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ABSTRACT

A common practice to increase the reliability of a cloud application
is to deploy redundant instances. Unfortunately, such redundancy
e!orts can be undermined if the application’s instances share com-
mon dependencies. This paper presents reCloud, a novel system
that can e"ciently #nd a reliable deployment plan for cloud applica-
tions. reCloud considers and avoids common dependencies shared
across application instances that may lead to correlated failures, and
works with applications that even have complex internal structures.
reCloud utilizes various pieces of available dependency informa-
tion (e.g., hardware, software and/or network dependencies) about
the cloud infrastructure to quantitatively assess the reliability of
the application’s deployment plan with rigorous error bounds. This
assessment further enables reCloud to #nd a deployment plan that
balances between reliability and other criteria such as application
performance and resource utilization. We implemented a fully func-
tional system. The experimental results show that, even in a large
cloud environment with more than 27K hosts, reCloud needs only
30 seconds to #nd a deployment plan that is one order of magnitude
more reliable than the common practice.
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1 INTRODUCTION

Many developers aremoving their applications from self-maintained
infrastructure to the cloud for increased reliability. One common
practice to increase the reliability of a cloud application is to use
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redundancy techniques, whereby a developer deploys multiple in-
stances of her application and requests each instance to be deployed
into di!erent regions [37]. The intent is that some instances will
survive the failures of others, so that the application can continue
to function properly.

However, cloud service outages are still common even with re-
dundancy techniques. A recent study [32] shows that 25 out of
today’s 32 popular cloud applications have more than 8.8 hours of
annual downtime. The redundancy e!orts can be undermined if all
(or many) application instances fail simultaneously due to shared
dependencies [26, 80]. For example, a recent power disruption at
GitHub’s primary data center caused a cascading failure leading
to a service outage, and in turn a!ected many GitHub-dependent
applications [29]. As another example, an error in Amazon’s stor-
age service caused cascading failures across multiple EC2 instances,
triggering correlated failures of the applications deployed in the af-
fected EC2 instances [6]. A similar incident recently also happened
to Microsoft Azure where a power event a!ected Azure’s storage
tier, which in turn a!ected the services deployed in 26 out of the
28 data center regions [55]. In these examples, the power supply
and the storage service were the shared dependencies that caused
correlated failures, undermining applications’ redundancy e!orts.

Correlated failures are common. For example, Google reported
that close to 37% of failures in its storage systems were corre-
lated [27]. There are a large number of mechanisms to detect, lo-
calize and alleviate correlated failures [8, 17, 35, 42, 47, 50, 59, 78].
These mechanisms, however, are applicable only after failures oc-
cur. It would be better to take proactive actions to prevent such
correlated failures.

To our knowledge, INDaaS [80] is the #rst, and also the state-
of-the-art, system that attempts to proactively prevent correlated
failures of cloud applications. INDaaS compares the reliability of
an application’s given deployment plans, and selects the most re-
liable plan for deployment. Here, each deployment plan speci#es
where the application instances should be deployed in the cloud.
INDaaS, however, has four technical shortcomings that make it
unsuitable for practice. First, INDaaS considers an application’s
potential deployment plans according to their qualitative or relative
metrics, and does not produce a quantitative assessment of their
reliability (which is however required for service quality auditing
and compliance). Second, INDaaS compares the reliability of only
given deployment plans, with no capability of searching for these
deployment plans in the #rst place. Third, INDaaS treats an applica-
tion as a monolithic entity, and does not consider the application’s
internal structures. Fourth, INDaaS scales poorly in large cloud
environments (on the order of hours [80]).

In this paper, we design a novel system, reCloud, for cloud
providers to address the shortcomings of prior systems. reCloud
can e"ciently #nd a deployment plan for a cloud application that



CoNEXT ’17, December 12–15, 2017, Incheon, Korea Ruichuan Chen, Istemi Ekin Akkus, Bimal Viswanath, Ivica Rimac, Volker Hilt

ful#lls the developer’s requirements even in a large cloud environ-
ment. reCloud considers various common dependencies which
may lead to correlated failures, and incorporates any dependency
information about the cloud infrastructure, such as the states of the
hosts and switches, as well as their dependencies such as power
supplies, cooling systems, software and #rmware. With this infor-
mation, reCloud can quantitatively assess the reliability of a cloud
application’s deployment plan with rigorous error bounds.

There are a fewmain challenges for enabling such a system. First,
given an application’s deployment plan, it is an NP-hard problem
to quantitatively assess the reliability of the application [9]. Our
reCloud system enables an e"cient and quantitative reliability
assessment based on a high-performance approximate approach
— dagger sampling [45]. Furthermore, reCloud gives a rigorous
bound on the approximation error of its reliability assessment.
This bound is crucial because it helps both application developer
and cloud provider gain con#dence on the accuracy of reCloud’s
reliability assessment.

Second, it is non-trivial to #nd a reliable deployment plan that
ful#lls an application developer’s reliability requirements (e.g., at
least 4 out of the application’s 5 redundant instances are required
to be alive). There has been surprisingly little prior work regarding
this reliable deployment search. One naïve approach would be to
generate all possible deployment plans, assess them, and select the
best one that ful#lls the requirements. This approach, however, does
not scale to the size of today’s cloud infrastructure. reCloud sys-
tematically explores the huge space of all deployment plans based
on simulated annealing [15, 43] and network transformations [60],
and can quickly converge on a reliable deployment plan.

Third, it is important for reCloud to consider correlated failures
and integrate various pieces of dependency information, whenever
available, into the reliability assessment. While hosts and switches
as well as their connectivity comprise a signi#cant part of an ap-
plication deployment’s reliability, they may share common depen-
dencies (e.g., power supplies, cooling systems, and software) which
can bring down the hosts and switches in a correlated fashion. re-
Cloud considers common dependencies, and integrates various
pieces of available dependency information seamlessly with no
system changes.

Fourth, another challenge is that cloud applications can be com-
plex with components requiring connectivity among themselves
(e.g., frontend servers to backend databases, or more complex mi-
croservices [48]). As a result, the reliability assessment of an ap-
plication deployment needs to consider the internal structures of
the application (e.g., frontend servers should be reachable from the
Internet, while frontend servers and backend databases should be
mutually reachable; or, some microservice components should be
well interconnected). While prior systems treat an application as a
monolithic entity, reCloud can cover application’s complex inter-
nal structures to assess the reliability of an application deployment.

Finally, high reliability is only one objective when it comes to
deploying an application into the cloud. Other objectives routinely
aimed for are: 1) application performance for developers, and 2)
resource utilization for cloud providers. As a result, the ability to
support the combination of multiple objectives becomes crucial.
reCloud incorporates such additional objectives while searching

for a reliable deployment plan, therefore both application devel-
opers and cloud providers can make informed decisions about the
potential trade-o!s.

