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Abstract

Bioinformaticists use the Basic Local Alignment Search
Tool (BLAST) to characterize an unknown sequence by
comparing it against a database of known sequences, thus
detecting evolutionary relationships and biological proper-
ties. mpiBLAST is a widely-used, high-performance, open-
source parallelization of BLAST that runs on a computer
cluster delivering super-linear speedups. However, the
Achilles heel of mpiBLAST is its lack of modularity, thus
adversely affecting maintainability and extensibility. Allevi-
ating this shortcoming requires an architectural refactoring
to improve maintenance and extensibility while preserving
high performance.
Toward that end, this paper evaluates five different soft-

ware architectures and details how each satisfies our design
objectives. In addition, we introduce a novel approach to
using mixin layers to enable mixing-and-matching of mod-
ules in constructing sequence-search applications for a va-
riety of high-performance computing systems. Our design,
which we call “mixin layers with refined roles”, utilizes
mixin layers to separate functionality into complementary
modules and the refined roles in each layer improve the in-
herently modular design by precipitating flexible and struc-
tured parallel development, a necessity for an open-source
application. We believe that this new software architecture
for mpiBLAST-2.0 will benefit both the users and developers
of the package and that our evaluation of different software
architectures will be of value to other software engineers
faced with the challenges of creating maintainable and ex-
tensible, high-performance, bioinformatics software.

1. Introduction

Bioinformaticists have been using mpiBLAST, a popu-
lar, parallel, bioinformatics package that runs on a com-

puter cluster, for their research activities ever since we first
released the package over four years ago [9, 10]. During
these four years, mpiBLAST has proven to be a very useful
scientific discovery tool with more than 40,000 downloads
across five major releases. Due to its proven utility, mpi-
BLAST has become an integral component of many, high-
performance, cluster distributions such as [5, 7, 14, 15, 17,
19, 20, 21] and is an officially supported application at high-
performance computing facilities such as [26, 27].
One of the reasons for the widespread popularity of

mpiBLAST is its open-source development model, which
fueled a grassroots movement to provide support for the
package. Alas, the enthusiastic support of this grassroots
movement exposed shortcomings in the overall design of
mpiBLAST (e.g., lack of modularity and consistency) that
needed to be addressed fully and expediently.
To ensure that mpiBLAST continues to benefit bioinfor-

maticists, we have performed an architectural refactoring of
the package with the goals of improving its maintainabil-
ity and extensibility while preserving high performance to
better support all of the mpiBLAST stakeholders. Specif-
ically, end-users require easy-to-use interfaces and expedi-
ent support; system administrators require quick installation
and upgrade procedures; and developers require a modular
codebase to enable seamless maintainability and extensibil-
ity.
Despite the clear objective, our architectural refactoring

undertaking presented several software engineering chal-
lenges. In the technical realm, our effort entailed refactoring
15K lines of code (LOC) written with little software engi-
neering discipline into a high-quality software package ad-
hering to the important software engineering principles of
modularity, reusability, and encapsulation. It is unusual for
a software system used in several major commercial clus-
ter software distributions to consist of only 15K LOC, con-
sidering that many modern desktop applications often con-
tain millions of LOC. However, the core codebase of mpi-



BLAST is a highly-optimized kernel that defines the over-
all structure of the system. Keeping the core small in size
simplifies maintenance, fosters development, and facilitates
extensibility. With these characteristics it is quite possible
that the package size will grow substantially in size as it
incorporates new features and enhancements.
Before embarking on the search for a new and better

architecture for mpiBLAST, we analyzed why the pack-
age was valuable to its users. The answer was obvi-
ous: the major draw of mpiBLAST has always been its
high-performance functionality (i.e., super-linear speedup).
Therefore, the new design had to improve (or at the very
least maintain) performance while providing the additional
benefits of disciplined software engineering to its stakehold-
ers. Achieving this balance between good performance and
solid software engineering is a growing trend in modern
software development.
As parallel computation becomes a requirement for a

large and growing number of computing applications, their
increased complexitywill likely lead to decreasedmaintain-
ability, making the architectural refactoring of such parallel
applications a common software maintenance task. To help
software engineers learn from our experiences, this paper
details our evaluation of five different designs: four interme-
diate and one final, in terms of how they satisfy the require-
ments of a high-performance parallel bioinformatics open-
source application. Our evaluation has concluded that the
final design, which we call mixin layers with refined roles,
is optimal for the task at hand. We believe that our expe-
riences with and evaluation of each design will be of value
to software engineers faced with the challenges of creating
maintainable and extensible software for this important do-
main.
The rest of this paper is structured as follows. Section 2

