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ABSTRACT
Phishing has been a big concern due to its active roles in recent
data breaches and state-sponsored attacks. While existing works
have extensively analyzed phishing websites and their operations,
there is still a limited understanding of the information sharing
flows throughout the end-to-end phishing process. In this paper, we
perform an empirical measurement on the transmission and shar-
ing of stolen login credentials. Over 5 months, our measurement
covers more than 179,000 phishing URLs (47,000 live phishing sites).
First, we build a measurement tool to feed fake credentials to live
phishing sites. The goal is to monitor how the credential informa-
tion is shared with the phishing server and potentially third-party
collectors on the client side. Second, we obtain phishing kits from
a subset of phishing sites to analyze how credentials are sent to at-
tackers and third-parties on the server side. Third, we set up honey
accounts to monitor the post-phishing exploitation activities from
attackers. Our study reveals the key mechanisms for information
sharing during phishing, particularly with third-parties. We also
discuss the implications of our results for phishing defenses.
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1 INTRODUCTION
Phishing attack is a persistent threat on the Internet. It exploits
human factors to lure the target users to give away critical infor-
mation. In recent years, phishing becomes an even bigger concern
due to its prevalent usage in facilitating major data breaches [3],
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particularly the recent breaches in hospitals and health care com-
panies [4, 5]. In addition, phishing plays an important role in many
state-sponsored attacks. One of the recent examples is the spear
phishing attack against John Podesta, the campaign manager of
Hillary Clinton, during the US election in 2016 [1].

The research community has been studying phishing attacks
from different aspects. While some existing works analyzed phish-
ing emails [20], the vast majority focus on the phishing websites
that are set up by attackers to trick users to reveal important in-
formation (e.g., login credentials) [36, 38, 40, 42]. These phishing
sites often impersonate other reputable entities to gain the victim’s
trust. More recently, researchers analyze phishing kits, the software
packages for running phishing websites, to understand how phish-
ing sites are deployed and operated [12, 19, 29]. However, these
works only looked into the disconnected parts of phishing. There
is a limited end-to-end understanding of the information flow after
user credentials are leaked to the phishing sites.

In this paper, we perform an empirical measurement by piecing
together the different stages of phishing to understand the infor-
mation flow. We collect a large set of live phishing sites and feed
fake login credentials to these sites. In this process, we monitor
how the information is shared to the attackers who deployed the
phishing site, and more importantly, any other third-parties. For
the client-side measurement, we build a measurement tool to au-
tomatically detect a login form, fill in the fake credentials, and
monitor the network traffic to external parties. For the phishing-
server measurement, we build a crawler to retrieve phishing kits,
and run them in a sandbox to detect first-party and third-party
information collectors. Finally, to examine what attackers do after
obtaining the login credentials, we set up our own honey accounts
(in email services) to monitor the potential post-phishing exploiting
activities. These steps allow us to provide an end-to-end view of
the phishing process and credential sharing.

We performed the measurement from August 2018 to January
2019 covering 179,865 phishing URLs. The client-side measurement
covers 41,986 live phishing sites, and the server-side measurement
is based on the analysis of 2,064 detected phishing kits. Our post-
phishing exploitation analysis uses 100 honey accounts from Gmail
and 50 accounts from ProtonMail for data collection. We explore
how likely attackers would attempt to use the leaked password
to further hijack the associated email account (in addition to the
original online account).

Our study leads to a number of key findings. First, we show that
user credentials are shared in real time on both the client-side and
the server-side. This easily exposes the stolen credentials to more
malicious parties. Second, while the client-side sharing is not very
common (about 5%), the third-party servers are often located in a
different country (compared to the phishing server), which may

https://doi.org/10.1145/3321705.3329818
https://doi.org/10.1145/3321705.3329818
https://doi.org/10.1145/3321705.3329818


create difficulties to take them down. In particular, many “good”
websites were used to receive stolen credentials (e.g., Google Ads
are used to track the phishing statistics for attackers). Third, server-
side credential sharing is primarily done via emails. 20% of the
phishing kits send the credentials to two or more email addresses.
About 5% of the phishing kits contain backdoors that stealthily
leak the credentials to third-parties. Finally, from our honey email
accounts, we observe that attackers indeed attempted to exploit the
honey accounts shortly after phishing (within tens of minutes or
1–2 days). A single leakage can attract multiple attackers, which
indicates credential sharing.

Our paper makes three key contributions:

• First, we perform a large-scale empirical measurement on
the information flow of credential sharing during phishing
attacks. Ourmeasurement covers both client-side, and server-
side information sharing, and post-phishing exploitation.

• Second, we build a new measurement tool to automatically
seed fake credentials to phishing sites to measure the infor-
mation sharing in real time. We will make the tool available
for sharing with the research community.

• Third, our measurements provide new insights into the cre-
dential sharing mechanisms (to third-parties) during the
phishing process.

In the end of the paper (§7), we discuss how third-party sharing and
backdoors can be potentially used by defenders for good purposes.
For example, the defender may leverage the third-party sharing
channel to establish a vantage point to back-track phishing kit
usage, and provide early alerts for phishing victims.

2 BACKGROUND & MOTIVATIONS
We start by introducing the background of phishing, and the dif-
ferent ways for attackers collect the leaked information. Then we
describe our high-level research goals and approaches.

2.1 Background of Phishing
Figure 1 shows the typical steps of a phishing attack. Attackers first
need to trick users into visiting a phishing website. To gain the vic-
tim’s trust, a phishing website often impersonates other reputable
services. In step1, the victim user submits the login credential via
the phishing page in the browser. After that, the information is then
sent to the phishing server (step2.1). The phishing server either
directly sends the collected credentials via emails to the attacker
(step3.1), or the attacker will (manually) log into the phishing
server to retrieve the information (step3.2). Once the login cre-
dentials are obtained by the attacker, they can proceed further
with malicious activities against users or their organizations (e.g.,
stealing data, compromising enterprise/government networks).

Phishing Kits. Attackers often deploy phishing websites using
a collection of software tools called phishing kits [12]. Phishing
kits allow people with little technical skills to run phishing attacks.
A typical kit contains a website component, and an information
processing component. The website component contains the code,
images, and other content to create a fake website. The information
processing tool will automatically record and store the received
information (password, login time, IP), and send the information
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Figure 1: Phishing attack process.

to the attacker. Some phishing kits also contain a spamming tool,
which can send spam emails to lead users to the phishing sites.

Third-party Information Sharing. During a phishing attack,
it is possible that the user credentials are also shared to third-parties,
in both the client-side and the server-side.

• Client-side Third Parties. Step2.2 shows that client-side
third-parties collect the user credential. In this case, the
phishing server that directly hosts the phishing page is the
first-party and any other servers that also collect the creden-
tial are third-parties. The information sharing happens in
real time when the user clicks on the “submit” button.

