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ABSTRACT
Modern mobile users commonly use multiple heterogeneous mo-
bile devices, including smartphones, tablets, and wearables. En-
abling these devices to seamlessly share their computational, net-
work, and sensing resources has great potential benefit. Sharing
resources across collocated mobile devices creates mobile device
clouds (MDCs), commonly used to optimize application perfor-
mance and to enable novel applications. However, enabling hetero-
geneous mobile devices to share their resources presents a number
of difficulties, including the need to coordinate and steer the exe-
cution of devices with dissimilar network interfaces, application
programming models, and system architectures. In this paper, we
describe a solution that systematically empowers heterogeneous
mobile devices to seamlessly, reliably, and efficiently share their re-
sources. We present a programming model and runtime support for
heterogeneous mobile device-to-device resource sharing. Our solu-
tion comprises a declarative domain-specific language for device-to-
device cooperation, supported by a powerful runtime infrastructure.
we evaluated our solution by conducting a controlled user study
and running performance/energy efficiency benchmarks. The eval-
uation results indicate that our solution can become a practical tool
for enhancing the capabilities of modern mobile applications by
leveraging the resources of nearby mobile devices.

ACM Reference Format:
Zheng Song, Sanchit Chadha, Antuan Byalik, and Eli Tilevich. 2018. Pro-
gramming Support for Sharing Resources Across Heterogeneous Mobile
Devices. In Proceedings of MOBILESOFT conference (MOBILESOFT’18). ACM,
New York, NY, USA, Article 4, 11 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
The modern computing landscape is marked by several rapidly
evolving realities. A typical user owns multiple mobile devices that
differ in their types, platforms, and capabilities. For example, a
user may simultaneously own a smartphone, a tablet, an e-reader,
each of which runs a different operating system and offers vastly
dissimilar processing capabilities, sensory functionalities, and net-
working interfaces. Furthermore, the number and variety of mobile
devices in a typical household is even greater. Finally, the rapid
developments in wearable computing and the Internet of Things
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(IoT) have the potential to increase these numbers for a typical user
by as much as an order of magnitude in the near future.

Mobile devices have traditionally used the cloud as a means of
enhancing their execution [25, 26, 43], both to improve the quality
of service and to extend their functionality. Nevertheless, accessing
cloud-based resources is not always feasible, beneficial, or safe.
On the other hand, with the rapid growth of capacity of mobile
devices, the computational power could be provided by nearby
mobile devices instead. All these scenarios give rise to the potential
of leveraging nearby mobile devices, often owned by the same
user or a community of users, as an alternative means of gaining
additional resources.

1.1 Motivating Scenarios
Figures 1, 2 and 3 depict three scenarios exemplifying the conditions
described above. In Figure 1, a smartphone application needs to
search for a given face from all photos in the phone’s album. Facial
recognition is known to be computation/energy-intensive thus
causing high latency/battery consumption, especially when the
user has hundreds of photos. In Figure 2, the driver is navigated
by smart glasses. However, keeping the GPS module on the glasses
all the way on could drain the battery of smart glasses quickly.
In Figure 3, a smartphone user on a short-term trip to a foreign
country needs to access the Internet. However, without a local

Search a face In

In

using

using

using

using

Search a face

Figure 1: Scenario 1: Photo Recognition
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Figure 2: Scenario 2: GPS Sharing
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Figure 3: Scenario 3: Data Plan Sharing

mobile account, the phone cannot access any mobile data services
provided by the available cellular network providers.

Although the users mentioned above are all short of either
computational resources, context-related resources, or network
resources, various mobile devices (e.g., tablets, ereaders, and wear-
ables, etc.), owned by themselves or their acquaintances may be in
the immediate vicinity. These devices could provide the external
resources required to solve the problems above. One could rewrite
the mobile applications, so as to enable them to take advantage of
such external resources. In scenario 1, one can reduce the execu-
tion time of computationally intensive tasks if they are run in a
piecemeal fashion on nearby devices. In scenario 2, one can request
GPS sensory reading from a nearby mobile device with larger bat-
tery capacity. In scenario 3, one can access the Internet by using
a nearby mobile device, with a local mobile data plan, as a proxy
that forwards the network requests and responses.

1.2 Research Challenges and Contribution
The aforementioned scenarios demonstrate how by sharing the
resources of nearby devices, mobile applications can not only im-
prove their quality of service, but also provide new functionality.
However, several conceptual obstacles stand in the way of such
resource sharing across heterogeneous mobile devices. For example,
in scenario 1, one cannot execute offloaded mobile functionality
on a different platform (e.g., running Android code on iOS). In sce-
nario 2, one needs to be able to dynamically locate a nearby mobile
device, whose battery capacity can accommodate long-lasting GPS
sensor reading. In scenario 3, the programming interface to another
user’s mobile device must provide access to the device’s voluntarily
shared resources, while preventing misuse. The runtime in all sce-
narios must properly adapt to the mobility of the devices involved,
ensuring efficiency and robustness.