explains the significance of mpiBLAST from the user’s per-
spective as well as the main aspects of its algorithmic de-
sign. Section 3 details both the motivation behind our refac-
toring effort and the design objectives we set for ourselves.
Our refactoring experiences with several designs during this
effort are reported in Section 4, with an analysis of the final
design that we chose for mpiBLAST-2.0, mixin layers with
refined roles, detailed in Section 5. Some future directions
for mpiBLAST, as well as how the new design will support
them, are outlined in Section 6. We conclude in Section 7
with our experiences and lessons learned from this architec-
tural refactoring of mpiBLAST.

2. mpiBLAST Overview

The advent of genome sequencing has brought bioinfor-
maticists a wealth of genetic sequence information acces-
sible by way of large sequence databases. To search these
sequence databases for regions of homology between an un-

 0

 10

 20

 30

 40

 50

 60

 1980  1985  1990  1995  2000  2005

G
ig

ab
yt

es

Year

Database Size vs. Memory Capacity

GenBank Database Size
Memory Capacity

Figure 1. Comparison of the Growth of Gen-
Bank against the Growth of Memory Capacity

known query sequence and a known sequence residing in
the database, researchers consume the vast majority of their
compute cycles using the Basic Local Alignment Search
Tool, commonly known as BLAST. Because the BLAST al-
gorithm detects local alignments, regions of similarity that
are embedded in otherwise unrelated proteins can be de-
tected [1, 2]. Both types of similarity can reveal key insights
into the function of uncharacterized proteins, an important
feature with wide-ranging impacts such as pathogen detec-
tion [12].
BLAST finds these regions of similarity quickly by us-

ing heuristics to prune the search space. However, the rapid
search of these databases with BLAST can only be per-
formed in a shared-memory, and usually sequential, en-
vironment. Compounding matters, until recently these
databases could fit in main memory, but as shown in Fig-
ure 1 this is no longer the case. More importantly, because
the size of sequence databases is doubling every 12 months
and far outpacing memory growth, which is quadrupling
every 36 months (or doubling every 18 months), sequence
databases are unlikely to ever fit in a sequential environ-
ment’s main memory again [4, 13].
In 2002 and 2003, we developed an open-source soft-

ware package, mpiBLAST, which augments the de facto
standard BLAST software, developed by the National Cen-
ter for Biotechnology Information (NCBI), by executing it
in parallel on a network of computers (i.e., compute clus-
ter). Since its release it has been downloaded over 40,000
times showing that mpiBLAST is of high utility to the bioin-
formatics community. It is also important to note that mpi-
BLAST is primarily designed for computer clusters which
can range from only a few computers to hundreds and even
thousands of computers. Therefore, it is safe to assume that
mpiBLAST is running on over 40,000 computers, and quite
likely on more than 100,000!
To take advantage of the processing power of com-

puter clusters, the mpiBLAST algorithm follows a Master-
Worker parallelization model that consists of three basic



Figure 2. High-level View of mpiBLAST Algo-
rithm

steps: (1) distributing the query to be searched by each
Worker, as shown at the left of Figure 2, (2) searching the
query on each Worker, and (3) merging the results from
each Worker into a single output file, as shown at the right
of Figure 2.
The significance of mpiBLAST’s parallelization scheme

is that the database and query are segmented into pieces
such that each compute node searches a portion of the
database and a portion of the query. This gives the notable
advantage that a super-linear speedup, shown in Figure 3,
is obtained when the database being searched is too large
to store in an individual compute node’s memory. Further-
more, even if the original database fits in memory, mpi-
BLAST still improves throughput by finishing each search
faster due to multiple queries being searched in parallel.
As sequence databases experience exponential growth

and sequence searching becomes more computationally in-
tensive each year, so grows the importance of mpiBLAST
functionality to bioinformaticists [16].

