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Abstract—As energy efficiency has become a key consideration
in the engineering of mobile applications, an increasing number
of perfective maintenance tasks are concerned with optimizing
energy consumption. However, optimizing a mobile application
to reduce its energy consumption is non-trivial due to the
highly volatile nature of mobile execution environments. Mobile
applications commonly run on a variety of mobile devices over
mobile networks with divergent characteristics. Therefore, no
single, static energy consumption optimization is likely to yield
across-the-board benefits, and may even turn to be detrimental
in some scenarios. In this paper, we present a novel approach
to perfective maintenance of mobile applications to reduce their
energy consumption. The maintenance programmer declaratively
specifies the suspected energy consumption hotspots in a mobile
application. Based on this input, our approach then automatically
transforms the application to enable it to offload parts of its
functionality to the cloud. The offloading is highly adaptive,
being driven by a runtime system that dynamically determines
both the state-to-offload and its transfer mechanism based on the
execution environment in place. In addition, the runtime system
continuously improves its effectiveness due to a feedback-loop
mechanism. Thus, our approach flexibly reduces the energy con-
sumption of mobile applications behind the scenes. Applying our
approach to third-party Android applications has shown that it
can effectively reduce the overall amount of energy consumed by
these applications, with the actual numbers ranging between 25%
and 50%. These results indicate that our approach represents a
promising direction in developing pragmatic and systematic tools
for the perfective maintenance of mobile applications.

I. INTRODUCTION

As mobile applications deliver increasingly complex func-
tionality, mobile devices are rapidly overtaking the personal
computer as a primary computing platform for an increasing
number of users [6]. Because of the battery constraints of
mobile devices, energy efficiency—fitting an energy budget
and maximizing the utility of applications under given bat-
tery constraints—has become an important software design
and maintenance consideration [14]. Traditionally concerned
with performance and memory usage optimization, perfective
maintenance now has to address the challenges of optimizing
energy consumption, with existing perfective maintenance
techniques being mostly inapplicable.

Although the field of optimizing software energy consump-
tion is broad and diverse, existing solutions primarily focus
on the hardware, operating system, and network layers. At
the software layer, an energy optimization technique that has
received a substantial attention from the research community is

cloud offloading [4], [1], [17], [8]. This optimization partitions
mobile applications, so that their energy intensive functionality
is executed in the cloud, without draining the battery. Existing
cloud offloading techniques determine the energy intensive
functionality statically, and partition mobile applications ac-
cordingly. However, to achieve maximum benefit, cloud of-
floading must take into consideration the hardware capacities
of the mobile device running the application as well as the
characteristics of the mobile network connecting the mobile
device to the cloud. In other words, the offloading decisions
should be made dynamically at runtime and continuously
adjusted in response to the fluctuations in the mobile execution
environment. Lacking this level of flexibility, existing offload-
ing schemes are inapplicable as a general energy optimization
approach for perfective maintenance.

In this paper, we present a novel offloading approach that
combines the advantages of the prior state of the art both in
partitioning mobile applications and in dynamically adapting
mobile execution targets in response to fluctuations in network
conditions. Our approach is realized as the following two
major technical solutions: (1) a multi-target offloading pro-
gram transformation that automatically rewrites a centralized
program into a distributed program, whose local/remote dis-
tribution is determined dynamically at runtime; (2) a runtime
system that determines the required local/remote distribution
of the resulting distributed program based on the current
execution environment. Combining these two solutions can
effectively reduce the amount of energy consumed by mobile
applications without having to change their source code by
hand, thus optimizing them behind the scenes.

From the maintenance process perspective, our approach
works as follows. The maintenance programmer marks the
methods suspected of being energy consumption hotspots.
Then, a series of program analysis techniques validates the
programmer’s input and automatically rewrites the application
into a distributed application, whose local and remote parts
can be flexibly determined at runtime. The flexibility in
determining the distribution patterns at runtime is enabled
through an elaborate checkpointing mechanism. Depending
on the runtime execution environment, different portions of
a program’s state can be checkpointed and transferred across
the network as required by the offloading strategy in place. The
offloading strategy is determined by the runtime system, whose



responsibilities include: (1) managing a connection between
the client and the server, (2) continuously estimating the
energy consumed by the mobile device, (3) calculating which
offloading strategy should be followed, (4) synchronizing the
checkpointed state transferred between the server and client,
and (5) ensuring resilience in the presence of failure due to
network disconnections.