We implemented reCloud with all the aforementioned capa-
bilities. The experimental results show that, even in a large cloud
environment with more than 27K hosts, reCloud needs only 30
seconds to #nd a deployment plan that is typically one order of
magnitude more reliable than the common practice. Altogether,
reCloud makes the following contributions:

• It is, to our knowledge, the !rst system which: 1) proactively
#nds a cloud application’s reliable deployment plan that ful-
#lls the application developer’s reliability requirements, and
2) quantitatively assesses the reliability of an application’s
deployment plan with rigorous error bounds.

• It considers common dependencies which may lead to cor-
related failures, and incorporates available dependency in-
formation of the cloud infrastructure, as well as the internal
structures of a cloud application, into reliability assessment.

• It is able to #nd an application’s deployment plan that bal-
ances between reliability and other criteria such as applica-
tion performance and resource utilization.

• It scales well even in a large cloud environment.

The rest of this paper is organized as follows. The next section
gives an overview of reCloud. Section 3 elaborates upon the design
details of reCloud. We present the evaluation results in Section 4,
and describe the related work in Section 5. Finally, we conclude the
paper in Section 6.

2 RECLOUD OVERVIEW

This section gives an overview of reCloud, including its fault
model, scenario and high-level work*ow.

2.1 Fault Model

reCloud considers three types of infrastructure components: hard-
ware components (e.g., servers, switches, power supplies, and cool-
ing systems), software components (e.g., software and #rmware
deployed at hardware components), and network components (e.g.,
network connectivity across hardware components). These com-
ponents are the most common causes of various failures in the
cloud [28, 32, 78]. Infrastructure components may also share com-
mon dependencies which can lead to correlated failures. In other
words, if the common dependencies fail for whatever reason, all
components relying on these dependencies will fail simultaneously.
Furthermore, each component is in one of the following two states:
alive or failed. Partially failed components are treated as failed.

Today, cloud providers normally use cloud management plat-
forms to manage their infrastructure. Some examples include the
platforms from VMware [74], Cisco [18], Embotics [24] and Open-
Nebula [57]. These platforms provide a rich set of management
features, such as monitoring the states and dependencies of infras-
tructure components, and how they are connected in the cloud.

In addition to commercial cloud management platforms, there
are also a large number of tools [2, 8, 11, 16, 17, 21–23, 36, 40–
42, 44, 54, 56, 59, 71, 82] that can be used to acquire the dependency
information about various cloud infrastructure components. For
example, as suggested in [80], HardwareLister [36] can obtain the
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detailed hardware con#gurations (e.g., CPU/memory/mainboard
con#guration, #rmware version, etc.); apt-rdepends [21] can recur-
sively extract the dependencies of software packages and libraries;
NSDMiner [54, 56, 59] can identify the network dependencies by
passively monitoring and analyzing the network tra"c.

With the aforementioned information acquired by cloud man-
agement platforms or specialized tools, cloud providers can mea-
sure each infrastructure component’s downtime within a time
window [7, 51], and in turn, each component’s failure probabil-
ity p = downtime/windowLenдth [28, 72]. This can be represented
as the annual failure rate. Such an approach has already been re-
alized to acquire the failure probability of hardware and network
components [28, 72]. Arguably, it may not be trivial to acquire
the failure probability of software components. Nevertheless, such
software failure probability could be monitored, or simulated using
the FIFL framework via fault injections [82], or estimated using
the publicly-available CVSS scores [25] similar to [38, 58, 81]. Mea-
surement studies on various components’ failure probabilities have
been performed in real-world systems [28, 32, 52, 61, 67, 72, 73].

Notice. As discussed in §3.4, reCloud works with limited de-
pendency information (e.g., only network dependencies), and also
works with limited or even no failure probabilities. In addition, as
shown in §4, reCloud can quickly adapt to varying system condi-
tions collected at (near) real-time. Our contribution in this paper is
not how best to acquire a fault model in the cloud, but how best to
exploit it to #nd a reliable deployment plan for a cloud application.

2.2 Scenario and System Work!ow

In this paper, we focus on deploying an application into a cloud data
center. At a high-level, reCloud works as follows. The application
developer #rst speci#es her reliability requirements to the cloud
provider, including the following four parameters:

• N : the total number of application instances to be deployed
for redundancy.

• K : the minimum number of deployed instances that need to
be alive in order to meet business needs.

• Rdesir ed : the desired reliability score, which is de#ned as
the desired probability that at least K out of N deployed
instances are alive, and can be decided based on the applica-
tion developer’s expected deployment cost. An alternative
way could be to allow an application developer to specify
the acceptable annual service downtime which can then be
translated to Rdesir ed .

• Tmax : the maximum amount of time to be spent on searching
for a reliable deployment plan that ful#lls the application
developer’s requirements. For practicality, this should be
within minutes, not hours as in prior systems [80].

After receiving the reliability requirements, the cloud provider
starts with a random deployment plan and uses any available de-
pendency information (e.g., hardware, software and/or network
dependencies) to assess the deployment plan’s reliability. Here, a
deployment plan speci#es which hosts the application instances
should be deployed onto.

If the desired reliability score Rdesir ed can be satis#ed by the
current deployment plan, the cloud provider deploys the applica-
tion accordingly. If not, the cloud provider continues the search

Figure 1: Fat-tree (k = 4) with external connectivity.

by generating a di!erent deployment plan and then assessing its
reliability to check whether it satis#es the desired reliability score.
If the cloud provider cannot #nd such a deployment plan within
the maximum search timeTmax , the cloud provider informs the ap-
plication developer that her current reliability requirements cannot
be ful#lled.

The above K-of-N redundancy deployment represents a simple
scenario, where an application can work without requiring connec-
tivity among its components. We #rst use this scenario to describe
our system design. We will later describe how to handle sophisti-
cated cases where applications have complex internal structures.

3 RECLOUD DESIGN

In this section, we #rst brie*y describe a cloud data center’s example
architecture for ease of the following presentation (§3.1). Then,
we propose two cooperative techniques for reliable application
deployment in the cloud: the quantitative reliability assessment of
an application deployment (§3.2), and the proactive search for an
application’s reliable deployment plan (§3.3). Finally, we discuss
how to deal with a situation where we can only acquire limited
dependency information (§3.4).

3.1 Data Center Example: Fat-Tree

There are a large number of data center architectures [1, 3, 4, 31, 33,
34, 49, 50, 53, 70, 77]. Although reCloud is general and works with
any of these architectures (see §3.2), we use the classic fat-tree [3]
as an example to demonstrate our system design.

Figure 1 shows a fat-tree consisting of a number of hosts (circles)
and k-port switches (rectangles). Switches peering with external
entities are called border switches. We apply Google’s approach as
an example to manage fat-tree’s external connectivity via using a
dedicated pod [69]; therefore, the switches in that pod are border
switches. This architecture provides the full external bandwidth to
all pods in the data center.

3.2 Reliability Assessment of a Deployment

Suppose an application developer wants to deploy her application
into a data center operated by a cloud provider. For redundancy, the
developer requests the cloud provider to deploy N instances of the
application onto some hosts in the data center, and requires at least
K deployed instances to be alive (i.e., reachable from any of the
border switches used for external connectivity). Hosts and switches
may fail due to hardware, software and/or network failures.