3. Refactoring Objectives

The challenge of our refactoring effort was in preserv-
ing the high-performance properties of mpiBLAST-1.4.0
while simultaneously improving maintainability and exten-
sibility. As shown in Figure 3, this version exhibits super-
linear speedup across more than 100 processors through
the use of query and database segmentation, sophisticated
scheduling, pipelined results gathering, and asynchronous
communication [8]. In addition, mpiBLAST-1.4.0 provides
these performance advantages on multiple platforms (e.g.,
GNU/Linux, Windows, Mac OS X, BSD, and other Unix
variants).
Past development efforts have primarily focused on im-

proving the algorithmic quality of the package rather than
the quality of its codebase. This pattern of development re-
sulted in a “feature-rich but ad hoc” codebase, making every
discovered defect tougher to correct and each new feature
more difficult to implement. Thus despite its rich function-
ality and impressive performance, mpiBLAST became dif-
ficult to maintain and extend; the very success of the contin-
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Figure 3. Performance of mpiBLAST 1.4.0

ued development of mpiBLAST depended on our ability to
improve the quality of the codebase. At the same time, our
improvements should not jeopardize the existing features of
mpiBLAST – a maintainable and extensible package with
inadequate performance and poor portability would quickly
lose its utility. Therefore, the product of our refactoring ef-
fort had to satisfy all of the mpiBLAST stakeholders.
Our experiences with mpiBLAST-1.4.0 pointed toward

improving the package’s modularity as the main focus of
our refactoring effort as modularity has long been recog-
nized as a desirable software engineering objective [3, 18].
By focusing on creating a modular software package, the
ability to encapsulate different pieces of mpiBLAST func-
tionality in separate code modules should lead to improved
maintainability and extensibility.

3.1. Maintainability

The users of mpiBLAST are both geographically and in-
stitutionally disparate. In many cases, a single mpiBLAST
installation serves hundreds of users as part of a shared su-
percomputing environment (e.g., Teragrid [27] and System
X [26]). The new architecture, therefore, should facilitate
keeping the package up-to-date by finding and fixing bugs
quickly or installing new versions.
The maintainability requirements of mpiBLAST are de-

fined primarily by the developers of the package with the
system administrators and end-users also having roles. Sys-
tem administrators, and often the end-users as well, are re-
sponsible for installing new versions of the software as well
as for reporting any emerging issues to the developer com-
munity. It is the mpiBLAST developers, however, who ad-
dress and resolve the issues and make available a patch or
new release of mpiBLAST to all interested parties through
the mpiBLAST website.
The key to simplifying the maintenance process is to

maximize the modularity of the new design, thereby en-
abling changes (e.g., bug fixes) on a per module basis
and reducing ripple-effects. For example, mpiBLAST-1.4.0



is dependent on specific versions of the NCBI C Toolkit,
thereby requiring a new and custom patch for every new
release of the Toolkit (which occurs every six months on
average). If all of the interactions with the NCBI Toolkit
could be placed in a single mpiBLAST module, it would
streamline this necessary (but tedious and error-prone) task,
improving the package’s maintainability and portability.
Modularity has the additional benefit of not requiring

familiarity with the entire software package when making
most modifications. For example, an issue with command-
line processing should only require familiarity with the
command-line module and not other modules such as
scheduling or formatting. Furthermore, the code for the
command-line module should be located in an intuitively-
named source file containing only command-line function-
ality. The placement of each module in its own source file
further maximizes encapsulation and modularity.
Finally, improved modularity makes mpiBLAST more

conducive toward an open-source development model in
which multiple developers can focus on maintaining differ-
ent parts of the software concurrently. This enables devel-
opers to make and integrate changes independently of each
other.

3.2. Extensibility

The growth of bioinformatics data continuously presents
new computational challenges. Specifically, databases are
growing faster than a single node’s physical memory by
33%-50% every year. Such challenges call for new and
advanced algorithms and data structures to be integrated
into mpiBLAST simply to allow the software to keep pace
with the growth of the databases. For example, mpiBLAST-
1.0 was run on the NT database (5.1 gigabytes in size) in
2003 and achieved an 170-fold speedup, finishing in 8 min-
utes. In 2005, mpiBLAST-1.4.0 was again run on the NT
database (now more than 14 gigabytes in size), and even
with a 305-fold speedup improvement, the execution time
was slower, finishing in 10 minutes!
We foresee that future performance improvements to

mpiBLAST will span the entire gamut of the application:
better search algorithms, improved communication mech-
anisms, more intuitive user interfaces (UI), and efficient
parallel Input/Output (I/O) strategies to name a few. Obvi-
ously, other developers will also make novel contributions,
also possibly spanning the entire application. Therefore, if
mpiBLAST fails to facilitate such contributions and thereby
failing to keep performance on pace with the growth of
database, it will quickly lose its utility.
To make the software package extensible, the new design

should provide an intuitive and flexible design in which all
developers can incorporate their novel algorithms and data
structures with minimal effort. While we expect a certain

level of knowledge from the developers, we should not re-
quire developers to possess complete knowledge of the in-
ner workings of the entire package in order to make a con-
tribution. Rather, developers should only require knowl-
edge relevant to the module(s) they are enhancing. Once
again, improved encapsulation and modularity of the pack-
age will flatten the learning curve for developers who want
to contribute various novel features and enhancements to
the package.