In our experiments, we have applied our approach to
optimize the energy consumption of third-party, real-world
Android applications. All the subject applications not only
reduced their energy consumption, but also maintained their
original performance characteristics. Our adaptive, multi-
targeted cloud offloading approach can effectively reduce the
amount of consumed energy. Specifically, our benchmarks and
case studies demonstrate that our approach can reduce the
overall energy budget of a typical mobile application by an
amount ranging between 25% and 50%.

Based on our results, the technical contributions of this
paper are as follows:

1) A multi-target offloading program transformation
that makes it possible to postpone until the runtime the
decision about which parts of the application should be
executed locally or remotely.

2) An adaptive cloud offloading runtime system that de-
termines optimal offloading strategies for the partitioned
applications.

3) An empirical evaluation of multi-target offloading
that shows the technique effective in reducing the energy
consumed by real-world, third-party mobile applications.

The rest of this paper is structured as follows. Section II
defines the problem that our approach aims at solving and
introduces the concepts and technologies used in this work.
Sections III and IV describe and evaluate our approach,
respectively. Section VI compares our approach to the existing
state of the art. Section V presents perfective maintenance
guidelines for effective cloud offloading, and Section VII
presents concluding remarks.

II. PROBLEM DEFINITION AND TECHNICAL BACKGROUND

In this section, we provide a technical background both for
the problem our approach is intended to solve and for the
major technologies our approach uses.

A. Problem Definition

The work presented here is motivated by an insight we have
recently derived from an experimental study of the impact
of distributed programming mechanisms on energy efficiency
[9]. After discovering that the network conditions in place can
significantly affect how much energy is spent to transfer the
same data, we have created guidelines for mobile application
designers to transmit data in a fashion that consumes the
least amount of energy for a given mobile network. Because
transferring the same data over WiFi, 3G, or 4G networks
consumes different amounts of energy, an optimal offloading
mechanism should be adaptive, transferring varying amounts
of state depending on the network conditions in place.

Figure 1 shows an Cloud Offloading Energy Consumption
Graph (CO-ECG), a novel program analysis data structure that
we introduced to model how much energy will be consumed
under different offloading scenarios. The nodes of the CO-
ECG represent program components, encapsulated units of
functionality that can be offloaded to the cloud. Each node
is labeled with an approximate amount of energy consumed
by the CPU to execute the functionality of the component and
its successor components in the graph. The edges represent
the communication between the components, with the labels
showing how much energy will be consumed by the mobile
device to transmit the data between the connected components.
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Fig. 1. An cloud offloading energy consumption graph.

In this particular CO-ECG, component A consumes approx-
imately 100 joules during a typical execution, thus becoming
a viable candidate to be offloaded to the cloud. Because
component A calls components C and B, which in turn calls
components D and E, its energy consumption is the sum of
the energy consumed by all the successor components in the
graph. We assume that the energy spent on executing the
offloaded functionality in the cloud is free, as it does not
exhaust any battery power of the mobile device. If component
A is offloaded, then transmitting the necessary data to it across
the network enabling it to execute remotely would consume
between 30 and 150 joules depending on the type of the
network available to transmit the data. In other words, under
some network conditions, offloaded execution will end up
using more energy than executing component A on the mobile
device. Because the type of network available is only known at
runtime, the offloading decisions must be dynamic to be able
to optimize the amount of consumed energy under all runtime
conditions.

In this paper, we present a solution that can solve the
problem discussed above. We call our solution adaptive, multi-
target cloud offloading (AMCO). A special program transfor-
mation creates a distributed client/server application, whose
client and server functionalities are determined dynamically at
runtime. As a specific example of using the CO-ECG above,
when operating over a 3G network, components C and D can
be offloaded, while when operating over a 4G network, only



component E can be offloaded. Finally, when operating over
WiFi, components A or B can be offloaded.

More specifically, marking a method as an energy hotspot
creates an offloading specification, in which various portions
of the call graph rooted in the marked method can be of-
floaded as required by the runtime conditions. Because it
takes more energy to transfer data across limited networks,
an optimal offloading strategy needs to trade the energy
potentially saved by moving the execution to the cloud with
the energy consumed by moving the data (i.e., program state)
to support the offloading. Our program transformation makes
it possible to offload any subgraph of the CO-ECG, while
our runtime system triggers the most beneficial (i.e., saving
the most battery power) offloading for the runtime execution
environment in place.