• Server-side Third Parties. Step3.3 represents the server-
side third-parties. Certain phishing kits contain “back-doors”
planted by other parties (e.g., the phishing kit developer) [12].
After the login credentials are received by the phishing
server, the information will be sent to the first-party (who
deployed the phishing website), and also possibly to the
third-party (who planted the back-door in the phishing kit).

2.2 Our Motivations
Phishing is an extensively-studied topic, and yet there is still a
lack of empirical understanding of the information flow after the
credential leakage. Most existing works focus on step1 to analyze
the characteristics of phishing websites and their hosting domains
to build detection systems [36, 38, 40, 42]. More recently, researchers
analyze the phishing kits to understand how phishing websites
are deployed [19, 29]. However, these works are usually limited
in scale and scope. More importantly, there is no existing work
that systematically measures the real-time credential sharing to
third-parties, or examines the post-phishing exploitation activities.

In this paper, we seek to provide a more comprehensive view of
the information flow of phishing attacks via a large-scale empirical
measurement. We examine the end-to-end process: from leaking the
login credentials to the phishing websites, to analyzing the phishing
servers and phishing kits, and monitoring attacker’s exploitation
activities using the leaked credentials. More importantly, for the
first time, we want to measure the real-time credential sharing to
third-party collectors at both client and server sides. Regarding
monitoring the account exploitation, the most related work is a
study from Google [10] that monitored the activities of manually
hijacked Google accounts. Another study leaked email accounts
to underground forums and monitored the account activities [30].
These works focus on the generic accounts hijacking, while we
specifically focus on the account exploitation after the phishing
attack as part of the end-to-end analysis.



2.3 Methodology Overview
In this section, we describe our methodology to track the infor-
mation flow in each step in Figure 1. Here, we only describe the
high-level idea, and leave the detailed design and analysis to the
corresponding sections in the later part of the paper.

First, to track the information flow at step1, step2.1, and par-
ticularly step2.2, we design a measurement tool to automatically
feed (fake) login credentials to real-world phishing websites via
the login forms. The tool will also keep track any redirections and
real-time credential sharing during this process (§3 and §4).

Second, to infer the information flow of step3.1, step3.2, and
step3.3, we try to obtain the phishing kits from phishing servers
and analyze how the phishing kits work. We extract the email
addresses that first-party attackers use to collect the user creden-
tials. We also perform a dynamic analysis in a sandbox to identify
potential backdoors planted by third-parties (§5).

Third, to shed light on step4, we intentionally leak email ad-
dresses and their real passwords via phishing sites, and monitor
how attackers would exploit the email accounts after the phishing.
These “honey accounts” are created by ourselves and do not affect
any real users (§6).

3 TOOL DESIGN & DATA COLLECTION
We start by introducing our measurement tool to track the infor-
mation flow on the client side. Given a phishing website, our tool
can automatically detect the login form, fill in the fake credential
(email address and password), and submit the information to the
phishing server. In this process, our tool records all the HTTP and
HTTPS traffic and detect those that transmit the credential to re-
mote servers. In the following, we describe the detailed designs of
this tool, and how we collect our datasets.

3.1 Measurement Tool
Our tool is a web crawler implemented using Selenium1. It controls
a headless ChromeDriver browser to complete a series of actions
and records the network traffic in the ChromeDriver log.

Detecting the Login Form. We focus on phishing sites that
collect login credentials, excluding those that collect other informa-
tion such as credit card information or social security numbers. We
detect the login form by looking for three fields: username, pass-
word, and the “submit” button. We look for related tags in HTML
including FORM tags, INPUT tags and BUTTON tags. We also extract
the form attributes such as type, placeholder, name, and class).
We don’t consider any read-only or invisible tags.

To make sure that the form is indeed a login form instead of
other irrelevant forms (e.g., searching bar, survey forms), we com-
pile a list of login related keywords and search them within the
form attributes. We select keywords manually analyzing the login
forms of 500 randomly phishing websites. In total, we select 40
keywords including 14 keywords for username (e.g., “user name”,
“id”, “online id”, “email”, “email address”), 8 keywords for password
(e.g., “password”, ”passwd“, “passcode”), and 18 keywords for the
submit button (e.g., “log in”, “sign in”, “submit”). The main challenge
is that phishing websites often have unconventional designs, or

1https://www.seleniumhq.org/

even intentionally hide keywords to evade detection [36]. It is not
always possible to locate all three fields. Below, we list the key
problems and how to address them.

• Keywords in images: The most common challenge is that
attackers use an image to contain the “Login” keyword for
the submit button, instead of placing the keyword to the
placeholder. Our solution is to use the Tesseract Open
Source OCR Engine2 to extract the texts from images, and
then perform the keyword search.

• No FORM tags: Phishing pages may intentionally leave out
the FORM tags (to evade detection). Our solution is to search
INPUT tags and keywords in the whole HTML page, instead
of just within the FORM tags.

• Two-step login: In some phishing pages, users need to enter
the username on the first page, and type in the password
on the next page. Our tool can handle two-step login by
tracking the log-in progress.

• Previous unseen keywords: the keywords may occasion-
ally fail to match the corresponding input fields. To increase
our success rate, we perform a simple inference based on
the order of input fields. For example, if the username and
button fields are matched, then we guess the unmatched
input field in the middle is for the password.

Filling in the Fake Credential. After detecting the login form,
our tool will automatically fill in the username and password fields
and click the submit button. The username is an email address that
belongs to us. The password is a random string of 8 characters
which is uniquely created by us. The unique password is helpful
later to detect the network requests that send out the password.
This email address is never used to register any online account. The
password is also not the real password for the email address. In this
way, we make sure the leaked information would not affect any
real users. We test the tool on 300 phishing sites (different from
those that contributed the keywords). We show that the tool has a
success rate of 90% to complete the login.

Here, we also want to make sure that using fake credentials does
not affect our measurement result. We did a small experiment to see
if the phishing site would react to real and fake password differently.
We create 4 real accounts with PayPal, Microsoft, LinkedIn, and
AT&T respectively. Then we select 60 live phishing websites from
eCrimeX that impersonate these brands (15 websites per brand).
We feed the real and fake passwords in separate runs, and find that
the collected network traffic has no difference.