4. Design Evaluation

Parallel bioinformatics is a young research area. From
a technical perspective, a lack of proven architectural so-
lutions available for this important but still emerging do-
main required us to evaluate multiple designs. We evaluated
each design in terms of its fitness with respect to satisfying
the following key objective: improving maintainability and
extensibility while preserving high performance. Achiev-
ing this main objective requires satisfying the following de-
sign goals: (1) retain high-performance guarantees across
multiple platforms, (2) structure the system as a collection
of reusable and interchangeable software modules, (3) ex-
press dependencies and correspondences between different
modules, (4) flatten the learning curve for development and
maintenance, and (5) avoid code duplication.
The motivation behind the pursuit of several of

these goals is self-evident, such as guaranteeing high-
performance, flattening the learning curve, and avoiding
code duplication. With respect to flattening the learning
curve, we were primarily concerned with making it easier
to develop and maintain the application, assuming that the
developer is already proficient in ANSI C++. ANSI C++
was a natural implementation language choice for us be-
cause (1) the NCBI Toolkit API is migrating to C++, (2)
the most recent version of mpiBLAST contains a combina-
tion of ANSI C/C++, and (3) we needed to maintain cross-
platform compatibility. Furthermore, C++ is a systems pro-
gramming language whereby developers have direct access
to the low-level system components necessary to acheive
fine-tuning of the parallel hardware architecture uponwhich
mpiBLAST executes.
Our objective to refactor the existing codebase into a

more modular design as well as mpiBLAST’s development
patterns led us to structuring the system as a collection of
reusable and interchangeable software modules. Deciding
on what the module decomposition should be was not much
of an issue – it was apparent to us that the stages of the mpi-
BLAST algorithm (e.g., Scatter, Search, etc.) should be the
primary modules, rather than the process roles (e.g.,Master
and Worker). This particular decomposition logically par-
titions the system into the units that are most likely to be
modified. For instance, as the system evolves, it is more



Figure 4. Module Correspondence Graph
(compatibility is dictated with an arrow)

likely that a new search algorithm or write strategy will
be developed rather than the parallelization model chang-
ing from master-worker to peer-to-peer.
However, the fact that each stage of the mpiBLAST al-

gorithm can be represented as a separate module does not
mean that the resulting modules are entirely independent of
each other. In fact, like in most modular designs, the inter-
module compatibility of mpiBLAST is defined by the input
and output types: if Scatter outputs fragments as files, then
Searchmust accept files instead of memory buffers as input,
as seen in Figure 4. With this in mind, our final design had
to express and resolve these dependencies and correspon-
dences between modules, preferably early on in the devel-
opment process (i.e., during compilation instead of execu-
tion).
In the following subsections we discuss the different de-

signs that we evaluated and detail how each satisfies our
design goals.

4.1. GoF Design Patterns

Seeking to find a purely object-oriented design for mpi-
BLAST, we tried to create a suitable solution utilizing de-
sign patterns. The design pattern that most closely captures
our requirements for mpiBLAST was Abstract Factory. An
Abstract Factory is a flexible means in controlling how dif-
ferent modules in a system are created [11]. The details of
creating multiple modules in a system are encapsulated in-
side factory objects that are themselves expressed only as
abstract interfaces. A specific implementation of a factory
creates a specific type of an entire system. Thus, the task
of enforcing the compatibility between different modules is
handled entirely by a factory object. Furthermore, introduc-
ing new combinations of modules is straightforward: it only
requires implementing a new factory object.
However, in our case, this design suffered from a combi-

natorial explosion of factory objects. Although every mod-
ule of mpiBLAST has input and output dependencies, sets
of modules and even some individual modules could be re-
placed independently. As shown in Figure 4, Communicate
(which provides generic communication primitives) is inde-
pendent of every other module. On the other hand, Search
dictates the version of Scatter that must be used: if Search
uses files as input, Scatter must produce files as output.
Thus, with an Abstract Factory design, we needed to pro-
vide a unique factory object for every possible combination
of modules. This is a formidable challenge, as every ex-
tension of mpiBLAST that produces a new module would
result in an explosion of new factory objects.
Further exacerbating this design, it would be the respon-