The prior state of the art has studied novel applications of sharing
resources across nearby mobile devices. However, these solutions
mostly have focused on specific mobile platforms, without the
overarching goal of supporting heterogeneous environments. These
prior solutions have lacked focus on programmability and thus
require the programmer to write complex logic for error handling
and performance/energy consumption optimization.

In this paper, we present solutions that address the deep, concep-
tual challenges of enabling mobile devices to provide/use resources
for/of nearby heterogeneous mobile devices. These solutions em-
brace heterogeneity, working with any pair of mobile devices, irre-
spective of their platforms, operating systems, or installed applica-
tions. Also, the presented solutions reduce the programmer’s effort
in creating reliable and efficient functionality for sharing resources.
This paper makes the following contributions:

• We study and reveal how existing applications can benefit
from shared resources of nearby devices.

• We design the Resource Query Language (RQL)—a declara-
tive domain-specific language for accessing shared resources
of nearby devices. RQL makes it possible to declaratively
express resource sharing requests by simply specifying the
preferred devices, resource types, and the actions to be car-
ried out. The RQL runtime is designed with provisions for
energy efficiency, latency optimization, and privacy preser-
vation when executing across heterogeneous mobile devices.

• We provide a reference implementation of the RQL language
and runtime support on major mobile platforms, including
iOS and Android. We also describe example applications that
make use of RQL to access resources across the iOS and
Android platforms

• We evaluate the programmability and efficiency of our tech-
nical approach through a case study and experiments. Our
results indicate that the presented solutions can improve the
productivity of mobile programmers, as well as improve the
performance/energy efficiency of mobile applications.

The rest of this paper is organized as follows. Section 2 stud-
ies the functionality of existing applications that can benefit from
resource sharing. Section 3 introduces our design of the resource
sharing solution, focusing on the proposed RESTful language for
the programmers to specify their resource requirements. Section 4
describes the design of the runtime support, and the optimization

2
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Table 1: Offloadable APIs

Book Business Game
Number of applications 27 27 18
Services per application 2.7 2.7 3.6
Computational-intensive: database 0.59 0.48 0.5
Computational-intensive: crypto 0.59 0.37 0.83
Context-related API: sensor 0.29 0 0.67
Specific API 1: gestures recognition 0.41 0 0
Specific API 2: sslconnection 0 0.26 0
Specific API 3: khronos (OpenGL) 0 0 0.56

strategies we designed for energy efficiency, latency optimality,
and privacy preservation. Section 5 introduces our reference im-
plementation of RQL and its runtime. We also describe how we
have applied RQL to realize the solutions motivated in this section.
Section 6 shows how our resource sharing method benefits the pro-
grammers, as well as improve the performance/energy efficiency of
mobile applications. Section 7 summarizes the related state of art,
and Section 8 concludes this paper and puts forward some future
research directions based on this work.

2 IDENTIFYING REQUIREMENTS
In this section, we demonstrate the potential benefits of resource
sharing across mobile devices by answering these two questions: 1)
for existing apps, how many kinds of local API calls may possibly
be replaced with remote calls? 2) how frequently such replaceable
APIs are called in existing applications?

2.1 Methodology
In the study, our use 574 of most popular Android applications in
different application domains, which we downloaded from Google
Play in September 2014. We carefully analyzed the APIs included
in these applications, and found that those APIs which can benefit
from nearby resources can be classified into three major cate-
gories: (1) context-providing sensors/media tools (e.g., GPS,
accelerometer, microphone, camera); (2) computational re-
sources (e.g., processors, memory, and storage); (3) service
resources (e.g., network connections, phone service, SMS).

Following the steps given below, we pick the API calls that belong
to the above listed three categories.

1) We disassemble the deployment archives of these applications,
and use a tool called Baksmali to de-compile Android DEX (VM
bytecode) files into Smali files (readable code in the smali language)
which can be analyzed. Regular expressions are then used to pick
out all API calls, as shown in Fig 4. (a).

2) We then remove the APIs of the packages irrelevant for re-
source sharing, such as java/lang/, java/io/, com/google/ads/, an-
droid/view; android/os/. Fig 4.(b) shows the remaining APIs.

3) Finally we manually remove those APIs that do not fall into
the three considered categories above. Fig 4. (c) shows the left
APIs, in which those marked in black are the APIs that involve
service resources, those marked in green stand for APIs that need
computational resources, and those marked in yellow show APIs
that are sensor related.