3.2 Data Collection
Using the measurement tool, we collect data from August 2018 to
January 2019 by crawling 4 large phishing blacklists: PhishTank,
PhishBank, eCrimeX, and OpenPhish. The detailed data statistics
are shown in Table 1. For each phishing URL, all four blacklists
share the timestamp when the phishing URL was reported/detected.
Three of the blacklists also show the target brand (or website)
that the phishing page is trying to impersonate. OpenPhish shares
the target brand information only for the premium API (not the
free-API we used). We notice that many phishing URLs become

2https://github.com/tesseract-ocr/tesseract
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Blacklist Crawling Time Span Target Brand Detection Time # All # Live # w/ Login Form # Success
OpenPhish 09/24/2018 - 01/03/2019 ✗ ✓ 75,687 44,553 24,202 19,720
eCrimeX 08/20/2018 - 01/03/2019 ✓ ✓ 65,465 33,319 21,161 19,172
PhishTank 09/24/2018 - 01/03/2019 ✓ ✓ 50,608 41,682 7,406 6,430
PhishBank 09/24/2018 - 01/03/2019 ✓ ✓ 3,093 2,027 1,010 864
Total 08/20/2018 - 01/03/2019 – – 179,865 110,934 47,703 41,986

Table 1: Dataset summary.
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Figure 2: The gap between the time when a URL was black-
listed and the time when our crawler visited the URL.

inaccessible quickly after they are blacklisted. To interact with the
live phishing server, we build a crawler to fetch phishing URLs
from the four blacklists every 30 minutes. Then we immediately
use our measurement tool to load the phishing page, feed the fake
credential, and record the network traffic.

We also considered that situation where the phishing servers
use cloaking techniques. More specifically, the phishing server may
check the IP and User-Agent of the incoming request to see if the
request is coming from a university, a security company, or a web
crawler. In those cases, the phishing server may drop the request
or return a benign page to avoid being detected. As such, we put
our crawler behind web proxies and use a realistic User-Agent.

As shown in Table 1, we collected 190,087 unique phishing
URLs (after removing duplicated URLs between the four black-
lists). Among them, 68,751 (38.26%) are “dead”, and the rest 110,934
(61.74%) are still alive. Figure 2 shows that the live pages are typ-
ically more recently-reported compared to the dead ones. 80% of
the live pages were reported just 1 hour ago (by the time we visited
the pages), while the dead pages were reported much earlier.

Login Results. Not all the live URLs are still phishing pages.
In fact, many of the live URLs have been reset to legitimate/blank
pages. Among 110,934 (61.74%) live URLs, only 47,703 (26.55%) still
contain a login form. We use our measurement tool to feed the fake
credentials to and record all the network traffic. Out of the 47,703
phishing sites, we successfully submitted the login form for 41,986
sites (88.01%), We manually checked the pages with failed logins.
Some of the forms not only asked for username and password, but
also required answering security questions by clicking a drop-down
list. Other failure cases are caused by the special format constraints
for the input data. We admit that there is still room for improving
our measurement tool.

Identifying Relevant Network Traffic. Among all the net-
work requests, we look for those that contain the seeded password.
We consider both POST and GET HTTP/HTTPS requests. We expect
that some phishing pages may encode or hash the credentials before

Hash or encoding functions (31 in total)
MD2, MD4, MD5, RIPEMD, SHA1, SHA224, SHA256, SHA384,
SHA512, SHA3_224, SHA3_256, SHA3_384, SHA3_512, blake2b,

blake2s, crc32, adler32, murmurhash 3 32 bit, murmurhash 3 64 bit,
murmurhash 3 128 bit, whirlpool, b16 encoding, b32 encoding,

b64 encoding, b85 encoding, url encoding, gzip, zlib, bz2, yenc, entity
Table 2: Functions used to obfuscate login credentials.

Rk. Domain Name # Unique URLs Category
1 kylelierman.com 3,257 (6.82%) Uncategorized
2 datarescue.cl 545 (1.14%) Phishing & frauds
3 psycheforce.com 519 (1.09%) Sex Education
4 4-6-3baseball.com 447 (0.94%) Web Hosting
5 serveirc.com 424 (0.89%) Dynamic DNS
6 galton.pila.pl 303 (0.63%) Retail and Wholesale
7 lexvidhi.com 287 (0.60%) Business Marketing
8 xsitedleadpages.com 262 (0.55%) Uncategorized
9 stcroixlofts.com 233 (0.49%) Dynamic Content
10 colorsplashstudio.com 230 (0.48%) Blogs & shopping

Table 3: Top 10 domains of phishing URLs.

transmission. As such, in addition to matching the plaintext, we
also attempt to match the hashed/encoded versions of the password.
We apply 31 hash/encoding function on the password and look for
a match in the traffic (Table 2). After the filtering, we identified
41,986 network requests that contain the leaked password (either
plaintext or hashed).

4 CLIENT SIDE ANALYSIS
Wenow analyze the collected dataset to examine the various aspects
of the phishing websites including their target brands, domains
and server geolocations. Then we inspect the information flow to
understand how the login credentials are shared with third-party
information collectors. The analysis of this section is based on the
47,703 phishing sites with a login form.

4.1 Understanding Phishing Sites

HTTPS Scheme. HTTPS is alreadywidely used by the phishing
sites. Among the 47,703 sites, 16,128 (33.81%) are hosting the phish-
ing pages under HTTPS. We suspect that HTTPs helps to further
deceive the users. More specifically, most modern browsers display
a green padlock as the security indicator for HTTPS sites (with a
valid certificate). This means, if a phishing site enables HTTPS, the
green padlock would also show up when a user visits it. This could
give the user a false sense of “security” given that user may not
fully understand the meaning of the security indicator [18].

Domain Analysis. The 47,703 phishing sites are hosted under
24,199 full qualified domain names (FQDNs) which correspond to
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Figure 3: Compromised domains and their hosted phishing pages.

Domain Alexa rank # URLs
archive.org 269 1
bathandbodyworks.com 1,224 4
etherscan.io 3,162 3
nsw.gov.au 3,182 1
acm.org 3,676 11
tillys.com 9,506 1
krakow.pl 10,902 5
ugm.ac.id 11,198 1
kemkes.go.id 12385 4
mun.ca 13036 1

Table 4: Compromised domains that host phishing pages.
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Figure 4: Geolocation distribution of phishing URLs.

16,939 unique domain names. Table 3 shows the top 10 domains
ranked by the number of unique phishing URLs. There is no single
domain that has a dominating contribution to the phishing URLs.

Interestingly, 417 domains are ranked within Alexa top 1 mil-
lion3. We then manually investigate those domains, and classify
them into four categories: 159 domains belong to web hosting ser-
vices, 3 domains belong to dynamic DNS services, and 31 domains
belong to URL shortener services. The rest 224 domains can not
be easily categorized since they look like good websites that got
compromised. In Table 4, we list the top 10 domains (based on their
Alexa ranking) that are likely compromised for phishing.

Figure 3 shows three examples of compromised websites. Fig-
ure 3a is a phishing page hosted under acm.org. The phishing URL
is “http://iccps.acm.org/admin/.certified/***” deployed un-
der the ICCPS conference site to impersonate the FedExwebsite. Fig-
ure 3b is a phishingURL "http://conferences.sigcomm.org/css/
***" hosted under the SIGCOMM conference website to imperson-
ate a tax agency in France. Figure 3c is a phishing URL hosted
3https://www.alexa.com/topsites

under a government website of New South Wales in Australia
“http://councillorportal.ashfield.nsw.gov.au/Service/***”
to impersonate Paypal.