sibility of the developer of a new module to create new fac-
tory objects that enforce the correct usage of the new mod-
ule. This means that the developer requires knowledge of all
of the modules within the new factory objects, thereby sig-
nificantly raising the barrier to entry for new development.
While a different and/or novel design pattern may have pro-
vided an elegant solution, we ended up not pursuing design
patterns further during this refactoring because we discov-
ered an alternative approach that satisfies all of our design
objectives.
Finally, the use of most design patterns invariably in-

volves using indirection and dynamic dispatch through vir-
tual methods. Most sophisticated C++ compilers are capa-
ble of reducing the cost of such abstractions significantly,
however, with our objective of cross-platform portability,
we could not assume that all of the supported platforms
would have such a compiler available. Therefore, we chose
to look into other designs in which the cost of abstractions
would be minimized by being resolved at compile time.
This immediately directed our efforts toward solutions that
utilize C++ templates as their abstraction mechanism.

4.2. Parametric Polymorphism

C++ templates provide a powerful mechanism for
generic programming. A class or a method can be param-
eterized with a template parameter that specifies the con-
straints on the type used. For example, the C++ Standard
Template Library (STL) makes extensive use of templates
not only to provide powerful functionality and diverse data
structures, but also to enforce compatibility between STL
classes and methods [25]. Specifically, the sort algorithm
method of STL accepts template parameters of type Rando-
mAccessIterator, thereby disallowing STL list to be sorted,
because the iterator for STL list (i.e., BidirectionalIterator)
is incompatible. However, STL sort works seamlessly with
an STL vector’s RandomAccessIterator. Furthermore, such
incompatibilities are signaled at compilation time as errors,
and with respect to performance, template abstractions do



not incur runtime overhead.
Naturally, we attempted to utilize such template abstrac-

tions to enforce the compatibility requirements between
mpiBLAST modules. In this scheme, each mpiBLAST
modulewas modeled as a template class whose template pa-
rameters defined the types of modules used within the class.
This forced the creation of modules to have structural con-
formance: types used as template arguments had to have
matching methods with exact names and signatures.
Unfortunately, adequately enforcing structural confor-

mance caused the template definitions to become increas-
ingly complex and unwieldy. For example, to create a
Scheduler the following requirements had to be satisfied:

1. references to Communicate, Scatter, Search, Gather,
andWrite were needed

2. Scatter had to use the sameCommunicate as Scheduler
3. Search had to use the same Scatter as Scheduler
4. Gather had to use the same Search and Communicate
as Scheduler

5. Write had to use the same Communicate and Search as
Scheduler.

The corresponding C++ template definition for a paramet-
ric, polymorphic Scheduler can be seen below:

template <class Communicate,
template <class Communicate> class Scatter,
template <typename Scatter> class Search,
template <typename Search, class Communicate>

class Gather,
template <typename Gather, typename Search,

class Communicate>
class Write>

class Scheduler { /** body **/ };

While this complex arrangement may succeed in enforc-
ing inter-module compatibility for a particular combination
of mpiBLAST modules, this solution is far from general.
Specifically, we have now forced every Write to take ex-
actly three parameters and for Gather to take exactly two
parameters and so forth. Such rigidity makes it essentially
impossible to accommodate future extensions where mod-
ules require different numbers of parameters.
We could provide adapter template functions that bridge

between classes taking different number of input template
parameters, however, such adapter functions are non-trivial
to write, and it is not always possible to provide default tem-
plate parameters. It is also possible to use larger blocks of
template definitions as a single typename but the dependen-
cies between template types inside such blocks cannot be
enforced. For example, in the following definition, there is
no guarantee that Scatter and Search use the same version
or instance of Communicate.

template <typename Communicate,
typename Scatter>

class Search { /** body **/ }

This complexity led us to consider an alternative,
template-based, module-oriented design called mixins.

4.3. Mixins

A mixin is an abstract subclass through which one can
extend the behavior of a variety of superclasses [6]. In C++,
a mixin can be implemented as a generic class with a tem-
plate parameter specifying its superclass:

template <class Super>
class Mixin : public Super { /** body **/ };