2.2 Results
We randomly picked applications from 3 application domains (Book,
Business, and Game) and listed their API usages in Table. I. From the
table we can see: 1) The APIs that provide HTTP services, including
webview→loadurl, url→openconnection, httpurlconnection→connect,
httpclient→execute, are widely used in every application domain.
By cooperatively providing HTTP services for a group of devices,
one can reduce the total energy consumption of the group because
some contents can be shared among nearby devices[18]. Consider
cellular links, which are energy intensive at low bit-rates and have
high round-trip times after idle periods. Here consolidating mul-
tiple users’ traffic on a subset of links would shorten the round
trip time as well as save the energy consumption[34]; 2) The APIs
for local database searching and crypto are frequently spotted in
game applications. Such APIs consume more computational power
than other APIs, so if they can be executed by another device with
greater computational power, it will save the overall energy con-
sumption and speed up the whole execution[1]; 3) The APIs for
obtaining sensors’ readings are frequently spotted in book and
game applications. As commercial sensors usually will not provide
enough accuracy to figure out the attitude of the phone and the
exact motion of users[47]; using other sensors from a nearby device
can provide a viable alternative.

By carefully analyzing existing applications, one can conclude
that most applications in different domains can generally benefit
from using the network service/ computational / sensory resources
of nearby devices. In the following sections, we will detail our
solutions that enable such resource sharing across nearby devices.

3 RQL DESIGN
In this section, we present the design of the resource sharing lan-
guage (RQL). RQL is a platform-independent, domain-specific lan-
guage that enables heterogeneous devices to seamlessly share their
resources. We designed RQL around the RESTful architecture [12],
a proven solution for many of the complexities of engineering
dynamic, heterogeneous distributed systems, including the WWW.

We next present RQL by example. Consider an RQL statement:
pull glass:sensor/orientation. This statement will retrieve
the readings of the orientation sensor of a glass device, if it happens
to be in the vicinity; it will return a null reading otherwise. The
specific details of locating a glass device, connecting to it, retrieving
its readings, etc. are handled by the RQL runtime. This example
shows that the design of RQL follows the verb/nouns paradigm:
nouns express the requested resources, while verbs express the
actions performed on these resources.

3.0.1 Nouns. RQL represents the resource intention with nouns.
Specifically, the nouns comprise the following parts: “device de-
scription:resource description/specific name”.

Device description defines device types (e.g., glass, smartphone,
tablet, etc.) or specific characteristics (e.g., name, owner, OS, etc.).
Resource description defines the type of resource (e.g., sensors, ser-
vices, files, etc.) followed by specific names (e.g., sensor/orientation,
sensor/gps, service/facerecognition, service/httpsend, etc.).

3
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    landroid/content/intent-><init>  568
    ljava/lang/object-><init>  568
    ljava/lang/stringbuilder-><init>  567
    ljava/lang/stringbuilder->append  567
    ljava/lang/stringbuilder->tostring  567
    landroid/app/activity-><init>  565
    landroid/app/activity->oncreate  561
    landroid/content/intent->putextra  556
    ljava/lang/string->equals  555
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    landroid/gesture/gesturestore->recognize  138
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Remove APIs
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RegEx

Figure 4: Steps of Picking APIs
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Figure 5: Defined RQL Verbs

3.0.2 Verbs. In accordance with the RESTful design principles,
there can be an infinite number of nouns, all of which are manipu-
lated by a small number of verbs. In particular, RQL defines only
four verbs: pull, push, delegate, and bind. As shown in Fig. 5,
“pull” retrieves data from the service interface of another device
immediately; “push” sends data from the source device to the target
device; “delegate” sends some parameters and then gets the execu-
tion results back; finally “bind” establishes a persistent connection
to a device to obtain the value changes of a specific sensor.

3.0.3 Adverbs. Although traditional RESTful interfaces consists
of only verbs and nouns, RQL integrates adverbs as informed by
some prior research on fault-tolerance RESTful services [11]. In
RQL, adverbs can express how commands should be executed
in terms of time or quality constraints. For example, an adverb
can express the timeout value for a pull command (in ms)(e.g.,
pull external:alg/OCR -latency < 500ms). Another adverb is
-blocking (e.g., pull external:sensor/GPS -blocking, which
expresses that the RQL call to retrieve the GPS reading should be
blocking, returning only when a GPS reading is available or the call
has failed. By default, all RQL statements are non-blocking with the

results communicated via an asynchronous callback mechanism.
We discuss a programming scenario involving the -blocking ad-
verb in Section 5.

Fig. 6 depicts several examples of using RQL. The first example is
concerned with getting GPS readings from another device. The sec-
ond example sends a data file to a remote device (belonging to user
John) to use as a parameter to a facial recognition algorithm. The
third example directs a remote device to perform an HTTP request
for a given URL and send back the obtained output. The fourth ex-
ample establishes a persistent connection to get orientation sensor
updates from John’s smart glasses device.

