similar serverless
functions developed for different platforms. For example, if
one serverless function uses S3, SNS, and Polly and an-
other function uses COS, Cloud Event notification
Service, and Watson Text to Speech, it is very
likely that these two functions are developed for AWS and
IBM respectively, and they provide similar functionalities. This
observation motivates us to consider equivalent APIs in OS3.

C. License considerations for Edge and Cloud Computing

103

102

10!

Unlicense MIT BSL Apache2 MPL2 LGPL_V3 GPL_V3 AGPL_V3 SSPL Partial

Fig. 1. License Distribution In Serverless Functions (log scale)

In our collected repositories the license distribution can
be seen in Fig. 1, where the licenses are arranged in the
order of restriction, with the left-most licenses being the
least restrictive. The “Unlicense” is actually a license that
poses the least restrictions on users. Although a large part
of serverless functions uses one of the least restrictive li-
censes, most are either unlicensed or are toy repositories. To
top that, of the remaining repositories we found that about
9.5% of the repositories use licenses toward the restrictive
end (from MPL2 to SSPL) whereas about 7.7% are only
partially licensed. Partially licensed repositories have some
components that can be reused while some are not usable. This
is because many popular software licenses grant permissions
for developers to use and modify open-source software under
the terms of certain agreements. For example, some licenses
(Apache2, MIT) allow for commercial use of open source
software along with any software built upon it. Some license
(LGPL) requires an application that is built upon the software
they protect to open source its code as well if the application is
distributed to end users. Some licenses (LGPL, AGPL) require
an application to open source its entire code if any part of the
application is built upon open source software protected by
the licenses. When it comes to reusing serverless repositories,
the software license considerations share some similarities but
also have noticeable differences with cloud services. Different
from traditional software, cloud-based services require special
considerations for software licenses for two reasons: 1) as
services are deployed in the cloud, they may not be considered
as “being distributed to the end users.” Therefore, a cloud
service can choose not to open source its code even if
it is developed upon open source software protected by a
restrictive license; 2) if a monolithic service is partitioned into
microservices, developers of a cloud service only need to open
source the part of the code, or more precisely, the microservice
that uses the open source repository protected by the restrictive
license, rather than open sourcing all microservices. Similar
to cloud services, using a serverless function can avoid the
need to open source the entire application while deploying
a serverless function protected by a restrictive license in the
cloud does not require to open source its code. However,
serverless functions may be deployed on edge servers, owned
by individuals, so the deployment becomes subject to the
“being distributed to the end users” clause. Hence, we argue
that a search engine for serverless functions should consider
the planned application deployment scenarios. If a developer
has no plans to open source their modifications on a serverless
repository with a license starting from MPL2 to Partial, the
resulting code cannot be deployed in edge environments.

III. OS?® DESIGN AND IMPLEMENTATION

We base the design of our OS® system upon the general
traits of serverless functions and key insights we derived from
analyzing the collected data. In particular, OS? is intended to
be able to leverage the unique features of serverless functions
in order to (1) eliminate incorrect results, (2) uncover the



ignored results that are relevant to the search query, and (3)
give higher rankings to high-usability serverless functions.

A. Incorporating Existing Search Algorithms

Developers currently apply multiple keyword based mature
techniques to search for and recommend open source func-
tions, including keyword matching [6], topic modeling-based
search [7], and Word2Vec-based search [8]. The keyword
matching search generally matches keywords within Readme
files or their descriptions.

Although existing serverless repositories, including Github
and AWS Serverless Application Repository (SAR), apply
these techniques to search for and recommend serverless
functions, these techniques tend to overgeneralize their search
results, thus causing high false positive rates [9].

0S? aims to keep the underlying search algorithm as is
while improvising the results to find valid and more accurate
results for serverless functions. The reference implementation
provides two keyword based search algorithms: keyword-
matching and word-vector based. For keyword-matching, we
first preprocess the Readme files by removing stopwords, per-
forming stemming, and then we match the stem of keywords
with Readme and code files. To determine the similarity, we
calculate the raw scores with a preference for the highest
match. Similarly, we also implement a search algorithm that
is based on the Word2Vec [8] algorithm and compares word
vectors for the user’s search query and the corresponding
Readme files of serverless repositories.