Mixin-based inheritance can provide a powerful mecha-
nism for composing modules. In this setup, different mod-
ules participate in an inheritance relationship, in which the
exact version of all of the modules for a particular ob-
ject is not specified until instantiation time. Furthermore,
the inheritance tree is built using a bottom-up approach:
subclasses are specified before superclasses. For example,
Cat<Animal>mixinAnimalCat, specifies that Cat is an An-
imal. On the other hand, Cat<Picture> mixinPictureCat,
specifies that Cat is a Picture. Notice that both definitions
use the same mixin subclass Cat, and it is the superclass,
Picture or Animal, that defines the functionality.
In our experience, a mixin-based design provides the

required structural conformance between different mpi-
BLAST modules while still making it possible to easily in-
terchange modules. However, unlike a factory-based de-
sign, a mixin-based design specifies modules only once in
a single declaration. In other words, this scheme makes it
impossible to use incompatible modules because an mpi-
BLAST object combines modules only through a single in-
heritance relationship. Furthermore, the template definition
of the main mpiBLAST object takes template arguments
specifying the types of each module used; it then instan-
tiates exactly one instance of each module.
Despite the benefits of a mixin-based design, we discov-

ered that it had several deficiencies. Specifically, while the
phases of the mpiBLAST algorithm are represented as sepa-
rate modules, theMaster andWorker roles are only defined
implicitly. This makes it possible for Master to directly
call a Worker-specific method and vice versa. Making such
direct calls will introduce insidious consistency errors, as
Master and Worker are in fact disparate and distinct pro-
cesses that do not share any memory address space. The
only valid sharing of data between Master and Worker is
through Communicate.
Separating the Master and Worker functionality through

a coding convention proved to be insufficient, as the de-
veloper could easily bypass such implicit restrictions. This
realization led us to pursue a refinement of this design by
using mixin layers to explicitly separate the Master and
Worker roles into distinct submodules.



4.4. Mixin Layers

Mixin layers is a flexible mixins-like design for imple-
menting collaboration-based designs by assembling soft-
waremodules in layers where each successive layer is repre-
sented as a collection of inner classes [22, 23, 24]. Both the
enclosing class and its inner classes participate in an inher-
itance relationship with an abstract superclass. Specifically,
the enclosing class inherits from the enclosing superclass,
and each inner class inherits from its corresponding inner
class in the super enclosing class. This design allows func-
tionality to be added with each layer in a flexible manner: a
layer defines inner classes only for those objects for which
it needs to add functionality. In C++, a typical mixin layer
implementation looks as follows:

template <class Super>
class MixinLayer : public Super {
class Inner1 : public Super::Inner1 {

/** body **/
};
class Inner2 : public Super::Inner2 {

/** body **/
};

};

We evaluated two variations of this design: “mixin layers
with general roles” (Master and Worker), and “mixin lay-
ers with refined roles” (Master, Worker, and Common). We
detail our experiences with each below and evaluate mixin
layers with refined roles in Section 5.

4.4.1. Mixin Layers with General Roles

Building on our classical mixins design described in Sec-
tion 4.3, we added two inner classes to each module repre-
senting the roles played by each mpiBLAST process: Mas-
ter andWorker. In this way,Master andWorker functional-
ity was explicitly separated between these two classes and
it was now impossible for a Master process to explicitly or
inadvertently call a method in the Worker process and vice
versa.
At first glance, mixin layers with general roles retains

all of the advantages of classical mixins with the added im-
provement of strictly separating mpiBLAST process roles.
However, the strict separation, despite its desirable prop-
erties, also makes it impossible for Master and Worker to
share any common functionality. For example, both Mas-
ter and Worker processes need to send messages. With no
common functionality between them, both the Master and
Worker inner classes have no choice but to duplicate all of
the message sending primitives. This results in replicating a
substantial amount of code with all of the inherent negative
consequences one would expect with code duplication such
as having to modify multiple, but identical, pieces of code.

Figure 5. Example Software Architecture of
Mixin Layers with Refined Roles

4.4.2. Mixin Layers with Refined Roles

To retain the benefits of mixin layers without the is-
sue of having to duplicate code we added another inner
class, Common, that contains common functionality be-
tween Master and Worker, exemplified in Figure 5. This
variation on mixin layers has the advantages of allowing
code reuse and avoiding code duplication.
As mentioned above, mixin layers with general roles did

not satisfy all of our design objectives because common
functionality between Master and Worker needed to be du-
plicated in each inner class. Clearly, being able to encapsu-
late common functionality in a separate class would allow
the code to be reused rather than duplicated, positively af-
fecting both maintainability and extensibility. With respect
to maintenance, code reuse greatly reduces the possibility
ofMaster andWorker from having different (and incompat-
ible) implementations of the same functionality; in terms of
extensibility, having a Common class makes it possible to
enhanceMaster andWorker classes simultaneously.
Taking advantage of the refined roles required us to re-