Sometimes the source device may need to execute a sequence
of RQL statements on the same target device consecutively. To
that end, RQL features the “|” binary operator, which specifies
that its operands are to be transmitted in bulk to the target device
and executed in sequence. Consider the source device needing to
execute both the OCR and language translation algorithms one after
another on the same target device. The programmer can express
this functionality in RQL as shown in line 2 of Fig. 6. It is worth
mentioning that such batching of RQL requests may also reduce
the aggregate latency.

4 RUNTIME DESIGN
To meet its design goals, RQL requires sophisticated runtime sup-
port for mainstream platforms (i.e., Android, iOS, and Windows
Phone). In this section, we identify the requirements and outline
design of such runtime support. With respect to requirements, the
RQL runtime must reconcile the need for efficiency with that of
portability and ease of implementation. Hence, we have deliberately
constrained our runtime design to the application space, so as to
avoid low-level, platform-specific system changes. In other words,
the user should be able to install the RQL runtime as if it were a
regular mobile application, albeit with extended permissions (e.g.,
access to all sensors, the ability to connect to remote services via
all available network interfaces, access to local application data and
external storage, etc.)

The runtime support, whose basic flow appears in Figure 7, in-
cludes three basic modules: client, server, and monitor. The client
module of Device A accepts an RQL request and determines whether
the request can be executed by a nearby device (Device B) by query-
ing a distributed registry of nearby devices and resources they
provide. The devices communicate by means of near field commu-
nication interface (e.g., Bluetooth). The server module of Device B

4
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Figure 6: RQL Examples
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Figure 7: General Design of Runtime Support
parses the request, executes it, and returns the result back to the
client module of Device A. The monitor module comprises two
parts: device and service status. The device status monitor keeps
track of the battery levels, resource usage status, and locations of
nearby devices. The service status module monitors the energy con-
sumption/latency of the services provided by the nearby devices.

In the remainder of this section, we will further demonstrate
how we optimized the runtime design for energy efficiency, latency
reduction, and privacy preservation.

4.1 Ensuring Energy Efficiency
4.1.1 Choosing Communication Channels. In our runtime de-

sign, Bluetooth Low Energy (BTLE) serves as the major commu-
nication mechanism for two reasons: 1) BTLE is known to be the
most energy efficient way to discover/announce external services.
Although WiFi and Bluetooth are popular device-to-device commu-
nication mechanisms, their energy consumption levels are larger
than that of BTLE, both in active and idle modes; 2) to support
heterogeneity, the runtime must be able to use a communication
mechanism supported by major mobile platforms. Mainstream mo-
bile communication mechanisms, including WiFi-direct and tradi-
tional Bluetooth, cannot connect a recent (i.e., 4.4.2 and up) Android
device with an iOS device.

However, BTLE does have some limitations. Chief among them
is the primary use-case for BTLE: command transmission and small
data-size transmissions. The main purpose of BTLE is to send small
bursts of data for extended periods of time while consuming min-
imal energy. The largest size package BTLE will send is 20 bytes.
Therefore, when the runtime needs to send a data file to another
device, using a different communication mechanism can provide
performance advantages.

To overcome the limitations of BTLE when transferring larger
data volumes, our design includes an optimization that makes use

of edge servers. When transferring a data file, the runtime at the
source device uploads the file to an edge server, and send the URL
of that file to the target device via a BTLE connection for the target
device to download. Nevertheless, it is worth noting that, with
both Android and iOS constantly improving the relatively new
inter-device communication mechanisms, our runtime is capable
of communicating via WiFi-direct, once it becomes available for
heterogeneous devices.

4.1.2 Choosing Target Device. When multiple devices can be
used for a given task, selecting the correct device could save the
overall energy consumption of all devices. For tasks that require
the service to send HTTP requests, as the 3G chips would still
cost energy when the data transmission is finished, combining
multiple requests and sending them at once could greatly save
the overall energy consumption. For tasks that require a specific
sensory reading like GPS, the major energy consumption happens
when the target device tries to obtain the sensory reading. Therefore,
combining multiple sensory requirement tasks to the same device
could also reduce the overall energy consumption.

We intend to use an incentive strategy to encourage batching
HTTP requests and sensory data requests to the same target device.
The basic idea is to let the device which has already been the dele-
gation of such requests to ask for lower bid prices for other tasks
of the same kind. The details are described in Sec. 4.3.

4.2 Reducing Latency
Different from the HTTP requests and sensory data requests, RQL
requests which need to perform computationally intensive tasks
can not be energy-optimized by being batched to a same delegation.
On the contrary, when such tasks are combined to the same target
device, their time/latency usually gets larger. Therefore, in the
runtime, for those RQL requests that want to process an amount of
computation intensive tasks through multiple devices, the runtime
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needs to act as the load balancer: it needs to divide the necessary
tasks into chunks between multiple devices in a way that the overall
waiting time is minimized.