For descriptive clarity, we #rst consider only hosts and switches,
as well as their connectivity. They can certainly share various types
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Table 1: Illustrative example of failure state generation. For

clarity, we consider only hosts and switches here, and will

consider other dependencies later.

Round 1 Round 2 · · · Round X

Host 1 Alive Failed · · · Alive
· · · · · · · · · · · · · · ·

Host h Alive Alive · · · Failed
Switch 1 Failed Failed · · · Alive

· · · · · · · · · · · · · · ·
Switch s Alive Alive · · · Alive

of common dependencies (e.g., power supplies, cooling systems,
software and #rmware) which may lead to correlated failures. In
§3.2.3, we will describe how such dependencies can be integrated
in a correlated fashion.

3.2.1 Strawman Design using Monte-Carlo Sampling

Assessing the reliability of an application deployment (i.e., calcu-
lating how likely the application instances are reachable from any
of the border switches) can be reduced to a classic two-terminal
reliability problem. However, this problem is NP-hard [9], forcing
us to use an approximate approach, e.g., Monte-Carlo sampling
(as used in the state-of-the-art INDaaS system [80]). Next, we de-
scribe our strawman design based on Monte-Carlo sampling, and
explain its practical limitations. Then, we will describe how to en-
hance the strawman design to practically assess the reliability of
an application deployment plan.

Step 1: Generate failure states for infrastructure compo-

nents. We run many Monte-Carlo sampling rounds to generate
the failure states of the infrastructure components. Speci#cally, in
each round, we randomly generate the failure state of each compo-
nent according to this component’s failure probability (de#ned in
§2.1). Suppose a component fails with probability p. A uniformly
random number r ∈ [0, 1) can be generated to decide whether this
component is set to be ‘failed’ in a round: if r < p, the component
is ‘failed’; otherwise, it is ‘alive’. Repeating this process, we can
randomly generate the failure states for each component across all
rounds. This process produces a table similar to Table 1, where each
column represents one round and each row represents the failure
states of one component across all rounds.

Step 2: Route and check reachability. Suppose the cloud
provider follows a given deployment plan to deploy application
instances onto N speci#c hosts. For each such host, we can run the
routing protocol1 to check whether this host is reachable from any
of the border switches (given the failure states of infrastructure
components). This implicitly considers some correlated failures, e.g.,
an edge/ToR switch failure makes all hosts under that switch un-
reachable. In each round, if at least K hosts are reachable, then this
deployment plan is considered reliable for this round (see Figure 2).
If the deployment plan is reliable in Y out of the total X rounds,
then the reliability score of this deployment plan is R = Y/X . As we
will show in the evaluation, this “route-and-check” process is very
e"cient. To work with another data center architecture instead of

1For example, the fat-tree routing protocol in a fat-tree data center.

Figure 2: Route-and-check in one round for a deployment

plan using (Host1, Host2) with N = 2 and K = 1. Red crosses

mark failed components (e.g., due to hardware, software,

network, or correlated failures). This plan is considered ‘re-

liable’ in this round, because at least one host (i.e., Host2) is

reachable from a border switch.

fat-tree, we only need to change this step’s routing protocol to the
one used in that architecture accordingly.

Note that, the “route-and-check” process can be performed in
parallel via MapReduce [20]: A master node distributes portions of
rounds to worker nodes. Each worker node performs the “route-
and-check” for the assigned rounds. The master node then gathers
the results from each worker node to compute the overall reliability
score according to the results of all rounds.

Problems in the StrawmanDesign.The design based onMonte-
Carlo sampling is straightforward, but it requires an individual
failure state generation for each infrastructure component in each
round. In other words, there will be C ×X failure state generations
with C components and X rounds.

Generating so many failure states can be expensive for two rea-
sons. First, today’s data centers have an increasingly large number
of infrastructure components including hardware, software and
network components. For example, an Amazon data center contains
tens of thousands of infrastructure components [19]. Second, indi-
vidual components in a data center are fairly reliable (e.g., with low
annual failure probabilities of 1%) [28, 32, 52, 61, 67, 72, 73], so that
a prohibitively large number of sampling rounds are required to
calculate an accurate reliability score for an application deployment
plan. For these reasons, Monte-Carlo sampling is unsuitable for
assessing the reliability of a deployment plan, especially in large
data centers (more in §4.2.1).

3.2.2 Practical Design using Dagger Sampling

reCloud derives its practicality from using dagger sampling [45] as
the basis of generating the failure states for infrastructure compo-
nents. Dagger sampling is a highly e"cient technique proposed to
speci#cally handle two-state variables and low-probability events.
It is well-suited to our scenario because each component has two
states (i.e., ‘failed’ or ‘alive’) and these components fail with low
probabilities. Next, we describe the dagger sampling and how we
adapt it to assess the reliability of an application deployment.

Dagger Sampling. Suppose an infrastructure component fails
with probability p. Let s be the largest integer not larger than 1/p
(i.e., s = ⌊1/p⌋). Then, the interval [0,1) can be divided into s subin-
tervals each of length p, plus a remainder section if s × p < 1.
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(a) p = 0.3 and r = 0.4 lead to an {‘alive’, ‘failed’, ‘alive’} sequence of failure
states.

(b) p = 0.3 and r = 0.95 lead to an {‘alive’, ‘alive’, ‘alive’} sequence of failure
states.

Figure 3: Illustrative examples of dagger sampling.

Figure 3a shows an example with p = 0.3. There are 3 subintervals
each of length 0.3, plus a remainder section of length 0.1.

During the failure state generation, each of the s subintervals
corresponds to one sampling round for an infrastructure compo-
nent, thus producing s rounds. If a uniformly-generated random
number r ∈ [0, 1) falls within the i-th subinterval, the component
is set to be ‘failed’ in the i-th round and ‘alive’ in all other s − 1

rounds. If r falls within the remainder section, the component is set
to be ‘alive’ in all s rounds. Note that, there is no bias introduced by
the presence or absence of a remainder section, i.e., the expected
ratio of the ‘failed’ rounds across all rounds is still p [45, 63].

This dagger sampling process can be best illustrated with exam-
ples in Figure 3. For a component with failure probability p = 0.3,
the largest integer not larger than 1/p is s = 3; therefore, there
are 3 subintervals. Figure 3a shows that, if the generated random
number is r = 0.4, which falls within the second subinterval, then
the component is set to be ‘failed’ in the second round and ‘alive’
in other rounds. That means, the component’s failure states for the
3 rounds will be {‘alive’, ‘failed’, ‘alive’}. Similarly, in Figure 3b, if
the random number is r = 0.95, which falls within the remainder
section, then the component’s failure states for the 3 rounds will
all be ‘alive’.

Generating the failure states of a component via dagger sampling
is much more e"cient than via Monte-Carlo sampling, especially
when a component’s failure probability p is small. The reason is
that a single random number r can be used to determine a compo-
nent’s failure states for a large number of rounds (i.e., s rounds).
To generate a component’s failure states for a new s number of
rounds, one needs to generate another random number. We call
each segment of s rounds a dagger cycle, where s represents the
dagger cycle length.