Geolocation Analysis. We further examine the geolocation of
the phishing servers4. In this analysis, we do not consider phishing
pages under web hosting services or compromised domains since
these servers are not dedicated phishing servers. In total, we have
10,192 unique IP addresses, and their geolocation distribution is
shown in Figure 4. The majority of the phishing sites are hosted
in North America and Europe, especial in the United States. This
result, in part, can be biased due to the fact that the phishing URLs
are collected from four US-based phishing blacklists.

Target Brands. The phishing sites are impersonating a wide
range of popular “brands”. Recall that three of the four blacklists
provide the target brand information, which covers 28,614 URLs
(59.99% out of 47,703). For the rest 19,089 phishing URLs, we need
to identify the target brands by ourselves. Our method is based
on those in [40, 42]. The intuition is that a target brand that the
phishing website is impersonating is typically more popular (i.e.,
ranked higher in the search engine). For each of the 19,089 phishing
pages, we first apply the OCR technique [23] to extract keywords
from the webpage screenshot. Here, we use screenshots instead of
the HTML file because attackers often use obfuscation techniques
to hide the keywords in HTML [36]. Then we use RAKE (Rapid
Automatic Keyword Extraction) [32] to extract keywords from the
texts to remove less important keywords (e.g., stop-words). We
search the keywords using Google, and take the first returning
page as the target brand. For example, if we search the keywords in
Figure 3c, Google will return paypal.com as the first return result
(i.e., the target brand).

We evaluate this approach using phishing pages with known
target brands. We first test the method on 500 phishing pages that
impersonate Paypal, and get a 100% accuracy. Then we test the
method on 500 phishing pages targeting Microsoft, and get a 99.8%
accuracy. Finally, we test the method on 500 randomly phishing
pages, which returns an accuracy of 88%. We believe this is good
enough to proceed with our analysis.

In total, we find 298 unique target brands. The most popular
target brand is Paypal, followed by Microsoft, AT&T, Desjardins,
and Linkedin. We further categorize the target brands into 6 sectors
based on their Standard Industrial Classification (SIC) code. We
get SIC code information from siccode.com. As shown in Table 5,
more than 40% of phishing URLs are targeting finance and insurance

4For geolocation service, we use the GeoPlugin (https://www.geoplugin.com/).

https://www.alexa.com/topsites
siccode.com
https://www.geoplugin.com/


Target Sectors # Phishing Sites # Brand 1st brand 2nd brand 3rd brand
Finance and Insurance 18,648 (39.09%) 150 PayPal (15,083) Desjardins (960) Wells Fargo (646)
Computer and Software Services 9,304 (19.50%) 58 Microsoft (4,484) LinkedIn (761) Yahoo (603)
Electronic and Communication 1,262 (2.65%) 23 AT&T (927) Apple (161) Verizon (29)
Transportation Services 583 (1.22%) 9 Federal Express (393) DHL (13) Delta (40)
Other 5,456 (11.44%) 48 eBay (159) Craigslist (126) IRS (124)
Not Applicable 12,450 (26.10%) 10 — — —

Table 5: Target sectors and top brands in each sector.

Format Plaintext URL Encoding Other Encoding
# Phishing sites 6,324 (15.06%) 35,616 (84.83%) 46 (0.11%)

Table 6: Data format of credentials sent from the client-side.

# 3rd-parties 0 1 2 ≥ 3
# Phish sites 39,967 (95.19%) 1,963 (4.68%) 48 (0.11%) 8 (0.02%)

Table 7: Distribution of third-party collectors. About 95%
phishing sites don’t have third-party collectors and they
only send credentials to the original hosting domain.

services. Paypal alone is associated with 15,083 phishing URLs (32%).
Note that 12,450 (26%) phishing sites don’t have an informative
target brand. For example, the blacklist may label them as “Generic”
or “United States”. Manual inspection reveals that these phishing
sites are impersonating small organizations.

4.2 Client-Side Information Flow
In this section, we investigate the information flows of sending cre-
dentials from the client side. To identify HTTP requests containing
user credentials, we follow the methodology discussed earlier in
§3.2. Out of the 47,703 phishing sites with a login form, we are able
to track credential information flow for 41,986 phishing sites.

Credential Sending Format. Recall that credential informa-
tion could be transmitted in plaintext or using some encoding/hash-
ing schemes (e.g., MD5, SHA256). Table 6 shows statistics of differ-
ent types of data formats used across phishing sites. Interestingly,
most phishing sites (99%) use human interpretable formats (i.e.,
either plaintext or URL encoding), and only a small fraction, 0.11%
use other more advanced encoding schemes. This implies that most
attackers did not try to obfuscate the information flow.

Identifying Third-party Collectors. Any domain that col-
lects credential information, and is not a direct phishing server
domain, is considered to be a third-party collector. In total, we
identify 694 third-party collector domains that include 1,021 URLs.
These are entities that collect stolen credentials, and would be a
vital component to target while building phishing defenses.

But do all phishing sites share credentials with third-party col-
lectors? Table 7 shows the distribution of phishing sites that share
credentials with different number of third-party collectors. There
are about 5% of phishing sites sharing credentials with third-party
collectors from the client side. The percentage is not high, but there
is a sizeable number. There are 2,019 phishing sites that interact
with one or more third-party collectors. In fact, 56 phishing sites
share with more than 2 third-party collectors.

Third-party Collectors vs. Phishing Sites. Next, we look at
two aspects of third-party collectors that have implications for
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Figure 5: Countries of phishing sites and third-party collec-
tors.

disrupting their network. First, do third-party collectors link with
multiple phishing sites? If each third-party collector served a single
phishing site, we would have to take down as many collector do-
mains as the number of phishing sites. But we observe a different
trend. Figure 6 shows the distribution of fraction of phishing sites
covered by different external collectors. We find that the top 100
external collectors (out of 694) link with a majority, 68.76% of the
phishing sites. Thus, even targeting a small fraction of external
collectors can disrupt many phishing efforts.

Second, we further examine the geographical locations of third-
party collectors. Third-party collectors are spread over 37 countries,
but 42% of them are located in the U.S. When third-party collectors
are based in a country different from the phishing site they link
with, it would require different law enforcement efforts to take
down their domains. We analyze the relative locations of phishing
sites and their associated third-party collectors. Among 1,408 IP
address pairs made of phishing sites, and their connected collector
domains5, 44% are co-located in the same country. A significant frac-
tion of this number can be attributed to the U.S.—96% of co-located
pairs are located within the U.S. The remaining 56% non-co-located
pairs include phishing sites that are spread over 52 countries, and
collectors over 37 countries. We also note that a significant fraction,
88% of non-co-located pairs involve phishing sites or collectors
based in the U.S. The detailed breakdown for is shown in Figure 5.
We only show the top 5 countries of phishing servers and third-
party collectors and group the rest into “other”. Overall, this means
that a majority of pairs are not based in the same country, and this
could raise challenges to disrupt their network.