B. Technical Background

The technical concepts behind our approach include cloud
offloading, energy consumption patterns, and program analy-
sis. We describe these technologies in turn next.

1) Cloud Offloading: Cloud offloading is a mobile applica-
tion optimization technique that makes it possible to execute
the application’s energy intensive functionality in the cloud,
without draining the mobile device’s battery. Cloud offloading
is typically implemented as a program partitioning transfor-
mation that splits a mobile application into two parts: client
running on a mobile device and server running in the cloud;
all the communication between the parts is conducted via a
middleware mechanism such as XML-RPC. Thus, cloud of-
floading is a special case of automated program partitioning—
distributing a centralized program to run across the network
using a compiler-based tool transform a centralized program
[22] or migrating execution between different application im-
ages at the OS level [17], [2]. The promise of cloud offloading
is demonstrated by the proliferation of competing approaches
to this technique in the literature. CloneCloud [1] offloads
execution at the thread level, while Cloudlet [17] offload at the
VM level. MAUI [4] offloads through application partitioning
at the method level. In our prior work on cloud offloading [8],
we partition applications without destroying their ability to
execute locally. All of these prior cloud offloading techniques
share the goal of reducing the energy consumed by mobile
devices. The approach presented in this paper adopts many
of the techniques above to automatically transform mobile
applications without any changes to their source code and
to synchronize program states between partitions. However,
our approach’s goal is to improve on the efficiency of the
prior cloud offloading technique by postponing the offloading
decisions until the runtime, when a feedback-loop mechanism
can determine which amount of offloading is optimal.

2) Energy Consumption Patterns in Mobile Applications:
Network communication constitutes one of the largest sources
of energy consumption in a mobile application [15], [9].
According to a recent study, network communication con-
sumes between 10 and 50% of the total energy budget of
a typical mobile application [13]. Specifically, in our prior

research [9], we measured and analyzed how middleware can
significantly affect a mobile application’s energy consumption.
Our experiments assessed the energy consumption of passing
varying volumes of data over networks with different laten-
cy/bandwidth characteristics. Then, we isolated how mobile
applications consume energy to infer their common energy
consumption patterns. The experimental results and systematic
analysis conducted through that research inspired us to initiate
the work presented in this paper.

3) Program Analysis: Program analysis codifies a set of
techniques to infer various facts about the source code to be
leveraged for optimization and transformation. Class hierarchy
analysis (CHA) constructs a call graph in object-oriented lan-
guages. Dataflow analysis determines how program variables
are assigned to each other [18]. Side-effect free analysis [16]
determines whether a method changes the program’s heap. In
this work, we use CHA to compute the functionality to offload
and the program state to transfer for a given offloading. To
select optimal offloading strategies, we combine dataflow and
side-effect analyses. Based on the results, a bytecode enhancer
then rewrites the application without changing its source code.
We used Soot [23] to implement our program analysis and
transformations.

III. OFFLOADING ENERGY INTENSIVE FUNCTIONALITY

In this section, we present adaptive, multi-target cloud
offloading (AMCO). We start by giving an overview of the ap-
proach and then describe its major parts in turn. We conclude
with discussing the approach’s applicability and limitations.
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Fig. 2. Overall procedure for adaptive, multi-target cloud offloading.

A. Approach Overview

Figure 2 shows the workflow of AMCO. The approach
consists of two major parts—a program analysis-guided par-
titioning transformation and an adaptive runtime system.
The AMCO programming model is straightforward: the pro-
grammer marks the components suspected of being energy
hotspots. In AMCO, components can be defined at any level
of program granularity, with the smallest being individual
methods and the largest a collection of packages. To mark



hotspot components, AMCO provides a special Java annota-
tion @OffloadingCandidate; this information can also be speci-
fied through an XML configuration file. Based on this input, an
analysis engine first checks whether the specified component
can be offloaded as well as any of its subcomponents (i.e.,
successors in the call graph). The engine also calculates
the program state, to be transferred between the remote and
local partitions, that would need to be transferred to offload
the execution of both the entire component or of any of
its subcomponents. A bytecode enhancer then generates the
checkpoints that save and restore the calculated state for
the entire hotspot components as well as for each of its
subcomponents. At runtime, an adaptive runtime system con-
tinuously monitors the energy consumed by each offloading
candidate component, broken down for each of its constituent
subcomponents. Based on the estimated energy consumption,
the runtime offloads those subcomponents whose cloud-based
execution would save the highest amount of energy for the
network conditions in place. The runtime also synchronizes
remote and local states in place (while preserving the aliasing
in both the local and remote heaps). Yet another responsibility
of the runtime system is fault tolerance—handling temporary
network disconnection and volatility.