Note that, dagger sampling only fails a component in one or zero
round within a dagger cycle. In reality, a component can certainly
fail in multiple rounds within a dagger cycle although rarely (be-
cause each component is fairly reliable [28, 32, 52, 61, 67, 72, 73]).
Dagger sampling uses a single random number to decide a compo-
nent’s failure states for many rounds, but still keeps the statistical
properties of Monte-Carlo sampling [45, 63].

Figure 4: Extended dagger sampling with dagger cycle reset

at the end of the longest dagger cycle (i.e., C3).

Note also that, the failure probability of a component may vary
during its lifetime, normally following a “bathtub curve” with more
failures at the beginning and the end of its lifecycle [66, 79]. re-
Cloud can adjust p quickly to handle such varying failure proba-
bilities whenever they are available.

Although dagger sampling can e"ciently generate failure states
for each individual component, a realistic data center may have
various components with di!erent failure probabilities. As a result,
these components may have di!erent dagger cycle lengths. The
original dagger sampling needs to be extended to accommodate
these cases.

Extended Dagger Sampling. To handle infrastructure compo-
nents with di!erent dagger cycle lengths, we still use the original
dagger sampling technique to independently generate the failure
states of each individual component. However, we reset all com-
ponents’ dagger cycles at the end of the longest dagger cycle, as
suggested in [63].

Suppose there are three components C1, C2 and C3. They fail
with probabilities of p1, p2 and p3. Without loss of generality, we
assume p1 > p2 > p3. Therefore, their dagger cycle lengths are
s1 = ⌊1/p1⌋, s2 = ⌊1/p2⌋ and s3 = ⌊1/p3⌋, where s1 ≤ s2 ≤ s3. In
this setup, the component C3 has the longest dagger cycle length
s3. As shown in Figure 4, we apply the original dagger sampling to
generate the failure states of each component independently. For
each component, its respective dagger cycles are concatenated. We
then truncate the dagger cycles of the componentsC1 andC2 at the
end of every s3 rounds regardless of whether the dagger cycles ofC1

and C2 are complete. This extended dagger sampling enables us to
generate failure states for infrastructure components with di!erent
failure probabilities over many such cycles, without a bias [63].

Practical Design with Extended Dagger Sampling. Recall
that, for assessing the reliability of a deployment plan in the straw-
man design, we #rst generate the failure states for all the infras-
tructure components across many rounds, and then run the routing
protocol to check how many instances of the application can be
reached from any of the border switches. If a desired number of
instances are reachable in a round, the application deployment is
considered reliable in this round.

To generate the failure states of infrastructure components, the
strawman design uses Monte-Carlo sampling, which becomes ex-
pensive due to the large numbers of components and sampling
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rounds. We replace it with the extended dagger sampling, which
is much more e"cient as we will also show in the evaluation. The
rest of the design remains the same.

Accuracy ofReliabilityAssessment. So far, we have described
how reCloud can assess the reliability of a deployment plan, and
generate a reliability score for it. We now describe a method to esti-
mate the accuracy of our reliability assessment based on extended
dagger sampling.

Suppose we use n rounds to assess a deployment plan. reCloud
produces a result list L = {d1,d2, · · · ,dn }, where di = 1 represents
the deployment plan is reliable in the i-th round and di = 0 rep-
resents it is unreliable in that round. Then, the reliability score of
this deployment plan is assessed as:

R =

∑n
i=1 di

n
(1)

Due to the variance reduction e!ect of dagger sampling, the vari-
anceV of the above assessed reliability score R can be conservatively
estimated as [45]:

V =
Var[L]

n
(2)

Here, Var[L] denotes the variance of the result list L. The variance
reduction e!ect of dagger sampling indicates that dagger sampling
converges faster than the Monte-Carlo sampling. In other words,
with the same number of rounds, dagger sampling-based approach
produces more accurate and stable reliability scores than the Monte-
Carlo-based approach; and, to achieve the same level of assessment
accuracy, dagger sampling-based approach needs fewer rounds.

The central limit theorem [76] indicates that the reliability score
R follows a normal distribution; therefore, the 95% con#dence in-
terval width of this reliability score can be calculated as [75]:

CIW95% = 4 ×
√
V (3)

This con#dence interval width is a rigorous accuracy measure
that indicates a range within which the reCloud-produced relia-
bility score di!ers from the ground-truth reliability score. Such a
measure is critical because it gives both cloud providers and appli-
cation developers a quantitative understanding of the accuracy of
our reliability assessment.

3.2.3 Additional Dependencies

So far, we have considered only the hosts, switches and the con-
nectivity among them. These components, however, may share
additional common dependencies which may also be captured by
the cloud management platforms or specialized tools (see §2.1).
For example, hosts and switches may depend on the same power
supplies, cooling systems, software and #rmware. Failures in these
shared dependencies may lead to correlated failures at hosts and
switches, and bring down the associated application instances si-
multaneously, similar to the recent failure event where the power
disruption at GitHub’s primary data center a!ected many GitHub-
dependent applications [29]. Therefore, it is important to consider
additional dependencies during the reliability assessment of a de-
ployment plan.

reCloud automatically constructs a fault tree [62] for each
host/switch’s dependencies whenever they are available, similar
to [62, 80]. Figure 5 shows an example of how such a fault tree is
built. Suppose a host runs an operating system and some software

Figure 5: Example of a host’s fault tree. Multiple hosts’ fault

trees can be connected if they share dependencies.

library. Besides, the host has two redundant power supplies, and the
rack containing this host has two redundant cooling systems. To
build this host’s fault tree, the top node is labeled “host fails”. The
top node has three child nodes: “software fails”, “power fails” and
“cooling fails”. There is a logical OR gate connecting the top node
to its three child nodes. In addition, the “software fails” connects
to the “OS fails” and “library fails” with an OR gate, the “power
fails” connects to the two power supplies with an AND gate, and
the “cooling fails” connects to the two cooling systems also with
an AND gate. The resulting fault tree represents: 1) the host fails if
the software, the power or the cooling fails, 2) the software fails if
the operating system or the library fails, 3) the power fails only if
both power supplies fail, and 4) the cooling fails only if both cooling
systems fail.

reCloud constructs fault trees for the additional dependencies
of all hosts and switches. Multiple fault trees are connected if they
share common dependencies. Using fault trees allows reCloud to
incorporate various types of dependencies (e.g., hardware, software
and network dependencies) with complex logical relationships.
Such *exibility becomes important when emerging tools can help
cloud providers know more about their infrastructure.

After building the fault trees for each host/switch’s dependencies,
we apply the extended dagger sampling to generate the failure states
of all these dependencies for many rounds. In each round, during
the “route-and-check” step, we #rst reason about whether each
host or switch fails according to their own failure states, as well as
the states of these dependencies in their fault trees and the logical
relationships among these dependencies. We then #lter out the
failed hosts and switches for that round. Besides the reasoning and
#ltering, there are no additional changes.