How Reputed are Third-Party Collectors? We investigate
whether the third-party collectors are already known malicious
entities or those with poor reputation.
5In total, there were 2,170 pairs, but we were unable to determine the geolocation for
all of them.
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# Phishing Sites w/ # Third-party
Third-party Collectors Collector URLs

Total 2,019 1,021
“Phishing Site” 1970 (97.57%) 823 (80.63%)
“Malicious Site” 1,840 (91.13%) 777 (76.10%)
“Malware Site” 239 (13.13%) 176 (17.24%)
Table 8: Number of URLs detected by VirusTotal.

We start by analyzing the reputation of third-party collector do-
mains using The Talos IP and Domain Reputation Center (by Cisco)6.
The Talos IP and Domain Reputation Center is a real-time threat
detection network. They provide a reputation score of “Good”, “Neu-
tral” and “Poor”. Here “Good” means little or no threat activity has
been observed. On the contrary, “Poor” indicates a problematic
level of threat activity has been observed, while “Neutral” means
the domain is within acceptable parameters. Note that “Neutral” is
a common case for most domains, even well-known ones such as
facebook.com. Among all 694 third-party collector domains, we
obtain reports for 508 (73.20%) domains. We find that 14 of them
are labeled “Good”, 146 are “Poor” and the rest 348 are “Neutral”.

We take a closer look at these scores—First, it is interesting to see
that a significant fraction, 29% of domains already have poor repu-
tation, but still managed to stay alive and form a collector network.
Second, it is surprising to see 14 domains marked as “Good”. We find
these are indeed legitimate domains, e.g., delta.com, google.com,
doubleclick.net, dropbox.com. On examining the HTTP logs for
these “Good” collectors, we find there are different reasons for them
acting as third-party collectors. For example, certain phishing sites
were sending the credentials to the legitimate sites that they were
trying to impersonate (e.g., delta.com). We suspect that they were
trying to check the validity of credentials. Some good sites were
collecting credentials because they were used by attackers as a web
hosting service (e.g., dropbox.com). Finally, popular ads platforms
or tracking services such as Google Ads and doubleclick.net also
received the stolen credentials. A close inspection shows that the
phishing sites were connecting to these tracking services to keep
track of the number of victims. While doing so, the stolen credential
was “accidentally” placed within the referer URL of the request.

Only analyzing domain reputation does not provide the full pic-
ture. There can be legitimate domains that host malicious URLs. We
6urlhttps://www.talosintelligence.com/

leverage VirusTotal7 to scan external collector URLs. VirusTotal has
been widely used by the security community in prior work [28, 36].
For each submitted URL, VirusTotal provides a report from 66 di-
verse scanners that may classify it into one or more categories that
indicate whether a URL is problematic, clean or unrated. Problem-
atic categories include “Malware site”, “Phishing site”, “Malicious
site”, “Suspicious site”, and “Spam site”.

Figure 7 shows the distribution of collector URLs detected by
VirusTotal scanners that fall into any one of the problematic cate-
gories. A small fraction, 16% of URLs are not flagged by any scanner,
and will likely remain under the radar for a long time. On the other
hand, a large majority, 84% of collector URLs are classified as prob-
lematic by at least one scanner. Table 8 shows a further breakdown
of collector URLs that are flagged by at least one scanner. Interest-
ingly, 81% of them are flagged as ’Phishing sites’. This suggests the
possibility of a network of phishing sites that exchange credential
information with each other.

To summarize, while a majority of third-party collector domains
do not have a poor reputation, a large majority of their URLs are
already known to be problematic, e.g., for phishing. In spite of
the poor URL reputation, it is surprising that these collector URLs
are still alive. To understand the age of the collector domains, we
examine WHOIS records to determine their domain registration
dates. Figure 8 shows that the distribution of domain registration
time of third-party collectors is quite close to that of the phishing
servers. Many of the collector domains are actually aged domains.
20% of them were registered 10 years ago. About half of them were
registered before 2016. This suggests that the collector network has
largely remained undisrupted.8

The top information collectors ranked by the number of phishing
sites they serve is presented in Table 9. The largest information col-
lectors here is “w32.info”. This site was once hosting many phishing
kits for downloading (not anymore). We confirm this by checking
the achieved versions of this website9. It is possible that the kit
developers were using this site to collect a copy of the stolen cre-
dentials from people who use their kits to perform phishing. We

7https://www.virustotal.com
8We removed known web hosting domains (as reported by Alexa top 1 Million) from
this plot to avoid a possible wrong interpretation. Malicious collector URLs hosted on
a legitimate webhosting service would show up as being long-lived, while the exact
age of the URL would be hard to determine.
9https://web.archive.org/web/20151128133828/http://w32.info:80/

https://www.virustotal.com
https://web.archive.org/web/20151128133828/http://w32.info:80/


Rk. Third-party Phish Domain Collector
Collector URLs Category URLs

1 w32.info 731 Infection source 1
2 jquerymobile.ga 168 Uncategorized 2
3 ip-api.org 89 Geolocation API 1
4 serveirc.com 57 Dynamic DNS 57
5 imgur-photobox.com 50 Uncategorized 1
6 000webhostapp.com 28 Web hosting 26
7 ptpjm.co.id 17 known infection 3
8 servehttp.com 16 Dynamic DNS 8
9 redirectme.net 16 Dynamic DNS 16
10 fitandfirmonline.com 14 Uncategorized 14

Table 9: Top 10 third-party collectors.

also notice that web hosting services or dynamic DNS services are
often used to collect credentials for multiple collector URLs (pos-
sibly for different attackers). One interesting case is ip-api.org,
a website that provides a lookup service for IP geolocations. 89
phishing websites were sending stolen credentials to this server via
“http://cdn.images.ip-api.org/s.png”. We suspect that this
service might have been compromised.

5 SERVER SIDE ANALYSIS
In this section, wemove to the server side to analyze the information
flow of credential transmission. The challenge here is that we don’t
have internal access to the phishing servers. Our solution is based
on the fact that some (careless) attackers may have left the phishing
kit in publicly accessible locations on the phishing server [12]. As
such, we attempt to retrieve these phishing kits and infer the server-
side information flow by combining static and dynamic analysis.

5.1 Collecting Phishing Kits
We search for phishing kits on servers that host the phishing web-
sites. Unlike §4, we inspect all 179,865 phishing URLs (i.e., not just
sites that were still alive) for possible phishing kits. The main rea-
son is that even if a phishing site has been disabled10, it is possible
that phishing kits are still left accessible on the server [29].