B. Program Analysis and Transformation

To create a program analysis heuristic that can calculate the
program transformations enabling multi-target offloading, we
have extended our prior heuristic for static offloading [8].
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Fig. 3. Program analysis for adaptive, multi-target cloud offloading.

Figure 3 shows the analysis procedure that includes con-
structing a call graph by using class hierarchy analysis and
identifying the state-to-be-transferred or synchronized by us-
ing forward dataflow and side-effect analyses. A pre-analysis
step collects all the components and subcomponents marked
with @OffloadingCandidate, and then the main analysis identifies

the state that is needed to be transferred for each offloading
scenario. One technical advantage of the main analysis is that it
reduces the amount of state that has to be transferred across the
network. The necessity to transfer large data volumes across
the network can quickly negate the energy consumption bene-
fits afforded by remote offloading. To avoid having to transmit
the entire state, our approach leverages these forward dataflow
and side-effect analyses to reduce the transferred state’s size,
thus rendering state transfer practical for energy optimizations.
The algorithm examines assignment and invocation statements
to determine whether the current state has changed during the
cloud offloading.

public class A {
  public Object foo() {

//Original code

  }

}

public class B {
  public Object goo() {

//Original code

  }

}

OffloadingManager.addObject(…);

OffloadingManager.execute(…);

OffloadingManager.migrate(…);

At entry

At exit

Call

OffloadingManager.addObject(…);

OffloadingManager.execute(…);

OffloadingManager.migrate(…);

At entry

At exit

Offloading Candidate 1

Offloading Candidate 2

Original Code Inserted Code

Fig. 4. An example of program transformation.

Once offloading candidates are identified, the bytecode
enhancer transforms them to be able to run their hotspot
components and subcomponents on the client and the server
as needed to realize a given offloading scenario. Then, the
adaptive runtime system monitors the runtime execution en-
vironment and determines an optimal offloading candidate.
Figure 4 shows how the original code of a centralized mobile
application is transformed. The bytecode enhancer inserts the
code that can checkpoint and restore the necessary program
state at the entry and exit of the potentially offloaded methods,
respectively. These methods include offloading candidates and
their successors in the CO-ECG.

C. Adaptive Runtime System

Figure 5 shows the design of the AMCO adaptive runtime
system that comprises three main components: (1) cloud
offloading prediction and steering, (2) energy consumption es-
timation, and (3) cloud offloading processing. By continuously
monitoring the execution environment, the runtime system
intelligently correlates the collected information to suggest
optimal offloading strategies.

1) Cloud Offloading Prediction and Steering: Figure 6
shows the procedure for predicting and steering the mutli-
target cloud offloading. The module predicts the future energy
consumption by analyzing the collected runtime execution
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INPUT: A set of state, = S1, ..., SN

OUTPUT: Updated state

adaptiveOffloading() {
delay ←− delay × α+ currentDelay()× (1− α);

while(∀S) {
estimation←− computeEnergyConsumption(delay, Sn);

if (estimation is the lowest) {
if (estimation > local execution) {

return ExecuteLocal();
} else {
newState←− execute(cp);
stateMigration(newState, state);
updateHistory(state, delay, estimation);
return state;

} } }
}

Fig. 6. Adaptive, multi-target cloud offloading operation.

environment and then selects the offloading strategy that
would yield the lowest future energy consumption. First, the
future energy consumption is computed using delay, which
is measured by sending a probe packet to the offload server.
Then, the current delay is recomputed by giving a weight to
the mostly recently obtained value (i.e., delay = delay×α+
delay × (1 − α)), thereby avoiding a delay spike as well as
partially reflecting the latest delay value. Finally, the module
calculates the offloading strategy to suggest by picking the
smallest predicted future energy consumption from all the
available offloading candidates (i.e., subgraphs of the CO-
ECG).