3.2.4 Complex Application Structures

We have described reCloud’s reliability assessment assuming an
application only requires at least K out of its N instances to be
reachable from any of the border switches. Each application in-
stance can function well without interactions with others. In reality,
however, an application can be complex and may require connec-
tivity among its components, each of which may have multiple
instances. While prior systems treat an application as a monolithic
entity, we describe how reCloud integrates complex application
structures into reliability assessment.
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Figure 6: Route-and-check in one round for a deployment

plan requiring connectivity between frontend servers (FE)

and backend databases (DB), with NF E = 2, NDB = 2,

KF E,Ext = 1 and KDB,F E = 1. Red crosses mark failed compo-

nents (e.g., due to hardware, software, network or correlated

failures). This plan is considered ‘reliable’ in this round, be-

cause at least one frontend (FE1) is reachable from a border

switch and it can also reach at least one database (DB1).

The idea is to modify our reliability assessment: instead of only
considering if the application instances can be reached from border
switches, the “route-and-check” step in §3.2.1 checks whether the
connectivity among application components is preserved according
to the developer’s requirements. This enables reCloud to assess
the reliability of a deployment plan for an application with complex
internal structures.

To enable this functionality, the reliability requirements spec-
i#ed by the developer are now de#ned for an application’s each
component Ci , as follows:

• NCi : the total number of instances for component Ci to be
deployed for redundancy, and

• KCi ,Cj
for each component Cj : the minimum number of

deployed instances of component Ci that need to be reach-
able from componentCj . Here,Cj can be another application
component or a border switch used for external connectivity.

Figure 6 shows an example. Suppose a developer deploys a two-
layer application, requiring at least 1 of the application’s 2 frontend
servers to be alive (i.e., reachable from the border switches), and at
least 1 of its 2 backend database servers to be reachable from the
alive frontend servers (which are also reachable from the border
switches). To assess the reliability of a deployment plan, reCloud
generates the failure states of infrastructure components for many
rounds using the extended dagger sampling with no changes. How-
ever, as shown in Figure 6, the deployment plan in a round is consid-
ered reliable only if the “route-and-check” succeeds: 1) between the
border switches and at least one frontend host, and 2) between the
border-switch-reachable frontend host(s) and at least one backend
database host.

It is worth mentioning that, this technique can also be used to
deal with the increasingly popular “microservices-based” cloud
application [48], which may consist of tens or even hundreds of
components with complex communication patterns. Our technique
to handle complex application structures allows the developer to

specify the reliability requirements of each component, so that
reCloud can incorporate these requirements into the reliability
assessment process.

3.3 Reliable Deployment Search

With our reliability assessment technique, we now present how
reCloud searches for a reliable deployment plan. This ability is
completely missing in the state-of-the-art INDaaS system [80].

Suppose there are H hosts in a data center, and for reliability,
an application developer requests the cloud provider to choose
N hosts to deploy her application instances. In total, there are
(H
N

)

deployment plans without considering any instances on the
same host. Even with additional heuristics like “do not use multiple
hosts from the same rack”, the number of potential deployment
plans is still huge, especially in a large data center. Choosing hosts
for a deployment to achieve high reliability is a typical NP-hard
combinatorial optimization problem.

3.3.1 Search via Simulated Annealing and Network Transformations

To accelerate the search for a reliable deployment plan in a huge
space to ful#ll the developer’s requirements, we #rst employ sim-

ulated annealing [15, 43]. Its original idea is that, as we randomly
explore the huge space of potential deployment plans, we accept
not only more reliable deployment plans, but also less reliable de-
ployment plans with slowly decreasing probability. By not always
discarding less reliable deployment plans during the search, we
avoid being trapped in a local optimum, and can conduct a more
extensive search for the global optimum.

However, a direct adoption of the classic simulated annealing
does not work since its probability setting for accepting less reliable
deployment plans #ts badly in our scenario (see §3.3.2). In addition,
data centers are normally designed to create network symmetry
which we can utilize to accelerate the search. We will describe how
to use the network transformations technique [60] to exploit net-
work symmetry and then adjust the system parameters, to enhance
simulated annealing to support our reliable deployment search.

Recall from §2.2 that, an application developer speci#es to the
cloud provider that she wants to deployN application instances and
requires at least K of them to be alive. The developer also speci#es
the desired reliability score Rdesir ed and the maximum search time
Tmax . The cloud provider then performs the following 6 steps to
search for a reliable deployment plan:

Step 1:Generate an initial deployment plan.The cloud provider
randomly selects N hosts for the application’s instances. This se-
lection can use any additional heuristics such as “no hosts from the
same rack or pod”.

Step 2:Assess the reliability of the initial deployment plan.

The cloud provider treats the initial deployment plan as the current
plan, and computes its reliability score Rcurrent (see §3.2).

Step 3:Generate a neighboring deployment plan, and check

its equivalence with respect to network symmetry. The cloud
provider generates a neighboring deployment plan by randomly
replacing one host used in the current deployment plan by a new,
randomly chosen host.

The cloud provider then applies the network transformations
technique [60] to simplify the representations of the two networks
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involved in the current and the neighboring deployment plans, re-
spectively. With the simpli#ed networks, the cloud provider checks
whether the neighboring deployment plan is equivalent to the
current plan with respect to both the network symmetry and the
component failure probabilities (when available) between the two
deployment plans. If they are equivalent, the cloud provider repeats
this step to generate another neighboring deployment plan. Using
the network transformations technique to exploit network symme-
try avoids unnecessary, redundant operations and accelerates the
search for a reliable deployment plan.

Note that, while data centers are normally designed to create
network symmetry, the infrastructure components may fail with
various di!erent probabilities. The network transformations tech-
nique works best when components of the same type fail with the
same or similar probability, which is usually the case in data centers.
However, if components of the same type fail with very di!erent
probabilities, they are logically treated as of di!erent types in our
equivalence checking.

Step 4: Assess the reliability of the neighboring deploy-

ment plan. The cloud provider computes the reliability score
Rneiдhbor of the neighboring deployment plan (see §3.2).

Step 5: Decide whether to accept the neighboring deploy-

ment plan. If Rneiдhbor ≥ Rcurrent , the cloud provider accepts
the neighboring deployment plan as the new current plan. This
plan is then used as the basis in the next iteration. If Rneiдhbor <
Rcurrent , the cloud provider can still accept the neighboring plan
as the new current plan with our specially-designed acceptance
probability (see §3.3.2). Note that, the acceptance probability setting
in the classic simulated annealing #ts badly in our scenario, as we
will discuss in §3.3.2.

Step 6: Repeat or terminate. The cloud provider repeats the
Steps 3-5, during which if the desired reliability score is satis#ed (i.e.,
Rdesir ed ≤ Rcurrent ), the cloud provider reports the current de-
ployment plan to the developer. Otherwise, if the maximum search
time Tmax has elapsed, the cloud provider informs the developer
that her requirements cannot be ful#lled.

Guarantee.With simulated annealing, the probability that the
cloud provider terminates with the most reliable deployment plan
approaches 1.0with the increased number of annealing iterations [30].
In practice, reCloud can #nd a reliable deployment plan very
quickly (see §4).