Since we have no knowledge of possible file names to query for
(on the phishing server), we start with phishing servers that enable
directory listing to obtain a list of files available on the server. Prior
work suggests that phishing kits are usually compressed/archive
files (e.g., zip, tar, rar) [12]. For each phishing site URL, we do
the following steps: (1) Check if directory listing is available for
each path segment in the URL (i.e., separated by ’/’). (2) If we find
a directory listing, we download all compressed/archive files. (3)
For each downloaded file, we decompress it and check the PH-
P/Python/Ruby/HTML files to make sure it is indeed a phishing kit.
To further increase our chance to retrieve more phishing kits, we
identify the most frequent 50 kit names (based on the first 1000 kits
downloaded earlier). Then given a phishing URL, we exhaustively
query each path segment for these 50 file names, in addition to
checking the directory listing. This helps us to obtain kits from
servers that disabled the directory listing.

We applied the above method to querying 179,865 phishing
sites, and obtained 2,064 phishing kits in total. Compared to earlier
10By disabled we mean the phishing site has been reset to a legitimate website by
phisher or the web administrator.

work [2, 19], our hit rate for finding a phishing kit on phishing
servers is lower—we observe a hit rate of 1.15%, compared to 11.8%
in prior work. We suspect that phishers are being more careful, and
avoid leaving publicly visible traces of their malicious activity.

5.2 Server-side Information Flow
Unlike client-side analysis, where we only investigate outgoing
HTTP/HTTPS requests, information flow on the server side can
use other channels too—via Email [19]. Our goal is to capture the
information flow on the server side, and also detect those related
to third-party credential sharing.

Identifying Third-party Collectors. On the server side, the
stolen credentials can be sent to third-parties in addition to the
attacker who deployed the phishing kit. More specifically, prior
work shows that phishing kits may contain backdoors [12] that
allow third-parties to collect the stolen credentials. Often cases,
the backdoors are stealthily inserted into the phishing kit code by
the kit developers. When the kit is used by attackers to perform
phishing, the kit developer also receives a copy of the credentials.

To differentiate backdoor collectors, we conduct both dynamic
and static analysis. The methodology is inspired by that in [12].
The assumption is that backdoors are usually planted stealthily,
which are not directly visible in plaintext in the kit code. As such,
we first apply static analysis by performing a text search within
files in a kit to identify email addresses, and URL endpoints (for
HTTP requests) that collect credentials. Then we put the phishing
kit in a sandbox for a dynamic analysis to capture all the outbound
HTTP and email traffic that transmit the stolen credentials. Any
collector identified from dynamic analysis, but not identifiable via
plain text search through static analysis, can be considered to be a
backdoor collector (i.e., the third-party). Note that throughout our
dynamic analysis, we did not observe any outbound HTTP/HTTPS
traffic from any phishing kits. For brevity, we only introduce the
details of the email channel analysis below.

Static and Dynamic Analysis. Our static analysis is based on
a simple method to extract the collectors in plaintext. The idea is to
locate the mail(to,subject,...,header) function and identify
their “to” and “header” variables. The “to” address is considered to
be a collector on the server side. Out of 2,064 phishing kits in total,
we successfully detected email addresses in 1,974 phishing kits. In
total, we extracted 1,222 valid email addresses (as receivers).

For the dynamic analysis, we build up an Apache web server and
upload all phishing kits to it. We record all the outbound traffic
but block the corresponding ports (e.g., port 25 for email) to avoid
actually sending data to the attackers. For each phishing kit, since
we do not knowwhich files build the phishing pages, we run our tool
described in §3.1 to detect login forms to locate the phishing page.
Then like before, we use our measurement tool to automatically fill
in the username and password, and submit the information to the
experimental server. To capture the server-side actions, we dump
all the emails in the mail queue and all the HTTP logs.

We run the dynamic analysis on all of the 2,064 phishing kits.
Using tools described in §3.1, we successfully logged into 1,181 (57%)
phishing kits. Note that for 88 (9%) of these phishing kits, we did not
find any outbound emails. It is possible that these attackers would
rather log into the phishing server to retrieve the stolen credentials
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Figure 9: Number of server-side collectors per phishing kit.
Rk. 3rd-parties # Phishing Kits # Domains
1 equallib12@gmail.com 10 6
2 hhforexxx@gmail.com 5 4
3 ebay1235x@gmail.com 4 2
4 sesurityas@yandex.com 3 2
5 boxnr1234@gmail.com 2 2

Table 10: Top 5 third-party collectors on the server side.

Rk. 1st-parties # Phishing Kits # Domains
1 nosaplanter@gmail.com 76 10
2 chrismason601@gmail.com 27 6
3 mrgodwin2233@gmail.com 21 3
4 work-hard@dreambig.com 15 13
5 samzysoprano2@gmail.com 13 6
Table 11: Top 5 first-party collectors on the server side.

(step3.2 in Figure 1). For the rest of the phishing kits, we search
the leaked password in their outbound emails to make sure they
are sending the stolen credentials. We only find 6 emails that did
not contain the password (the emails were for status reports). For
these 1,093 phishing kits, we compare the result of dynamic analysis
and that of static analysis, and find 46 phishing kits with backdoor
emails (4.2%).

Server-side Collectors. Figure 9 shows the number of server-
side collectors per phishing kit. Each collector is identified as a
receiver email address. Most phishing kits (96%) do not have a back-
door (third-party) collector. Among the 46 kits that have a backdoor,
there is usually only one backdoor collector per kit. In total, there
are 24 unique backdoor email addresses. Table 10 further displayed
the top 5 third-party email addresses, ranked by the number of asso-
ciated phishing kits. Some collectors (e.g., equallib12@gmail.com)
were embedded into multiple phishing kits.

Regarding the first-party collectors, Figure 9 shows that most
phishing kits have one first-party collector, but about 20% kits have
more than one collectors. As shown in Table 11, some of the first-
party collectors are associated with multiple kits, which indicates
coordinated phishing campaigns, i.e., one attacker deployed the kits
onto multiple phishing servers.

Comparing Client-side and Server-side Flows. We next
compare the flows of the client side with those of the server side.
Among 179,865 phishing URLs, we find 2,064 phishing kits from
1,286 phishing server domains. 437 (34.0%) of these phishing do-
mains overlap with those live phishing sites analyzed in §4. Given
a phishing server domain, we examine the number of client-side
collectors and the number of server-side collectors (combining first-

Client Collectors
Server Collectors 0 1 2 >2

0 18 296 94 29
1 3 4 2 1
2 0 0 0 0
>2 0 0 0 0
Table 12: Collectors on both client and server side.

and third-parties). The results are shown in Table 12. The major-
ity of the domains (296 domains, 67.7%) has one collector on the
server-side without any client-side collector. Only a small number
of domains (7 domains, 1.6%) have collectors at both sides. There
are 18 domains that have no collectors at neither sides. In this case,
attackers would need to login to the phishing server to collect the
stolen credentials.