2) Energy Consumption Estimation: The energy consump-
tion estimation module estimates the energy consumption

before and after the offloading operation. To estimate the
performed cloud offloading, we only compute the energy
consumption by CPU and network communication as follows:

E = {P active
cpu freq × (Tuser time

cpu + T sys time
cpu )+

(P active
net × T active

net ) + (P idle
net × T idle

net )} × V

where P active
cpufreq

is the power consumed by the CPU. Modern
CPUs feature speed-step, a facility that allows the clock speed
of a processor to be dynamically changed by the operating
system, with different levels of power consumed at each clock
speed. For example, Samsung Galaxy S III’s AP provides
five steps, ranging from 302.4 MHz to 1512 MHz, and the
amount of power consumed at each speed ranges from 55mA
to 577mA. Tuser time

cpu and T sys time
cpu are user and system

times taken by the offloading operation, and they are obtained
by consulting the statistics provided by the operating system
(e.g., \proc\[pid]\stat). V is current voltage, which is
obtained by using battery-related APIs (e.g., class BatteryStat
in Android OS). P active

net and P idle
net are the amount of energy

that the network processor consumes during the active and
idle phases, respectively. For example, the active/idle energy
consumption ratio for Samsung Galaxy S III is 96 mA/0.3
mA during WiFi communication, and 250 mA/3.4 mA during
mobile communication (e.g., 4G). Finally, T active

net and T idle
net

are active and idle time periods during the cloud offloading
operation, measured at runtime. These device- and execution-
specific values are used to compute the amount of energy
consumed during each offloading optimization.

Another important responsibility of the runtime system is to



predict future energy consumption. To predict the energy that
is likely to be consumed during an offloading optimization,
it correlates the previously measured energy consumption
and the current execution environment. Having obtained the
current values of network delay, connectivity type, CPU
frequency, and voltage, the future energy consumption is
computed as follows:

Eest = {Eavg
cpu + (P active

net × T est active
net )+

(P idle
net × T est idle

net )} × V

where Eest is the predicted future energy consumption, Eavg
cpu

is the average energy consumption of the given remote call,
and T est active

net is the estimated communication time, which is
computed by using the offloaded data size and delay, respec-
tively. Finally, based on the estimated communication time and
prior executions, the runtime system predicts the future energy
consumption. The computed energy consumption is used for
determining an optimal offloading strategy.

3) Cloud Offloading Engine: The cloud offloading engine
manages a connection between the offload server and the
mobile client, synchronizes the checkpointed state, and pro-
vides resilience in the presence of failure due to network
volatility. The checkpointed state is synchronized by means
of copy-restore, an advanced semantics introduced into remote
method call middleware with the goal of passing as parameters
liked data structures (e.g., linked lists, trees, and maps) [21].
Copy-restore copies all reachable state to the server and
then overwrites the client’s state with the server modified
data in-place. To adapt to operating over cellular networks
with limited bandwidth, we modified the original copy-restore
implementation to use sparse arrays, which encode null values
space efficiently. Our implementation uses null values to mark
the portion of the transferred state that has not been mutated
during the offloaded operations.

Figure 7 demonstrates how the runtime system synchronizes
the checkpointed state. Graph (a) depicts the mobile device’s
state to be transferred to the server. The runtime system trans-
fers only the nodes that the analysis identified as being used by
the server (nodes 2, 3, 4, and 7 ). Graph (b) depicts the server’s
state before it is synchronized with the transferred state. Nodes
2, 4, and 5 are updated with new values; node 3 is reassigned
to point to node 7. Graph (c) shows the synchronized server
state. In this example, the offloaded server execution assigns a
new instance, node 8 to node 3, modifies nodes 3 and 5, and
assigns the null value to node 6, with Graph (d) depicting the
results. The mutated state is then transferred to the client and
synchronized with its state depicted in Graph (e). Specifically,
node 6 is removed, node 3 is reassigned to point to node 8,
and nodes 3 and 5 are overwritten with new values. Graph (f)
shows the client state after the synchronization.

D. Discussion

In this section, we discuss advantages and limitations of our
approach, adaptive, multi-target cloud offloading (AMCO).
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Fig. 7. Procedure to synchronize two different state.

1) Advantages: AMCO works with the standard, unmodi-
fied hardware/software stack; it employs bytecode engineering
to transform programs and a lightweight runtime system to
dynamically steer and adapt the offloading. AMCO makes
it possible to keep the maintained version of the mobile
application’s source code intact, as only the bytecode version is
transformed. AMCO requires a minimal programming effort,
limited to marking methods as energy hotspots. AMCO makes
offloading decisions at runtime by monitoring the execution
environment, thus discovering optimal offloading strategies.
Finally, the AMCO offloading transformations do not preclude
the mobile application from executing locally in the case of
the network becoming disconnected.