B. Improving Search by Exploiting Serverless Peculiarities

0S? takes advantage of serverless-specific peculiarities to
improve the search results. The desirable properties of server-
less functions that led to their unprecedented growth (i.e.,
infinite perceived elasticity, reduced DevOps, and the pay-
as-you-go model) also impose certain restrictions on the
developer. As revealed in our study, the usages of externally
managed libraries are more correlated with the functionality
of a serverless function. We use this peculiarity of serverless
functions to find more comprehensive results and filter out
inaccurate results.

In particular, we take as input the search results of an
existing search and a ranking algorithm, and then refine the
given search results by following these steps:

1) Cluster the repositories in the search results by their
library usages.

2) Find the cluster C with the highest energy. We define
the energy of a cluster of serverless functions f € C as

e = TR‘f, where 2y denotes the ranking of function
f in the search result, with a higher R¢ indicating the
function is more recommended.

3) Extract the most identical libraries from the selected
cluster and expand the equivalent libraries. By extracting
the libraries from the selected cluster, we identify what
libraries are used in the cluster of serverless functions

that are most likely to fit the user’s search intent. We

then expand the libraries with equivalent libraries from
other vendors (see Table II).

4) Filter out the serverless functions that use identical li-
braries insufficiently.

5) Append the serverless functions excluded in the original
result if they contain libraries in the most identical set.

6) Rerank based on useage with the help of licenses.

C. Filtering and Reranking

Our approach to filtering and reranking repositories is
guided by their intended usage scenarios. We rely on the at-
tached software licenses to identify useful repositories and fil-
ter out the rest. We observe that licenses can play an important
role when selecting a repository. Our analysis identifies three
main use cases: a repository for edge distribution, a repository
for cloud-based services, and a repository for open-source
development. For edge distribution, no repository can have
licenses from MPL2 to Partial. This restriction is due to edge
distribution requiring developers to open-source their complete
code. Similarly, when cloud distribution is considered and the
recommended repository is being provided to the user as a
service only, we filter out repositories from SSPL to Partial.
Finally, in the default case of open-source development, we
rerank the repositories, so they are recommended based on
how restrictive their license is, with the less restrictive licenses
placed first.

D. Case Study

Our reference implementation of OS? comprises about 3,000
lines of Python code. Fig. 2 describes how OS® works
internally with real-world data. The search query in question
was “machine analysis and learning” for which
we received 129 search results using keyword-based search.
We further applied the Louvain algorithm to detect underlying
clusters in the results. Note that there were 8 clusters detected
and each cluster had more repositories than depicted in the
figure. We apply Step 2 in the search result refining algorithm
to detect clusters with the highest energy (cluster 2). Using
the detected cluster we find the libraries with the most count
(numpy, pandas). We also find SQS being used which we
expand with MQ and Azure Storage Queue.

After finding the libraries, we use them to filter out the
search results where we remove Pollaris and LambdaMailer,
as they have no common libraries. Furthermore, we also
use the common libraries to discover new repositories from
our global repository database. We were able to detect 3
repositories (data-analysis-aws, smartguard, mdm-night-owl)
of which each had pandas and numpy. We then combine these
filtered repositories and new recommendations together while
keeping the existing recommendation intact and filling the
filtered repositories (Pollaris, LambdaMailer). In the cases in
which not enough repositories were found to fill in the missing
places, we take the preceding recommendations in the original
search result. Finally, we exemplify how the recommendations
might change based on different use cases. e.g. usage for edge
based on discussions on licenses. We filtered out Hackathon
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Fig. 2. Case Study: Searching for “Machine Analysis and Learning” Serverless Functions

and data-analysis-aws due to the overly restrictive nature of
their licenses.

IV. EVALUATION

To evaluate the effectiveness of OS3, we seek answers to
the following research questions:
Research Question 1: Compared with basic keyword-based
search approaches, how much can OS? improve precision?
Research Question 2: Can OS® accurately discover new
repositories that are missing by the basic keyword-based
search approaches?
Research Question 3: Can license-based filtering improve the
suitability of the search results?