3.3.2 Acceptance Probability

In Step 5, the cloud provider decides whether to accept a newly-
generated neighboring deployment plan. With some probability,
a neighboring plan with a lower reliability score than the current
plan is accepted. Adjusting this acceptance probability properly is
crucial to the reliable deployment search.We denote this probability
as Pr[accept]. In simulated annealing, this probability is generally
set as [15, 43]:

Pr[accept] = exp
(

−
�

�

∆

t

�

�

)

(4)

Here, ∆ denotes the di!erence between the reliability scores of
the current deployment plan and the neighboring plan — the bigger
the di!erence, the more unreliable the neighboring plan than the
current plan, leading to a lower chance of accepting the neigh-
boring plan. t denotes the annealing temperature which slowly

decreases during the course of the annealing process — the higher
the temperature, the higher the chance of accepting a less reliable
neighboring plan. The appropriate settings of ∆ and t allow re-

Cloud to explore the huge search space e"ciently (with the help
of Step 3, i.e., network transformations), but the classic practice of
setting these parameters does not #t in our scenario.

Setting ∆. Let Rcurrent and Rneiдhbor denote the reliability
scores of the current and the neighboring deployment plans. In
classic simulated annealing, the di!erence ∆ between the two relia-
bility scores is normally set as the absolute value of the di!erence
(i.e., ∆ = |Rcurrent −Rneiдhbor |). For example, if Rcurrent = 0.999

and Rneiдhbor = 0.99, then ∆ is only 0.009.
However, in terms of reliability, these reliability scores indicate

the current deployment plan is one order of magnitudemore reliable
than the neighboring plan. To re*ect this e!ect, we adjust the classic
simulated annealing to amplify this di!erence, and set ∆ to:

∆ =

�

�

� log
(
1 − Rneiдhbor

1 − Rcurrent

)

�

�

� (5)

Here, the log() operator is used to enable a broader search for
the global optimum. In the prior example, the di!erence ∆ between
the two reliability scores is now ∆ = | log( 1−0.99

1−0.999 )| = log(10) >
0.009. According to Equation 4, a bigger ∆ means a lower chance
of accepting a less reliable neighboring deployment plan.

Setting t . t represents the annealing temperature during the
search for a reliable deployment plan. Speci#cally, we set t to:

t =
Tmax −Telapsed

Tmax
(6)

Here,Tmax denotes the maximum search time before the search
for a reliable deployment plan gets terminated and is speci#ed by
the developer. Telapsed denotes the search time elapsed since the
beginning of the search. As Telapsed increases during the search,
the annealing temperature t gradually decreases.

At the beginning of the search, the annealing temperature is
higher, leading to a higher chance of accepting a less reliable neigh-
boring plan, so that a more extensive search for the most reliable
deployment plan can be conducted. Towards the end of the search,
the annealing temperature gets lower, producing a lower chance of
accepting a less reliable deployment plan.

3.3.3 Multi-Objective Optimization

Optimizing only reliability during the search would result in a
deployment plan where all application instances or application
components are placed distant from each other. In reality, however,
some application components may need to be co-located as they
frequently interact with each other, and application deployments
may need to adapt to the changing conditions of infrastructure.
Therefore, high reliability is only one objective when deploying
a cloud application. Other important objectives include: 1) appli-
cation performance for developers, and 2) resource utilization for
cloud providers. The ability to combine multiple objectives becomes
important in practice.

Rather than considering only the reliability score to search for a
reliable deployment plan, reCloud can generate a holistic measure
M by combining: 1) the reliability score of a deployment plan, and 2)
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the utility score of the deployment plan produced by the complimen-
tary techniques optimizing other objectives (e.g., [5, 10, 13, 39, 46]):

M = a × reliability + b × utility (7)

Two examples of the utility score are the bandwidth usage across
the hosts used in a deployment plan, and the resource utilization of
such hosts. How to weigh the reliability and utility scores (i.e., a and
b in Equation 7) depends on the application domain. For example,
we treat them equally in the evaluation (see §4.2.2). We note that
the system resource utilization may vary during the search process.
However, as shown in §4, reCloud’s high e"ciency enables it to
quickly adapt to varying conditions collected at (near) real-time.

As a result, during the reliable deployment search, instead of
using only the reliability score, reCloud uses this holistic measure
to evolve neighboring deployment plans and determine whether
to accept them; otherwise, reCloud terminates if the application
developer’s holistic requirements cannot be ful#lled when the maxi-
mum search time has elapsed. During this search process, reCloud
can also quickly discard any generated deployment plans that do
not satisfy resource constraints, if any. Altogether, reCloud incor-
porates additional objectives while searching for a reliable deploy-
ment plan, enabling both the application developers and the cloud
providers to make informed decisions.

3.4 Limited Dependency Information

As described in §2.1, cloud providers can use cloud management
platforms or specialized tools to acquire the dependency informa-
tion and the failure probabilities of infrastructure components (e.g.,
hardware, software and network components). Such dependency
information, however, is not always available. reCloudworks with
limited dependency information (e.g., only network dependencies),
but provides a more complete reliability assessment if more depen-
dency information is available.

Similarly, the failure probabilities of some components (e.g., soft-
ware components) are not always available. reCloud works with
limited or even no failure probabilities by assigning each compo-
nent a failure probability (e.g., a default value, or a value decided
by an analytic hierarchy process [65]). In doing so, even with no
failure probabilities, reCloud still provides the critical feature to
#nd a deployment plan to avoid shared dependencies (but without
a quantitative assessment).

4 EVALUATION

We implemented the complete reCloud system with all the func-
tionality described in §3. In total, our implementation, including
a distributed execution engine, consists of 5.3K lines of Java code.
We omit the details due to space limit.

4.1 Evaluation Setup

Infrastructure. While reCloud is general and works with any
data center topologies (see §3.1 and §3.2), we notice that the fat-
tree-alike topologies have been widely used in real-world data
centers [69]. Therefore, we generate four fat-tree topologies as
representative examples to demonstrate today’s data centers from
tiny scale to large scale [19], and run reCloud on these topologies.
Table 2 details these data center topologies. As described in §3.1,

Table 2: Data center topologies with external connectivity.

Tiny Small Medium Large

# ports per switch 8 16 24 48
# core switches 16 64 144 576
# agg switches 28 120 276 1,128
# edge switches 28 120 276 1,128
# border switches 4 8 12 24
# hosts 112 960 3,312 27,072
# power supplies 5 5 5 5

we use Google’s approach [69] to manage a data center’s external
connectivity. In addition, we add 5 power supplies into each data
center as additional dependencies, and assign a power supply in
round-robin to each switch, as well as the group of hosts under
each edge switch, to maximize the power diversity. These power
supplies may produce correlated failures.

Note that, we take power supplies as a representative example
of the additional dependencies. Other types of dependency infor-
mation (e.g., software dependencies) can be integrated in the same
way as power supplies whenever available (see §3.2.3). reCloud
does not necessarily require all types of dependency information
in order to provide reliable deployment plans (see §3.4).