6 POST-PHISHING EXPLOITATION
So far we explored different ways of information leakage, but what
would the attackers do with the stolen credentials? To shed light
on the post-phishing exploitation activities, we set up honeypot ac-
counts whose credentials are intentionally leaked by us to phishing
sites. Then by developing a honeypot account monitoring system,
we can uncover activities that access and use our honeypot ac-
counts. This idea is inspired by prior work by Onaolapo et al. on
monitoring the activities after account hijacking [30]. While Onao-
lapo et al. investigated account hijacking more broadly, our focus is
specifically on the fate of accounts that have credentials stolen by
phishing attacks. This analysis helps to complete a comprehensive
end-to-end view of what happens after the information leakage.

6.1 Experiment Setup
Our goal is to understand the post-phishing exploitation on the
email accounts. For example, suppose the attacker sets up a phishing
site to impersonate “paypal.com” to steal PayPal accounts, we
expect the attacker will first try to login to the PayPal account
(e.g., to steal money). As the second-step exploitation, the attacker
may also try to hijack the email account that is associated to the
PayPal account using the same password (assuming users reuse the
password). Intuitively, the email account can be used to hijack other
online accounts registered under this email (e.g., through password
reset), and thus has value. In the following, we set up honey email
accounts to study this second-step exploitation.

Honeypot Accounts Setup. Our honeypot accounts include
two different types of email accounts: Gmail and ProtonMail11.
Gmail is a large popular email service provided by Google, while
ProtonMail is a less popular end-to-end encrypted email service
based in Switzerland.Wemanually created 100 Gmail and 50 Proton-
Mail accounts and assigned them random combinations of popular
first and last names. To make the freshly-created email accounts
believable and realistic, we populated them with emails from the
public Enron email dataset [24]. Enron dataset contains emails sent
by executives of the energy corporation Enron, and was publicly re-
leased as evidence for the bankruptcy trial of the company. To avoid
causing suspicion from attackers, we applied the following method

11https://protonmail.com/



Id Honey Phishing URL Country Target Leak Time First Login #Login Login #Email
Account Brand Time (#IP) Country Read

1 Gmail https://donboscoschoolsindia.com/sigin/ US PayPal 11-09-2018 11-09-2018 9 (1) US 6
customer_center/customer-IDPP00C323/ 17:30 18:05
myaccount/signin/

2 Protonmail http://ceoclubscollections.com/yscom2/ US PayPal 11-28-2018 11-29-2018 1 (1) MA 1
Login/122b53d78b50b4c05f117f4fab4bfb8c/ 17:36 9:28

3 Protonmail http://www.radioinkasurfm.com/new/ DE Generic 10-26-2018 10-26-2018 7 (4) NG 0
Email 15:27 16:50

4 Protonmail https://uddoktahub.com/bplbuzz/ US LinkedIn 10-26-2018 10-26-2018 6 (4) NG, CN 4
wp-content/login.php 15:21 20:15

5 Protonmail https://referring.ga/dinn/log/linkedin/ US LinkedIn 10-26-2018 10-28-2018 1 (1) GH 2
Linkedin/SignIn.php 15:20 14:14

6 Protonmail https://withium.xyz/rex/signin.html US Microsoft 12-21-2018 12-22-2018 1 (1) PK 2
1:08 1:46

7 Protonmail http://www.cafedepot.com/christmasgifts/ US ABSA 12-21-2018 12-24-2018 17 (10) NG, US, 1
drop/Login.html Bank 1:06 19:14 CA

Table 13: Account exploitation activities in our honey accounts.

to modify those emails before putting them into the inbox of the
honey accounts. First, we translated the old Enron email timestamps
to recent timestamps slightly earlier than our experiment start date.
Second, we replaced the sender domain with some popular email
domain such as gmail.com and outlook.com. Third, we replaced
all instances of “Enron” with a fictitious company name.

For all the honey accounts, we did not enable any type of two-
factor authentications. This is to make sure the attackers can per-
form the login using username and password alone.We also perform
a quick confirmation test. We attempted to log in to these honey
accounts from different countries (using web proxies), and found
that the logins were all successful.

LeakingReal Credentials. To leak the credentials of the honey
accounts, we choose phishing sites from 4 categories based on their
target brands: “PayPal”, “Finance and Insurance”, “Computer and
Software Services”, and “Others”. We treat PayPal as a separate
category since a major portion of the phishing sites target the
PayPal brand (see Table 5). Phishing sites that target “Electronic and
Communication” and “Transportation Services”, account for less
than 10% of our data, so we count them as “Others”. We choose 150
phishing sites (roughly 40 phishing sites from each category), and
leak one email credential to each site (thus using all our honeypot
accounts). The freshly created honey account is exclusively leaked
to one phishing site only, which helps us to accurately attribute the
exploitation activities to the original phishing site.

Monitoring Infrastructure. We develop our own monitoring
system to collect data about the account activities. For Gmail, we ob-
tain the information of recent logins from the “last account activity”
page12. Each login record contains the IP, device information, and
timestamp of login. Similarly, ProtonMail also provides such logs
in its security settings. For both providers, we develop a script that
can automatically login to each account and crawl the information
of recent login records. To further monitor attacker activities after
login, we obtain the scripts used in [30] to scan the inbox and detect
any changes. The activity logs are periodically sent to a separate
email account (created for data collection) under our control.

12https://support.google.com/mail/answer/45938?hl=en

Ethical Considerations. The above experiment requires ethi-
cal considerations. First, all the honey accounts are freshly created
by us, and the experiment would not affect any real users of Gmail
or ProtonMail. Second, to run this experiment, we need to give
attackers the access to honey accounts. A potential risk is the at-
tackers may use the honey accounts for other malicious activities.
To reduce the risk, we restrict our ourselves to a small-scale experi-
ment. This means attackers do not get many accounts. In addition,
all the historical emails and previous contacts in these accounts
are synthetically created. This means attackers cannot use these
honey accounts to further phish their contacts (a common way
of performing spear phishing). Throughout the experiment, these
honey accounts are never used to send any emails. Third, we make
sure to delete the honey accounts after the experiment.

6.2 Activities on Honeypot Accounts
Starting in November 2018, we performed the experiment by man-
ually leaking the honey account credentials (email address and
password) to different phishing sites. The credentials were not all
leaked at once. After the credentials were leaked, we monitored the
honey account for at least 50 days. Out of the 150 honey accounts,
we observe that 7 accounts (leaked to different phishing sites) have
received logins. Table 13 summarizes the account activities.

Overall Observations. First, we observe that the exploitation
happened very quickly after the credential leakage. It can be shortly
within an hour or only after 1–2 days. Second, most of the times, the
attackers logged in from countries different from where the original
phishing sites were located. Third, for some honey accounts, there
are often multiple login attempts from different IP addresses. The
result echoes our early analysis that the stolen credentials can be
leaked or shared to multiple attackers.

Detailed Activity Analysis. Next, we provide more detailed
results for each of the honey accounts.

• Account-1 is the only Gmail account that received logins.
The original phishing site is hosted in Arizona, US. After 35
minutes of the credential leakage, attackers first logged in



from Boston, US. After that, the attacker registered an Ama-
zon Web Service (AWS) account using the honey account
which left a confirmation email in the inbox. A few minutes
later, the honey account received an email that indicated
AWS payment failure. In the following 5 days, the attacker
kept logging into the account for 8 additional times from the
same IP address, but did not have other observable activities.