A. Experimental Design

To create a list of search queries that we will use to evaluate
the performance of keyword-based search against keyword-
based + OS3, we go through multiple research [10]-[13]
collecting a total of 18 queries. These queries are formulated
based on either using popular repositories for serverless or
actively researched repositories. We run the underlying search
algorithm alone and with OS® against these queries to find
recommendations. Out of those recommendations, we select
the top 5 results, disregarding the rest of them.

These results are then manually checked against their
searched queries to determine the number of false positives
in the top five recommendations. Two reviewers manually
examined each search result. After carefully reading the de-
scription file and the source code of the repository, each
reviewer individually decided whether the repository fit the
search intent. If the two reviewers held different opinions
toward one repository, a third reviewer was asked to help make
the final decision.

Furthermore, we also check how many new repositories
added by OS? fit the search query, as well as how many
repositories in the final recommendation results are filtered
out due to inappropriate licenses.

B. Experimental Results and Discussion

Fig. 3 and Fig. 4 show the performance of OS? with two
keyword-based search algorithms, the Keyword Matching and
the Word vector-based search, respectively. In both cases, we
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Fig. 3. False Positives For Keyword Matching with and without 0S?
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Fig. 4. False Positives For Word Vector Based Search with and without OS3

can see the increased right skew in the graph. This right skew
in the graph signifies the reduction in false positives during
recommendation. Our results indicate that using O.S® increases
the precision of Keyword matching by 8.89% (from 65.55%



to 74.44%) and the precision of Word Vector-based search by
8.23% (from 55.29% to 63.52%.)

We also manually inspected the new repositories recom-
mended by OS? and found that 70.58% of them fit the search
keywords. Nevertheless, sometimes when the original research
results are not accurate, the new repositories recommended
by OS3 are inaccurate. For example, the original results
for searching “sentiment analysis” have a high false
positive rate, so the new repositories discovered by OS3
are inaccurate as well, including serverless-cognito, python-
lambda-monorepo and aws-twitter-translate-bot.

The analysis of the licenses used by the recommended
repositories revealed that about 11% of the initial search results
are unusable. In particular, about 10 repositories in 90 results
for the 18 queries are unusable for edge environments. Having
the top 5 results of a search query contain 11% of unusable
repositories is rather high, particularly in light of only 17.2%
of repositories in total belonging to the MPL2 to Partial
categories (Fig. 1).

We answer the research questions above as follows:

RQ1: Using OS? over the underlying search algorithms does
increase the precision by a decent amount; in our evaluations,
we find that to be by about 8.89% for the keyword matching
algorithm and 8.23% for the word vector-based approach.
RQ2: We find that OS? is able to discover new repositories not
found by the underlying search with an accuracy of 70.58%.
RQ3: In our evaluation, we find that about 11% repositories
recommended can be unusable when using them for real-life
applications among the highly ranked repositories. Further-
more, the sample set for hard-to-use licenses is about 17.2%,
thereby giving further validity to the importance of considering
software licensing when recommending repositories.

V. RELATED WORK

There have been many approaches for code-based search
and recommendation that take into account the semantics
or structure of code snippets. One such recent attempt is
Aroma [14], which focuses on finding contextual code samples
dissimilar from each other within the structural similarity
scope, and thereby helps in finding different ways a piece
of code has been written by different developers. Another
approach is to use code-to-code pattern matching that could
suggest similar code using code snippets as a query. Re-
searchers have also tried using AST trees to enable code vector
embedding that can be used for code recommendation [15].
However, such semantics-based or structure-based approaches
are language dependent and require dedicated parsers for
different languages. Compared to the code-based search ap-
proach, our underlying keyword-based search is naturally more
suitable for language-agnostic serverless functions. Besides,
we also consider the license requirements for using serverless
functions in edge computing environments [16], [17].

VI. CONCLUSION

To address the emerging need for searching and recom-
mending serverless functions, this paper introduces OS3, a

novel search engine custom-tailored for serverless functions.
Our engine is optimized for searching serverless repositories
by focusing on the following aspects: 1) it bases the search
process on both descriptive keywords and library usages, thus
increasing the precision and completeness of the search results;
2) it filters and ranks the search results on the software license
and where the serverless function will be executed. We have
concretely implemented OS® and evaluated it on realistic use
cases. Our evaluation indicates that our search engine can
become a useful tool in developing serverless applications.
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