2) Limitations: Despite its advantages, AMCO cannot be
applied to optimize the energy consumption of all mobile
applications. The AMCO approach is automated rather than
automatic; it relies on the programmer to identify the energy-
intensive methods. Offloading at the method boundaries,
AMCO relies on the subject applications following the well-
accepted principles of quality software design (i.e., encapsula-
tion, modularity, loose coupling), so that the offloaded methods
encapsulate distinct functionality loosely coupled from the
rest of the application. The AMCO offloading model also
requires that the lifetime of all the threads in the offloaded
methods coincide with the methods’ boundaries. That is, the
offloaded methods are free to employ multiple threads, but



all the threads are expected to terminate when the methods
stop executing. As with all partitioning systems that rely on
bytecode engineering, AMCO can only partition non-native
(i.e., expressed exclusively in bytecode) state [20]. Finally,
offloading can increase execution latencies, thus hurting the
user experience for highly interactive applications.

IV. EVALUATION

We evaluated our approach through a micro benchmark
and a larger case study. The results show that our runtime
system reports actionable environmental information without
imposing unreasonable performance and energy overheads.
Also, our overall approach can effectively reduce the amount
of consumed energy for well-engineered applications, with
the introduced program transformations and runtime execu-
tion never causing the enhanced applications to exceed their
original levels of energy consumption.

A. Micro Benchmark

The purpose of this micro benchmark is to understand
the overhead imposed by the runtime system, whose respon-
sibilities include monitoring the relevant fluctuations in the
environment, estimating potential energy savings due to the
possible offloading steps, and synchronizing heaps during the
offloading.

We have based our test suite on the benchmarks originally
proposed by the JavaParty project [7], which is used widely
in benchmarking middleware implementations. These bench-
marks comprise remote invocations with varying parameter
sizes and types. Similarly, our test suite assumes that a client
needs to execute some server methods, each of which takes
parameters that differ in their size and type. Because the exe-
cuted server methods have empty bodies, one can reasonably
attribute the energy consumed during their invocation to the
underlying runtime system.

1) Experimental Setup: The experimental setup has com-
prised a Motorola Droid (600 MHz CPU, 256 MB RAM,
802.11g, 3G) and Samsung Galaxy III (1.5 GHz dual-core
CPU, 2 GB RAM, 802.11n, 4G) as the mobile device and Dell
PC (3.0 GHz quad-core CPU, 8 GB RAM) as the offloaded
server. The mobile device has communicated with the server
through WiFi, 3G network, and 4G network. For the WiFi
connection, we have experimented with two emulated network
conditions that have the following respective round trip time
(RTT) and bandwidth characteristics: 2 ms and 50 Mbps,
typical for a high-end mobile network and 50 ms and 1 Mbps,
typical for a medium-end mobile network. For the mobile
connection, we used a 3G network for the Motorola Droid
and a 4G network for the Samsung Galaxy. Table I shows the
energy profiles of these mobile devices. These device-specific
values parameterize the runtime system.

To a large degree, it is the hardware specifications of a
mobile device that determine its energy consumption profile.
For example, the nano-level process technology is known to
reduce the amount of energy consumed by modern CPUs.
Similarly, the latest network and radio chipsets have improved

TABLE I
MANUFACTURER PROVIDED ENERGY PROFILES

Samsung Galaxy III Motorola Droid

CPU

1512.0 MHz: 577 mA 800.0 MHz: 280 mA
1209.6 MHz: 408 mA 685.7 MHz: 236 mA
907.2 MHz: 249 mA 571.4 MHz: 207 mA
604.8 MHz: 148 mA 342.8 MHz: 165 mA
302.4 MHz: 55 mA 228.5 MHz: 87 mA

N/A 114.2 MHz: 66 mA

WiFi 96 mA 130 mA
0.3 mA 4 mA

Mobile 250 mA 300 mA
3.4 mA 3 mA

their energy efficiency. Therefore, device-specific characteris-
tics play a pivotal role in estimating the energy consumed by
a given mobile device.

2) Energy Consumption Estimation: First, we evaluated
how accurately the runtime system can predict how much
energy will be consumed in a given time interval. Figure 8
compares the energy consumption predicted by the runtime
system and that estimated by our model based on the actual
resource usage. The average error is 10.6 % and standard
deviation is 21.3 %. When considering only 90 % data
removing outliers, the average error is 8.5 % and standard
deviation is 6.8 %. These results indicate that the runtime
system can predict the future energy consumption sufficiently
accurately, with the discrepancies averaging 6-7%.
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Fig. 8. Energy consumption estimation.