solve the following technical challenge: finding an elegant
implementation that would allow both Master and Worker
classes to call methods in Common. This entailed exper-
imenting with several approaches that codify the “has-a”
relationship between Common and Master or Worker (i.e.,
inheritance and containment). We quickly determined that
using multiple inheritance (Master and Worker inheriting
both their mixin super class and Common) unnecessarily
complicates the implementation. On the other hand, having
Master andWorker contain Common as a member field im-
plements the required functionality in a simple and intuitive
way. Furthermore, to ensure that a single Common instance
is available and shared by each layer, the Common field in
each layer is a C++ reference, which according to the lan-
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Figure 6. Composing Applications by Interchanging Layers (color highlights modification/addition)

guage rules must be initialized at construction time. This
arrangement has an additional benefit in that the discipline
imposed by the layered architecture extends to Common ob-
jects as well: even though a single (most derived) Common
object is shared by all layers, each individual layer views
the object as an instance of the Common class in its own
layer.

5. Design for mpiBLAST-2.0

The software architecture that we chose for mpiBLAST-
2.0 was mixin layers with refined roles, as it satisfied all
of the design goals we had set for this refactoring effort.
Specifically, this design provides portable high performance
due to its use of templates, which are evaluated at compile
time, as an abstraction mechanism. Mixin layers provide
plug-in replaceable and reusable software modules that can
be easily mixed and matched into different configurations.
Furthermore, the dependencies between different layers and
the roles expressed as inner classes are verified at compile
time. That is, different layers become Lego™ blocks for
constructing an application, and the shape of a block de-
termines with which other blocks it can be combined. The
high modularity of this design should flatten the learning
curve for new developers, i.e., instead of learning the en-
tire system, developers can focus on a particular layer (e.g.,
Search, Gather, etc.) that encapsulates self-sufficient units
of functionality. Finally, code duplication is mitigated by
creating modules that are capable of re-using the function-
ality of other modules in a highly flexible fashion.
Satisfying these design objectives indicated to us that

mpiBLAST-2.0, implemented with mixin layers with re-
fined roles, will be maintainable and extensible while also
having high performance. Of course, only a realistic field

study would confirm whether our refactoring efforts helps
real developers, and we do plan to conduct such a study as
future work.
To provide additional assurance that we in fact fulfilled

our design objectives, we mapped three real-world mpi-
BLAST case studies to the new design. Influenced by our
prior experiences with the package, these case studies are
differentiated by both the type of users and the type of
changes that are likely to be made to the package once it
is released.
The first case study outlines a scenario of an end-user

(e.g., a bioinformaticist) discovering an inconsistency in the
formatting of search results and reporting this inconsistency
to the mpiBLAST development community. A formatting
problem most likely has to do with the formatting function-
ality, which is encapsulated within Format. This requires
the developer to only understand this particular module in
order to be able to correct the problem.
To perform this task successfully, the developer does not

need to understand neither how the layers are composed
together or the functionality of any other layer other than
Format. Furthermore, knowing that it is the Master that is
responsible for formatting the results, the developer need
only focus her attention on the Master inner class within
the Format layer, highlighted in Figure 6a. This simple but
common case indicates that the new architecture of mpi-
BLAST makes it easy not only to find and fix bugs, but also
facilitates the task of disseminating the changed source code
back to the users of the package.
In the second case study, a pharmaceutical company uses

mpiBLAST for its internal research and development activ-
ities and has a database stored in a format different from
the database format used by the standard distribution of the
package. (In fact, over the years mpiBLAST has been used



GoF Design Parametric Classic Mixin Layers w/ Mixin Layers w/
Patterns Polymorphism Mixins General Roles Refined Roles

Portable High Performance - + + + +
(Re)Usable Components + + +/- + +
Expressed Dependencies - +/- + + +
Shallow Learning Curve + - +/- + +
Avoids Code Duplication + + + - +

Table 1. Summary Comparison of Design Fitness (satisfied = ’+’, unsatisfied = ’-’)

by several commercial entities in that capacity.) Thus, an
internal developermight be chargedwith the task of extend-
ing the functionality of mpiBLAST to be able to use their
internal database format as input.
In developing a new Database (DB) layer, the original

Database layer can be used as a working example on which
to base the new functionality, seen in Figure 6b. Unlike the
previous case study, in which the developer does not need
to understand how layers are put together, here such an un-
derstanding is required to be able to interchange the original
Database layer with a new custom layer. To determine the
Database layer’s correct placement in the mixin composi-
tion, the developer need only consult the existing composi-
tion of layers. If the functionality is incompatible with the
composition, the issues will be revealed at compile time.
As another example in the same case study, the company

might want to expose the functionality of mpiBLAST as
a web service. Once again, mixin layers with refined roles
makes it fairly straightforward to add such functionality: the
specific requirements of the new service would determine
which modules need to be modified. Two potential ways to
provide this functionality are by creating a new replacement
layer or by adding an extra layer, shown in Figure 6c and
Figure 6d respectively. At any rate, this case study indicates
that the new architecture makes mpiBLAST amenable to
new extensions and enhancements with minimal effort on
the part of the developer.