Failure Probabilities. Various infrastructure components may
fail with di!erent probabilities. According to the measurements
from real-world systems [28, 32, 52, 61, 67, 72, 73], we apply a real-
istic setting where each switch fails with a probability following
the normal distribution N (0.008, 0.001), and every other compo-
nent (including power supplies) fails with a probability follow-
ing the normal distribution N (0.01, 0.001). All failure probabilities
are rounded to 4 decimal places. Note that, as discussed in §3.4,
reCloud can work with limited or even no failure probabilities,
while still providing the critical feature to #nd deployment plans
that avoid common dependencies. The above settings are used to
demonstrate the worst-case performance of reCloud: without fail-
ure probabilities, reCloud’s e"ciency will only improve because
of even faster dagger sampling and network symmetry checking.

Default Settings. We assume that a developer by default re-
quests reCloud to deploy 5 application instances in a large data
center (see Table 2), and requires at least 4 of them to be alive (i.e.,
4-of-5 redundancy). In addition, by default, the maximum amount
of timeTmax for searching a reliable deployment plan is 30 seconds,
and reCloud runs 104 “route-and-check” rounds to assess the reli-
ability of each generated deployment plan. The desired reliability
score Rdesir ed is set to 1.0; therefore, it cannot be satis#ed and the
search for a reliable deployment plan always terminates at Tmax .
In each experiment, we specify which settings are di!erent from
the default, while the remainder stays the same.

Testbed. The servers used in our evaluation are equipped with
Intel Xeon quad-core 2.26GHz and 48GB memory.

4.2 Evaluation Results

4.2.1 reCloud vs. INDaaS

To assess the reliability of each generated deployment plan, we need
to #rst produce the failure states for infrastructure components
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Figure 7: Dagger sampling vs. Monto-Carlo sampling.

across many rounds, and then perform the “route-and-check” pro-
cess (see §3.2). We evaluated two sampling techniques: Monte-Carlo
sampling (used by the state-of-the-art INDaaS system [80]) and ex-
tended dagger sampling. Figure 7 shows that dagger sampling is
much more e"cient than Monte-Carlo sampling across all data
center scales, and the bene#t of dagger sampling gets larger with
the increase of data center scale. For example, in a large data center,
dagger sampling is typically more than one order of magnitude
faster than Monte-Carlo sampling (e.g., to perform 104 sampling
rounds, dagger sampling needs only 53 ms, while Monte-Carlo
sampling needs 1,487 ms).

More importantly, dagger sampling has a variance reduction
e!ect and converges faster than the Monte-Carlo sampling [45].
That means, with the same number of rounds, dagger sampling-
based approach produces more accurate and stable assessment
results than the Monte-Carlo-based approach.

Note that, during the reliable deployment search (see §3.3), an
individual multi-round sampling is required to assess each of the
many generated deployment plans. Therefore, compared with dag-
ger sampling, the Monte-Carlo sampling incurs a signi#cant cumu-

lative overhead for the reliable deployment search over these many
generated deployment plans (e.g., a few hundreds or thousands).

Note also that, INDaaS applies the Monte-Carlo sampling to
compare the reliability of given deployment plans without any
capability of #nding these deployment plans in the #rst place. Even
if we could integrate reCloud’s mechanism of searching for a
reliable deployment plan (see §3.3) into INDaaS, Figure 7 implies
that such an enhanced INDaaSwould still be one order of magnitude
slower than reCloud.

Accuracy. reCloud not only assesses each generated deploy-
ment plan, it also gives rigorous error bounds for the deployment
assessment (see §3.2.2). These error bounds indicate a range within
which the reCloud-produced reliability score di!ers from the
ground-truth reliability score. Figure 8 shows that, with di!erent
K-of-N redundancy settings, the 95% con#dence interval width
of reCloud’s deployment assessment always decreases with the
increased number of sampling rounds. Figure 8 indicates that per-
forming 104 sampling rounds to assess each deployment plan leads
to a 95% con#dence interval width at around 10−4, which is nor-
mally su"cient for an accurate deployment assessment.
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Figure 8: Accuracy of deployment assessment.

Recall that, the INDaaS system does not quantitatively assess a
deployment plan, and does not give error bounds to understand the
accuracy. Even if we could make substantial changes to the INDaaS
design to support quantitative assessment, our reCloud system is
guaranteed to achieve the same level of assessment accuracy but
with fewer sampling rounds than such an enhanced INDaaS. This
is simply because dagger sampling used in reCloud has a variance
reduction e!ect [45] compared with the Monte-Carlo sampling
used in INDaaS.

4.2.2 reCloud vs. Common Practice (with Multi-Objectives)

To our knowledge, there has been little prior work which could
search for a cloud application’s reliable deployment plan in a quan-
titative and systematic fashion. Nevertheless, one common practice
for reliability is to deploy application instances onto the least-loaded
hosts where each host is in a di!erent rack.2 It, however, lacks the
capability of systematically searching for a reliable deployment
plan to avoid correlated failures produced by additional common
dependencies, e.g., the 5 added power supplies (see §4.1). If we were
to make changes to the common practice to avoid common depen-
dencies, this would end up with a system utilizing various heuristics
(e.g., no shared edge/aggregation switches, no shared power sup-
plies, and many others) to search for a deployment plan in a huge
space. In this experiment, we choose to compare reCloud with an
enhanced common practice where we run the vanilla common prac-
tice 5 times to generate the top-5 non-repeating deployment plans
and then pick the plan with the most diversi#ed power supplies.

For comparison, we enable reCloud’s multi-objective optimiza-

tion function (see §3.3.3). Speci#cally, instead of considering only
the reliability score to search for a deployment plan, reCloud uses
a holistic score combining two factors: 1) the reliability score of the
considered deployment plan, and 2) the average workload of the
hosts used in this deployment plan. We give the two factors equal
weights (see Equation 7).

In practice, a data center’s resource utilization (e.g., bandwidth
usage) is typically low [12, 64]. To re*ect this, we apply a realistic
setting where each host has a workload over [0, 1] with the normal
distribution N (0.2, 0.05) [12, 64]. We note that workload may vary
during reCloud’s search process, especially among peak hours.

2This common practice was learned from our cloud operator contacts.
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Figure 9: reCloud vs. Enhanced common practice (CP).

However, reCloud’s e"ciency in assessing a deployment plan (see
§4.2.3) enables it to quickly adapt to varying workload collected at
(near) real-time.

Figure 9 shows that, with di!erent K-of-N redundancy settings,
reCloud can always #nd a deployment plan that is one order of
magnitude more reliable than the enhanced common practice (CP).
For example, to achieve a 4-of-5 redundancy, the enhanced common
practice can #nd a deployment plan with 99.62% reliability (i.e., 33.3
hours downtime per year), while reCloud can #nd a deployment
plan with 99.97% reliability (i.e., 2.6 hours downtime per year). That
said, the deployment plan found by reCloud ensures that, with
99.97% probability, at least 4 out of the 5 deployed instances are
alive. Note that, while it is extremely hard, if not impossible, to get
the ground-truth reliability of a deployment plan, the accuracy of
our reliability assessment ensures that the reliability score produced
by reCloud is within very small, rigorous error bounds from the
ground truth (see §4.2.1 and Figure 8).