The most accurate way to balance loads across numerous avail-
able devices is to get real-time loads from each devices and also
the execution time of each task in advance. However, the frequent
communication among devices costs extra energy and clogs the
channel as it is occupied for a larger amount of time. In such cases,
the solution we take is to log the load of each device in the for-
mat of how many tasks are running or waiting. The running tasks
of surrounding devices are updated through the device monitor’s
scanning action. When the runtime assigns one task to a device,
the device’s load of is incremented by one; when it get the result
back from a device, its load is decremented by one. Therefore, each
time when the runtime needs to assign a task, it assigns it to one
of all the devices providing that service with the lowest load.

4.3 Incentive Strategy
In the presence of multiple unrelated mobile users, the adopters of
this technology may face the problem of having to motivate them
to share the resources of their devices. One approach that can be
effective in this setting is putting in place an incentive strategy. The
basic idea is to employ micro-transactions for devices to pay for the
external resources consumed. The payments can be represented as
marketplace credits that can be used to pay for shared resources in
the future or even as a standard currency.

The RQL runtime’s design includes an incentive strategy that is
based on the reversed auction model, as shown in Fig. 8. When a
device wants to start an RQL request, the runtime scans all nearby
devices and gets their bid prices for each service. It then chooses a
device with the lowest bid price as the target of offloading. When
other devices have the same bid prices, it randomly picks one, or
choose one according to their loads. After the task is finished and
the results are returned, it pays the chosen device the bid price as
incentive. This strategy would help motivate unrelated users to
make the resources of their devices available for sharing.

An incentive strategy can also take energy consumption into con-
sideration when offering bids. For example, a mobile device already
delegating HTTP or sensory tasks, should be able to offer lower bid
prices than idle devices, as performing additional tasks would incur
smaller energy costs. Therefore, the probability of forwarding the
majority of HTTP requests or sensory reading tasks to the same
device would increase. In such cases, the energy consumption of
all the participating devices becomes minimized. Hence, the initial
investment into recruiting mobile users to participate in resource
sharing will be amortized by the future improvements in usability
and performance. Incentive strategies thus constitute a promising
future research direction for this work.

4.4 Privacy and Security
Fig. 9 describe the potential threat of privacy leakage and security
issues, where device A and device B are the source and the target,
respectively. The security threats could arise in the following sce-
narios: 1) When the runtime on device A broadcasts the result of
some third party application, it could be wiretapped by a malware
installed on that device. 2) when the runtime on device A receives

Device 2Device 1

Two other devices 
subscribing GPS

Bid Price: 1 Bid Price: 5

1. Bid 1. Bid

2. Select

No other devices 
subscribing GPS

Figure 8: Flow of Reversed Auction
Device A

Third Party 
APPs

Runtime

RQL Calls

Device B

Decision makerRQL parser

Device Monitor
Task Monitor

BroadCastBroadCast

Send Data

Figure 9: Possible Attacks
the broadcast from device B through Bluetooth, another device C
binding to the same Bluetooth channel might get that message as
well. One can counter this security threat by encrypting the mes-
sage. To solve the problem, the third party application will need to
provide a public encryption key for each RQL request, so that the
runtime can encrypt the result with that key. This way, it is only
the third party application with the private key that can decrypt
the result. Although our reference implementation does not yet
include this security mechanism, our design makes it possible to
straightforwardly add it to the runtime.

5 REFERENCE IMPLEMENTATION
Our reference implementation of RQL and its runtime concretely
reifies the design decisions we described in Sections 3 and 4. While
we have implemented all the described features of RQL including
the required runtime support, some of the optimization and privacy
provisioning features of the runtime remain a work in progress.

To demonstrate our implementation, we next describe how we
used it to address the resource sharing needs in the three motivat-
ing examples from Section 1. The snippets of Java code in Fig 10
show how the three source devices use RQL to access resources
of nearby target devices. Fig 11. (a) gives an overview of the com-
munication flow between the source device’s applications and the
runtime, while Fig 11. (b) shows a sequence diagram of an iOS
device communicating with an Android device by means of RQL.