3) Overhead: In this benchmark, we compared the total
execution time and energy consumption of the baseline ver-
sions of the benchmarks with that of in the presence of the
AMCO runtime system. The first graph of Figure 9 shows
the total execution time measured on two devices. As one
can see, the performance overhead is quite insignificant. In
particular, the overhead for both devices never exceeds 100 ms
and remains constant for all the measured data transfer sizes.
The second graph shows the energy consumed by each device.
As expected, the high-end device (Samsung Galaxy) consumes
less energy than the low-end device (Motorola Droid). Despite
the low-end device having a larger overhead than the high-
end device, the actual number was 100 mJ, a negligible value
in comparison with the total energy typically consumed by a
mobile application.
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Fig. 9. Performance and energy consumption overhead.

B. Case Study

To determine if our approach is applicable to real-world mo-
bile applications, we experimented with open source projects
as our experimental subjects. Pocket chess1 is a mobile
chess game, whose AI engine, contained in class SimpleEngine
was marked as @OffloadCandidate. JJIL2 is a face recogni-
tion application, whose recognition functionality, contained in
class DetectHaarParam, was marked as @OffloadCandidate.

Figure 10 shows how the AMCO approach has reduced
the amount of energy consumed by the subjects. For each
subject, we present four graphs showing the amount of the
energy consumed by typical, simple use cases. Specifically,
for the chess application, we moved one randomly selected
chess piece; for the face recognition application, we examined
one image file for the presence of human faces. The use
cases were performed under the following four optimization
modes: (1) original centralized execution (baseline), (2) plain
cloud offloading (offload the entire call tree rooted in the
method marked with @OffloadCandidate, (3) same as (2) but
with the transferred heap state minimized by means of program
analysis, and (4) our approach, AMCO.

The optimized versions of the subject applications con-
sumed less energy than their original and plain cloud offload-
ing versions. A typical offloading strategy offloads to the cloud
the heavy CPU processing required to calculate the next move,
and transfers back only the new position for the piece to move.

1http://code.google.com/p/pocket-chess-for-android/
2http://code.google.com/p/jjil/

Because of this optimal architectural property of the chess
application, its optimizations consume between 10% and 90%
of the energy consumed by the original application. As the
game proceeds, the optimized versions exhibit a constant rate
of energy consumption, while the original version consumes
an increasing amount of energy as the required AI processing
intensifies. As expected, even the simplest energy optimization
yields significant energy savings, without any tangible benefits
afforded by using the AMCO adapative runtime system.

In the case of the face recognition application, all three
optimization strategies showed different levels of effectiveness.
First, the plain cloud offloading approach only can save
energy under the most favorable network environment (Wi-Fi).
Second, optimizing the amount of transferred state shows con-
sistent improvement in the amount of consumed energy. Third,
when the runtime is instructed not to monitor the environment,
the amount of consumed energy in the offloaded version actu-
ally exceeds that in the original, centralized version. Lastly,
the adaptive offloading capability of our AMCO approach
seems to be pivotal to saving the amount of consumed energy
consistently. In particular, our AMCO approach optimizes the
application to consume between 10% and 80% less energy
than the original local version, as well as between 25% and
50% less energy than a state-of-the-art static cloud offloading
approach [8].

C. Threats to Validity

The experimental results above are subject to both internal
and external validity threats. The internal validity is threatened
by the manner in which the subject applications were run.
Because the subject applications involve user interactions, their
behavior and energy consumption depend on user actions (e.g.,
choosing a particular chess piece to move or taking a certain
picture). These user interactions can heavily influence how
much energy will be consumed.

The external validity is threatened by the mechanism em-
ployed by the AMCO runtime system to measure energy
consumption. Rather than measuring the physical consumed
energy directly, it estimates the energy consumption based
on the actual resource usage information. As a result, the
estimated energy consumption is likely to be less precise than
those that would be measured through specialized hardware.
In addition, the energy profiles that we used in the runtime
system are provided by manufacturers, so that the accuracy of
our measurements depends on the accuracy of the provided
energy profiles.

V. PERFECTIVE MAINTENANCE FOR EFFECTIVE CLOUD
OFFLOADING

When creating the AMCO approach, we have observed
a positive correlation between the desirable software engi-
neering properties (i.e., strong modularity, high cohesion, low
coupling, etc.) of the application and its amenability for the
cloud offloading optimization. Based on these observations,
we next present three perfective maintenance guidelines that
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(a) Chess (low-end device).
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(b) Chess (high-end device).
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(c) Face recognition (low-end device).
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(d) Face recognition (high-end device).