Figure 9 also shows that reCloud can #nd a reliable deployment
plan e"ciently even in a large data center, typically within 30
seconds (with 4-of-5 redundancy, this corresponds to checking
around 438 generated deployment plans including the ones quickly
discarded by the network transformations technique due to network
symmetry). This high e"ciency of 30-second search time potentially
enables reCloud to periodically recalculate the deployment of an
existing application to adapt to varying system conditions during
service time. In addition, Figure 9 shows that di!erent redundancy
deployments achieve di!erent reliability. For example, the 2-of-
3 redundancy is more reliable than the 4-of-5 redundancy. The
reason is simple: it is harder to achieve the 4-of-5 redundancy
which requires at least 4 out of the 5 instances to be alive. Note
that, the 4-of-5 redundancy can process more workload than the
2-of-3 redundancy to meet certain business needs.

4.2.3 Application Structures

reCloud evolves and assesses a series of deployment plans to #nd
a reliable plan. Figure 10 shows that, even in a large data center
and without the help of the network transformations technique,
reCloud can evolve and assess each deployment planwithin 270ms
for a single-layer application (i.e., with no cross-layer connectivity).
This e"ciency enables reCloud to quickly explore many generated
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Figure 10: Di"erent redundancy settings.

deployment plans to search for a reliable plan. Figure 10 also shows
that di!erent K-of-N redundancy settings have little impact on the
performance. This is because running the routing protocol to check
the reliability of any K-of-N deployment plan is very e"cient, and
the time-consuming part is the context setup for the “route-and-
check” process in each round. This indicates that reCloud has
the capability to e"ciently support highly-redundant application
deployments with large K and N values.

Next, we evaluate reCloud for amulti-layer application, whereby
the application developer speci#es that each layer consists of one
application component with 4-of-5 redundancy and the alive com-
ponent instances in one layer are required to reach the component
instances in the next layer. Figure 11 shows that, the number of
layers also has little impact on the performance. Similarly, this
is because running the routing protocol to check the reachability
between any two layers is very e"cient, and the time-consuming
context setup for the “route-and-check” process in each round needs
to be done only once regardless of the number of layers. This en-
ables reCloud to e"ciently search for reliable deployment plans
for a multi-layer cloud application.

Finally, we evaluate reCloud for a microservices-based cloud
application, with 4-of-5 redundancy for each of its components.
Suppose this application has X core components which are fully
meshed, and in addition, each core component communicates with
its respective Y supporting components, denoted as an “X -Y ” struc-
ture. Figure 11 shows that, reCloud can deal with microservice
applications e"ciently. Even for an application with a “10-20” struc-
ture (i.e., 210 components in total) and without the help of network
transformations, reCloud can evolve and assess each deployment
plan within 1 second even in a large data center.

4.2.4 Parallel Execution

While reCloud’s deployment assessment with 104 rounds is quite
accurate (see §4.2.1), some application developers may want even
higher accuracy, requiring reCloud to run more rounds for each de-
ployment assessment. This further a!ects the search time of #nding
a reliable deployment plan. Recall from §3.2 that, running a routing
protocol for many rounds to check the reliability of each gener-
ated deployment plan can be parallelized via MapReduce. Figure 12
shows that parallel execution enables the deployment assessment
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Figure 11: Complex application structures.

with a large number of rounds (e.g., 105 rounds), without a!ecting
the performance substantially. Note that, with a smaller number
of rounds, the data serialization/transmission/deserialization and
the context setup take signi#cant time compared with the e"cient
“route-and-check” process, thus reducing the gains from parallel
execution. Therefore, parallel execution is only bene#cial when an
extremely high assessment accuracy is required.

5 RELATEDWORK

INDaaS [80] is the closest system to reCloud. It compares the
reliability of given deployment plans for a cloud application, and
selects a reliable plan for deployment. However, it does not quanti-
tatively assess the reliability of a deployment plan, cannot search
for deployment plans to ful#ll the developers’ requirements, cannot
consider an application’s internal structures, and scales poorly in
a large cloud infrastructure. Afterwards, Zhai et al. [81] focus on
software dependencies and rank service providers according to
their security vulnerabilities, but still cannot search for a reliable
deployment plan. On the other hand, recent proposals [5, 13] could
#nd a deployment plan balancing fault tolerance and bandwidth us-
age; however, they target “worst-case survival” or alike rather than
directly model the actual quantitative reliability of a deployment
plan, and do not consider applications’ internal structures.

NSDMiner [59] and Orion [17] discover network dependencies
among infrastructure components in enterprise networks using
tra"c analysis, so that these dependencies can be used for fault
localization. Similarly, Sherlock [8] and Sieve [71] use network
dependencies and software dependencies, respectively, for root
cause analysis. Besides, NetMedic [42] incorporates the application-
speci#c knowledge with network dependencies to diagnose faults,
and the accountable virtual machines [35] allow fault detection and
isolation. These systems are bene#cial after failures occur whereas
reCloud takes a proactive approach to #nd a reliable deployment
plan for cloud applications.

CHARM [83] enables developers to dynamically distribute data
replicas across multiple cloud providers. The focus is on data avail-
ability with reduced cost rather than application deployment. Bon-
vin et al. [14] propose a fault-tolerant key value store using #ne-
grained geographical tags for components (e.g., region, center, rack,
and host), where components with dissimilar tags are assumed to
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fail independently. Shared dependencies across these tags, however,
are not considered.

NetPilot [78] aims to minimize the e!ect of disruptions in the net-
work by di!erentiating failure types to take di!erent actions. Net-
Pilot only considers network component failures whereas reCloud
integrates any available information about the cloud infrastructure
to assess the reliability of application deployments.

Zhou et al. [84] propose a placement optimization for cloud ser-
vices that use primary and backup VMs to minimize the consumed
network resources during recovery (i.e., when a backup replaces a
primary). However, there is no quantitative reliability assessment,
and component failures caused by dependencies are not considered.

Recently, Sedaghat et al. propose DieHard [68] to compute the
approximate reliability of a service or a job in a data center, and
then to schedule the job with reliability constraints; however, it
focuses on only power outages and network component failures, its
failure domains used for job scheduling are non-trivial to identify
in the presence of common dependencies, and it does not consider
internal structures of applications.

6 CONCLUSIONS

This paper presented reCloud, the #rst system which utilizes any
available dependency information (e.g., hardware, software and/or
network dependencies) and considers correlated failures to per-
form quantitative reliability assessment for cloud applications with
rigorous error bounds, and it e"ciently #nds reliable deployment
plans for applications that even have complex internal structures.
reCloud can #nd a deployment plan that balances reliability and
other criteria such as application performance and resource uti-
lization. Experimental results based on a complete implementation
show that, even in a large cloud infrastructure with more than 27K
hosts, reCloud needs only 30 seconds to #nd a deployment plan
that is one order of magnitude more reliable than the common
practice. This high e"ciency can further enable reCloud to peri-
odically recalculate the deployment of any existing application to
adapt to varying system conditions during service time.
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