On Android, the RQL runtime executes as a background service.
Android applications communicate with the runtime by establish-
ing an Android Interface Definition Language (AIDL) connection,
a standard Android mechanism for inter-application/service com-
munication. The Android API provides methods for sending RQL
requests over the established AIDL connection. Upon receiving an
RQL request, the runtime immediately returns a unique identifier
for that request. The application can then use this identifier to lo-
cate the request’s results once it has been carried out. The runtime

6
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:Connect to runtime

:Send RQl calls for querying GPS data
and record Task ID

Send RQl calls for face recognition 
and record Task ID

Send RQl calls for http delegation 
and record Task ID

Check if the broadcast is sent from RQL runtime

Get results with Task ID

Handle the result for each task

Figure 10: Mobile Application Code using RQL

Decision maker

get any/GPS

A RQL Request

Task Queue

Devices: 
Services, bids and Loads

Periodically Scan

How, what and 
who to send 

(a) Communication Flow

Third Party App 

Device A: Android Phone Device B: iPhone

Runtime

1. RQL call through AIDL

Runtime

2. RQL Task ID

3. Query Available Devices through BTLE

4. Query Available characteristics through BTLE

Case 1: Pull GPS

5. read data from BTLE GPS service

Case 2: Push File

5. send notification through BTLE

6. send File through WIFI direct / Edge Server

Case 3:Delegate

5. Send RQL parameters through BTLE

6. receive result from BTLE result service

7. Result with Task ID

(b) Runtime Sequence Diagram

Figure 11: Third Party Application
is responsible for several functionalities, including parsing the RQL
commands, determining which device should be the target for a
given command, controlling the communication (over Bluetooth
LE) with other devices, and receiving the results from target devices.
The returned results are made available to mobile applications via a
broadcast-based callback mechanism. The unique identifiers must
be discarded once the results of the RQL requests associated with
them have been received.

In some rare cases, the programming scenario at hand may re-
quire that the results of an RQL command be received prior to
executing any subsequent program statements. In other words, the
RQL command needs to be executed in a blocking fashion. To en-
able this blocking behavior, albeit ill-advised for performance and

fault-tolerance reasons, the programmers can simply add the ad-
verb -blocking to any RQL command. The runtime processes this
directive by finishing the specified command first and returning
the results back to the caller.

One peculiarity of BTLE communication is that each device can
serve either a peripheral or central role, roughly corresponding to
the traditional server/client functionalities, respectively. In other
words, the peripheral role entails advertising services, each having
potentially multiple characteristics, while the central role entails
locating or accessing the services of the devices playing the periph-
eral role. This clear role separation is currently only supported by
iOS devices and Android devices with the latest OS distribution.
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To accommodate these distinct roles, the RQL runtime enables
mobile devices communicating via BTLE to seamlessly process and
advertise resources. The runtime keeps track of the available ser-
vices bymeans of unique ids (UUIDs). Since the UUIDs are universal
and guaranteed to be globally unique by the BTLE standard, the
RQL runtime can easily keep track of the available services and
their associated characteristics. These characteristics can have read,
write, and notify properties. Reading allows a central device to read
a value, writing allows it to write a new value into the characteristic,
and notify allows the central device to subscribe to the characteris-
tic’s value, so any changes to it will cause a notification update on
the central device.

The RQL runtime currently provides five peripheral device’s
characteristics: GPS, accelerometer, file writing, HTTP request, and
facial recognition. As a means of getting updated values, it provides
a special-purpose, subscribable result characteristic. As shown in
Fig 11. (a), the RQL runtime of an Android device first scans for
nearby devices, and then scans for the services they are advertising.
If the RQL verb is “pull”, the Android device directly reads the GPS
readings from the corresponding BLE characteristic on the iOS side.
If the RQL verb is “push”, the runtime sends a file in chunks of 20
bytes to the file writing characteristic. Otherwise, it writes the RQL
command to the BLE service with the unique taskid, and then reads
the results back from the BLE result characteristic.

In the runtime of the central device, as shown in Fig 11. (b), the
runtime keeps track of the status of surrounding devices and under-
going tasks. Once the runtime receives a RQL request, it enqueues
that request into a task queue and returns a task-id immediately.
Meanwhile, the device manager periodically scans the Bluetooth
advertisements of surrounding devices to discover the provided
services. When a task is popped from the task queue, the runtime
parses the RQL command to decide on which peripheral device’s
characteristic it should query or write.

In the runtime of the peripheral device, all received requests are
queued up. Each item contains the id of that request and the RQL
command associated with it. When a RQL request is received with
an adverb defining latency constraints, the request is added to the
head of the queue, so as to prioritize its processing. Otherwise, if
no adverb is specified, it is added to the end of the queue. When
the runtime wants to process a request, it removes a task from the
head of the queue, ensures that the task is unexpired, and executes
it using the designated service.

6 EVALUATION
In this section, we describe how we evaluated various aspects of
the reference implementation of RQL, detailed in Section 5. Our
evaluation comprises a small user study, various performance/en-
ergy efficiency micro-benchmarks, and a robustness assessment of
our retrofitting approach.