6. Future Directions

We look forward to seeing what mpiBLAST developers
will add to the package now that mpiBLAST-2.0 facilitates
experimentation with new features and functionality. One
promising direction for new development that we foresee
is improving various parallel algorithmic properties such as
architecture-specific searching algorithms and parallel I/O
strategies. These improvements are vital because, as afore-
mentioned, the exponential growth of sequence databases
is outpacing current sequential algorithmic enhancements.
But most importantly, by separating the different phases of
the application into modules, the new design makes it pos-
sible to develop and incorporate new features orthogonally
to the routine maintenance of the codebase.

From the software engineering perspective, we aim to
further improve the usability of the package for both devel-
opers and end-users. For developers, this requires quanti-
fying the extent to which newly added features affect the
maintainability of the package. If a custom Database layer
or a Web service layer is added to the package, how many
files, classes, andmethods would need to be created or mod-
ified? How many files, classes, and methods would need to
be modified in order to apply the Format layer bug fix from
our case study? While we foresee that the high modularity
of the new design will enable independent development of
new features orthogonal to routine maintenance of the core
functionality, it would be prudent to support these claims
empirically.
For end-users, improved usability comes in the form of

an improved user-interface. Most mpiBLAST end-users
are not experts in computer science, nor do they aspire to
become ones. Therefore, while the current command-line
interface is a functional user-interface, it is unnecessarily
complex requiring the user to remember the multitude of
options available. Not coincidentally, the modular design
of mpiBLAST-2.0 is well suited to providing new user-
interface facilities (i.e., add a user-interface layer), thereby
opening up an entirely new area of development focused
solely on the user experience.

7. Conclusions

In conclusion, the architectural refactoring of mpi-
BLAST has been an all-around positive experience that has
provided us with multiple insights that we believe are appli-
cable in other parallel bioinformatics search tools.
First, Table 1 shows a summary of how our five design

goals are satisfied by the designs we considered, As the ta-
ble shows, each design satisfied some combination of our
stated design objectives, however, only mixin layers with
refined roles satisfies all of our stated design objectives. The
deciding design objective for a “mixins-like” design was the
easily expressed dependencies of this software architecture.
While it may be possible to express dependencies using de-
sign patterns or parametric polymorphism, in our case, us-
ing a mixins-like implementation reduced the complexity
of the resulting implementation. Interestingly, the deciding



factor not to use a pure mixins approach was the lack of
explicit separation of process roles, while the deciding fac-
tor not to use mixin layers with general roles was that the
separation of process roles was too strict. For a parallel,
open-source, bioinformatics application, mixin layers with
refined roles enables maintenance and extensibility to be
orthogonal development processes with functionality con-
fined to well-encapsulated logical units. Furthermore, the
modules are easily interchangeable allowing for a wide va-
riety of specialized applicationswith compatibility enforced
at compile time.
Second, high-performance bioinformatics software can

be structured in a modular fashion without sacrificing per-
formance using mixin layers. As expected, preliminary
evaluation of (our prototype of) mpiBLAST-2.0 indicates
that it performs well in comparison to mpiBLAST-1.4.0 –
mpiBLAST-2.0 maintains or even decreases overall execu-
tion time on average. A more rigorous and extensive per-
formance evaluation of mpiBLAST-2.0 (e.g., broad range in
the number of processors, different BLAST parameters, dif-
ferent architectures, phase profiling and analysis, etc.) will
be conducted over the next few months but is outside the
scope of this paper.
Lastly, parallel bioinformatics software has earned the

reputation of being difficult to develop and to use that we
think is undeserved. As our experience shows, sound soft-
ware engineering principles can and should be applied to the
development and maintenance of this type of software. Our
final design of mixin layers with refined roles satisfies all of
our design objectives demonstrating that one does not have
to give up performance to achieve desirable software engi-
neering objectives such as modularity. We are optimistic
that mpiBLAST-2.0 will enable scientists to concentrate on
their own science rather than on computer science.
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