Fig. 10. Energy consumption of the subject applications.

programmer can follow to render their mobile applications
better fit for effective cloud offloading optimizations.

a) Applying the Split Method Refactoring: A method is
one of the earliest abstractions for separating concerns. A well-
designed method should ideally contain a single coherent unit
of functionality. In general, the larger the method, the less
cohesive it is. As it turns out, large methods can be unwieldy as
cloud offloading units, particularly in the case of fine-grained,
adaptive offloading as in AMCO. In light of this observation,
we recommend that the energy intensive methods marked with
@OffloadCandidate be examined for their cohesion and then
refactored if necessary. The Split Methods refactoring divides
the functionality of a single method into separate methods
calling each other. Smaller methods encapsulate conceptually
coherent units of functionality. As a result, fine-grained, well-
modularized mobile applications are not only desirable from
the software comprehension perspective, but also are well
amenable to perfective maintenance using cloud offloading.

b) Encapsulating Native State: Although native code
usually renders the surrounding bytecode not modifiable [20],
the programmer can guide the offloading tools by providing
a bytecode API that accesses and synchronizes the portion of
the state implemented in native code. Because native code may
be impossible to analyze, it is the programmer’s responsibility
to ensure that the wrapping API correctly synchronizes the
native state without introducing any harmful side effects.

c) Eliminating False State Sharing: In object-oriented
languages, all the member fields of a class can be accessed by
all of its methods. However, the purpose of member fields is to
define the state, whose purpose remains constant throughout
the lifetime of the class’s objects. A common design flaw is
to use the same member field across multiple class methods
in different capacities. That is, rather than declaring the field
locally in each method, several methods use the same member
field, a condition that we call false state sharing. False state
sharing is a more serious design flaw that it may seem on the
surface, as the problems it causes are similar to that caused
by global variables in procedural languages. With respect
to cloud offloading, false state sharing complicates program
analysis and state synchronization, thus limiting the amount
of functionality that can be effectively offloaded. Therefore,
we recommend that as part of perfective maintenance for
energy optimization, programmers eliminate false state sharing
through refactoring as much as possible.

VI. RELATED WORK

Extending the battery life by reducing the energy con-
sumed by mobile applications has been the focus of multiple
complimentary research efforts such as more energy-efficient
operating systems (e.g., energy-efficient CPU scheduling [26],
disk power managements [24], and process migration [1],
network protocols [25]), VM-level [17] and application-level
offloading techniques [4].



Although the majority of these efforts has focused on
one particular system layer (i.e., mainly the network), a
technique called a cross-layer approach effectively controls
energy consumption by leveraging the information provided
by multiple system layers [5], [11]. Several programming
abstractions enable effective adaptations that leverage multiple
optimization strategies. The Odyssey platform [5] adapts data
or computational quality to save energy consumption, so as
not to exceed the available system resources. These energy-
aware adaptations can identify possible trade-offs between
energy consumption and application quality, choosing an en-
ergy management strategy based on the runtime conditions.
DYNAMO [11] is another middleware platform that adapts
energy optimization strategies across various system layers,
including applications, middleware, OS, network, and hard-
ware, to optimize both performance and energy.

While much research has focused on system-level solutions,
programming-level approaches (e.g., algorithms [12], design
patterns [10], software models [19]) have received little at-
tention in the literature. A recent language-based approach to
energy-aware programming is ET [3], a new object-oriented
programming language that enables the programmer to write
energy-aware code.

By contrast, the AMCO focus is on perfective maintenance,
even though it adopts its techniques from both programing-
and system-level approaches to energy optimization. The
novelty of AMCO lies in combining analysis-driven program
transformation and runtime adaptation.

VII. CONCLUSIONS

We have presented a novel perfective maintenance approach
to reducing the energy consumption of mobile applications,
adaptive, multi-target cloud offloading (AMCO). Our approach
reduces the energy consumed by mobile applications without
changing their source code by employing powerful program
analysis and transformations as well as an adaptive runtime
system that determines an optimal offloading strategy at run-
time. We have evaluated our approach by reducing the energy
consumed by micro benchmarks and third-party applications
under different execution environments. These results indi-
cate that our approach represents a promising direction in
developing pragmatic and systematic tools for the perfective
maintenance of mobile applications.
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