6.1 Programmability
First, we evaluated the software engineering benefits of our pro-
gramming model. To that end, we compared two different imple-
mentations of the same resource-sharing scenario: original with
all resource sharing functionality implemented from scratch and

Table 2: Lines of Code

Runtime Based Built from scratch
GPS request 20 370
HTTP request 20 556
Facial Recognition 32 883

Table 3: Study Results

Group 1 2
Familiarity with Android Development Beginner Familiar
Number of students 6 4
Number of students completed the task 3 0

RQL-based with the major functionality provided by the RQL run-
time. In Table 2, for each implementation, we report the total lines
of uncommented code (ULOC).

As one can see, using RQL reduces the amount of code the pro-
grammer has to write by a factor ranging between 20 and 28. Con-
sidering that the written code involves complex asynchronous,
distributed processing, this code size reduction is likely to have a
high positive impact on the code quality.

To empirically assess howwell RQL can assist the programmer in
putting in place the inter-device resource sharing functionality, we
conducted a user study. To that end, we recruited 10 Junior to Senior
level Computer Science students from an intermediate Android de-
velopment class at Virginia Tech. We divided the recruited students
into 2 groups, the experimental and control groups, for novice and
experienced Android developers, respectively. The experimental
group comprised 6 students with no prior experience in Android
programming, while the control group comprised 4 students with
several years of Android development experience.

In the beginning, we briefly introduced the concepts of AIDL ser-
vices, broadcast receivers, and Bluetooth LE. Then, each group was
given 90 minutes to complete the programming task of obtaining
the GPS sensor reading from an iOS device to an Android device.
The experimental group was asked to use RQL, while the control
group was asked to use any existing, mainstream Android API. The
control group was also given an Android chat sample application
as an example from which to draw device-to-device coding idioms.

Table 3 presents the results of the study. To our surprise, none
of the students in the control group were able to complete the
task successfully, which demonstrates the non-trivial nature of
device-to-device communication. The results of the experimental
group, armed with RQL, were mixed, with 3 students successfully
completing the task, with the remaining 3 giving up before the
experiment concluded. Because the group using RQL comprised
non-experienced Android programmers, the results above indicate
that our programming abstraction provide value by streamlining
the process of implementing device-to-device interactions and can
become a pragmatic tool for future applications.

6.2 Experiment Setup
The hardware setup for the following experiments include 4 An-
droid mobile devices (1.5GHz dual-core CPU, 2GB RAM) used as
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Table 4: Energy Consumption per Second

Status Energy (mA) Status Energy (mA)
ScreenOn 100
BluetoothOn 1 BluetoothActive 66
CpuIdle 92 CpuActive 242
WiFiOn 6 WiFiActive 102
GpsOn 60 GpsActive 300
3GOn 10 3GActive 250

source devices, and 2 iOS devices (1 iPhone 6 and an iPad mini)
used as target devices.

To evaluate the energy consumption of these devices, we recorded
the execution time between “Start" and “Stop" tags, adding tags for
actions, such as “Screen On", “Bluetooth On", “Bluetooth Active",
“3G Active", “GPS Active", “CPU Idle/Active” etc. Table 4 shows the
manufacturer provided values for energy consumption of these
operations. For all graphs, we refer to ’local’ and ’remote’ meaning
requests processed on the user’s local device and some external
nearby device, respectively.

6.3 Local and Remote Energy Evaluation
First, we examine the motivating examples’ performance in terms of
the energy usage in both the local API calls and the corresponding
remote RQL calls. Figure 12 shows how much energy is used by 100
identical RQL requests on the same and across different devices,
respectively. Because of the vastly different energy consumption
levels between sensor data and heavy HTTP requests, presenting
the results requires the use of both linear and logarithmic vertical
scales.

The graphs show that, excluding some outliers, both local and
remote RQL calls consume energy consistently throughout the ex-
periments. The baseline of both figures is identical and essentially
shows how an idle application would be consuming energy. In both
local and remote calls, the GPS sensor retrieval consumes far less
energy than either of HTTP requests or Facial recognition. To com-
pare various protocols, we also benchmark a “Heavy” HTTP request,
representative of work-intensive web-based processing. Given the
extensible nature of the RQL runtime, one can easily add emerging
communication mechanisms, which can outperform BTLE when ex-
ecuting heavy HTTP requests or other high-throughput processes.

Because communicating with nearby devices consumes addi-
tional energy, local RQL calls increase their energy efficiency when
processing small loads of requests. However, for requests that can
be distributed across several available devices, both energy costs
and processing latencies decrease precipitously. Figure 12 also re-
veals cache correspondences between the same device, primarily for
sensor data (GPS). Thus reading the GPS data incurs a single large,
upfront cost of connecting to the device, but internally optimizes
the subsequent request via the assumption that the GPS readings
have not changed. This internal optimization explains the plummet
in energy costs of accessing remote sensor data, such as GPS.