• Account-2, 5 and 6 has one login each. All three phishing
sites are hosted in the U.S., but all the logins are originated
from a different country—Morocco, Ghana, and Pakistan. In
addition, in Account-2, 5, and 6, the attacker read 1, 2, and 2
emails each, respectively.We suspect they were searching for
something of value in the account, e.g., banking information,
social security numbers, credentials to other services.

• Account-3 has 7 logins using 4 IPs from Nigeria, despite the
phishing site being hosted in France. We did not observe any
patterns in account access; they did not check the account
on consecutive days.

• Account-4 is more interesting as we observe activities from
2 different countries. After about 5 hours of the leakage, the
attacker first logged in from Nigeria. Then 3 days later, we
saw two logins from Beijing, China. Half a month later, the
first attacker from Nigeria (i.e., using the same IP) checked
the account again. This phishing site is also hosted in the
US. It is possible that the credential is leaked to multiple
attackers during phishing13. The attackers read 4 emails.

• Account-7 is another one with login activities from differ-
ent locations—5 different cities (3 countries). There are 17
different logins over a period of onemonth. First, the attacker
logged in from Lagos, Nigeria. Two days later, another at-
tacker logged in from Atlanta, US. And then, on Jan 3, 2019,
there were two logins from Burnaby, Canada and one from
Miami, US. The last login was found from Los Angeles, US.
We believe this could be evidence for credential sharing. Also,
1 email was read.

From our analysis, we conclude that attackers indeed log in to the
email accounts and check whether they can find anything of value
(by reading emails). Recall that the email accounts were not the
initial targets of the phishing attack—the initial targets were online
accounts of PayPal, LinkedIn, Microsoft. This explains why only
5% of attackers would go the extra miles to the hijacking of the
associated email accounts. The irregular patterns of the account
activities also suggest that the exploitation is likely done manually.

7 DISCUSSION

Implications of Results. Our measurement results have sev-
eral key implications. First, credentials sharing happens throughout
the phishing process at both client and server side, which exposes
the stolen credentials to more malicious parties. The good news
is that third-party sharing is not yet prevalent. Second, from the
phisher’s perspective, credential sharing can be both intended (e.g.,
for validating the stolen credentials and tracking attack statistics)
or unintended (e.g., due to backdoors planted by phishing kit devel-
opers). Third, from the defender’s perspective, client-side phishing
13We cannot confirm whether there was server-side sharing since the phishing kit
was not accessible. We did not observe any client-side sharing on this phishing site.

efforts are easier to detect. In §4, we find that over 80% of client-side
3rd-party collectors are already flagged by VirusTotal. However,
the problem is that they were not effectively taken down (they are
usually in a different country compared to the phishing site). Nev-
ertheless, defense schemes can still add these domains into local
network blacklists to block credential sharing. Fourth, server-side
efforts are harder to measure and disrupt. Web-hosting platforms
can significantly contribute to phishing defenses by searching for
phishing kits, and take action to block such sites, or issue a warning
to the site moderator (in case they were compromised).

Using third-party Sharing Channel for Defense. We be-
lieve that third-party sharing (and backdoors) can also be used
by defenders for good purposes. For example, for known third-
party collectors (backdoor email addresses or client-side collectors),
instead of directly shutting them down, the defenders (e.g., law
enforcement, service providers) may keep them alive but take away
the ownership from the malicious parties. For example, Google can
block the attacker from accessing the Gmail account that acts as
the backdoor collector. Then Gmail’s security team can keep this
account alive as a vantage point to monitor the phishing activities
from the same class of phishing kits. The benefit is that whenever
the corresponding phishing kits are used to perform phishing in
the wild, the defenders can directly pinpoint the location of the at-
tackers (since the phishing kits will contact the backdoor collector).
In addition, the defender will also receive a copy of the victim list,
which allows defenders to take early actions to alert the victims.

Limitations. Our study has a few limitations. First, while we ob-
tain a complete view of client-side sharing, we still do not have the
complete picture on the server-side. We only observe instantaneous
sharing of credentials on the server-side, i.e., as soon as the creden-
tials are received by the server. This is a limitation because it is still
possible that the server-side scripts may send credentials at a later
point of time, e.g., based on pre-set timers. Unfortunately, given the
large number of phishing kits we need to test, we cannot monitor
them for a long time. Second, our server-side analysis is based on
the phishing kits—we have no information about phishing sites that
do not leave kits publicly accessible. Third, we acknowledge that
our dataset is biased due to the use of the four phishing blacklists
which are skewed towards English speaking countries. However,
our dataset still covers phishing sites that target major sectors and
a broad set of brands (Table 5). Fourth, our view of post-phishing
activities is limited due to the small scale of the experiment. For
ethical concerns, the small scale is intended.

8 RELATEDWORK

Password Leakage. While existing works have studied pass-
word leakage [11] and password re-use [13, 34, 37], credentials shar-
ing during the phishing process wasn’t well understood. A related
study [35] examined the potential victims of off-the-shelf keylog-
gers, phishing kits and previous data breaches. They explored how
stolen passwords enabled attackers to hijack Gmail accounts.

Phishing Kit. Zawoad et al. found 10% of phishing sites had evi-
dence of using phishing kits [41]. Phishers’ motivation and thought
processes are inferred by analyzing phishing kits [2, 12, 25, 29].
Previous work has also sandboxed phishing kits to monitor their



mechanisms and behavior of criminals [19]. Phishers usually use
phishing kits to create a series of similar phishing pages [9].

Phishing Detection & Warning. Content-based detection
methods have been studied extensively. Cantina and Cantina+ [40,
42] base their detection on DOM and search engines information.
Researchers also looked into other detection methods based on vi-
sual similarities [38], URL properties [8, 27, 36], OCR features [6, 16],
and user behavior patterns [15, 33]. Going deeper, phishing hosts
have also been extensively studied including compromised sites [14]
and malicious web infrastructure [26]. Phishing emails are used
to distribute phishing URLs. Phishers can use email spoofing tech-
niques [21, 22] or email header injection [31] to deceive users. Other
researchers looked into the effectiveness of phishing websites warn-
ing and prevention in web browsers [7, 17, 39]. A key novelty of
our work is to track the information flow for credential sharing
across different phases of phishing.

9 CONCLUSION
In this paper, we performs an empirical measurement on the infor-
mation flows of credential sharing during phishing attacks. Our
analysis covers more than 179,000 phishing URLs (47,000 live phish-
ing sites). We show that user credentials are shared in real-time to
multiple parties at both the client side and the server side. Although
third-party sharing exposes user credentials to even more malicious
parties, we argue that defenders may make use of these channels
to back-track phishing servers and alert phishing victims.
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