6.4 Local and Remote RQL Latency
Experiments

Consider Figure 13 that shows local and remote latency, respectively.
These two graphs demonstrate an important practical advantage
of accessing resource of nearby devices. When examining GPS,
latency drops steeply similar to energy in the previous section, after
incurring the upfront cost of connection. This amortization of initial
connect requests ensures far better median latency for these remote
calls. In fact, we see that for a computationally intensive operation,
such as Facial Recognition, the latency is smaller in remote RQL
calls by a factor of nearly 1.4 for only a small request size. If we
consider sending large requests for Facial Recognition across even
a small subset of nearby devices (say only 3 external devices), the
resulting latency reduction far outweighs the additional energy use
incurred across all devices in use.

Figure 14 presents a full comparison of median energy and la-
tency measurements. This graph supports our initial assumption
about the trade off in energy for decreased latency when processing
various request types. It is clear that the only outlier is processing
HTTP requests remotely. Given the nature of BTLE small packet
transmission size restriction, we observe a larger latency since
each piece of the HTTP request is broken up and sent individually.
Referring back to one of our motivating examples, consider the
traveler to a foreign country who is unable to access local mobile
data towers. Providing this functionality to the end user is impor-
tant irrespective of the resulting performance, as long as it is not
prohibitively poor. In other words, not outperforming local requests
is a minor hindrance in comparison with not being able to process
any requests at all. Nevertheless, this limitation of BTLE motivated
our efforts to optimize the RQL runtime.

7 RELATEDWORK
Using nearby mobile devices to cooperatively implement new func-
tionality was originally proposed as a means of exchanging private
information over devices for data sharing and data mining [23].
Subsequent research took user mobility into account [19, 24, 35].

Besides data sharing, another avenue for device cooperation is
runningmap reduce [46] onmobile devices to execute computational-
intensive tasks [9, 29, 42]. These approaches, however, are oblivious
to device mobility and the preference of users to participate.

In addition to traditional mobile devices, the IoT setups can
provide resources for device-to-device resource sharing. Computa-
tional tasks have been offloaded to such setups (e.g., Road Side Unit)
[16], while mobile messages have been stored and forwarded by a
wall-mounted Estimote device [3]. The proposed project will focus
on the software engineering aspects of mobile device cooperation,
thus benefiting the implementation practices of many of the prior
state-of-the-art approaches.

Traditional middleware has been adapted for peer-to-peer re-
source sharing, includingOpenCORBA[27], Globe[44] and JXTA[15],
although without taking device mobility into account.

Device mobility-aware peer-to-peer resource sharing has started
from content sharing [36], with numerous subsequent approaches
[2, 6, 10, 20, 21, 32, 33, 40]. Special purpose middleware support
face-to-face interactions [41] and cooperative display[4]. These
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Figure 12: Various local and remote RQL command energy usage
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Figure 13: Various local and remote request latency use
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Requests

middleware approaches are platform-specific and require modifi-
cations at the system level. By contrast, the proposed project aims
at heterogeneous device-to-device applications running on top of
unmodified system stacks.

The MANET project leverages assistance from devices through
multi-hop wireless communication [7]. Various middleware ap-
proaches have focused on various aspects of inter-device coop-
eration, including LIME[31], TOTA[28], Limone[13], CAST[39],
MESHmdl[17], Preom [22], MobiPeer [5], Peer2Me [45], Steam
[30], Transhumance [37], QAM [14], and MobiCross [8]. These
middleware approaches provide programming to control network
topologies, network traffic, peer management, etc. By contrast,
the proposed approach focuses on supporting mobile application
programmers, who are primarily concerned with obtaining the
hardware resources they need for their applications.

To support platform independence, [38] proposed using anHTTP
server. By contrast, this project focuses on P2P communication, thus
reducing communication latencies and processing overhead.

8 CONCLUSION
This research focuses on the problem of engineering seamless re-
source sharing among nearby mobile devices to improve the per-
formance, energy consumption and latency of mobile applications.
Although there have been many research publications that have
focused on using cooperative device resource sharing to enable new
functionalities or to optimize energy and performance, there has not
been a push towards software engineering support for application
developers to leverage shared resources between heterogeneous
mobile devices. To address this problem, we first studied the re-
quirements for leveraging nearby resources in terms of API calls,
and then proposed a domain-specific declarative language and a
runtime support on two major mobile platforms to enable resource
sharing. The results of our case study, user study and efficiency
evaluation indicate that our programming model and runtime sup-
port can work as a bridge among nearby heterogeneous mobile
devices to both improve the programmers’ productivity, and opti-
mize the energy consumption and latency of mobile applications.
By facilitating the process of implementing cooperative resource
sharing among devices, we hope to be able to add this support in
the standard toolset for mobile application developers.
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