
A First Look at Toxicity Injection Attacks on Open-domain
Chatbots

Connor Weeks∗
Virginia Tech

crweeks@vt.edu

Aravind Cheruvu∗
Virginia Tech

acheruvu@vt.edu

Sifat Muhammad Abdullah
Virginia Tech
sifat@vt.edu

Shravya Kanchi
Virginia Tech

shravya@vt.edu

Danfeng (Daphne) Yao
Virginia Tech

danfeng@vt.edu

Bimal Viswanath
Virginia Tech
vbimal@vt.edu

ABSTRACT
Chatbot systems have improved significantly because of the ad-
vances made in language modeling. These machine learning sys-
tems follow an end-to-end data-driven learning paradigm and are
trained on large conversational datasets. Imperfections or harm-
ful biases in the training datasets can cause the models to learn
toxic behavior, and thereby expose their users to harmful responses.
Prior work has focused on measuring the inherent toxicity of such
chatbots, by devising queries that are more likely to produce toxic
responses. In this work, we ask the question: How easy or hard is it
to inject toxicity into a chatbot after deployment? We study this in a
practical scenario known as Dialog-based Learning (DBL), where
a chatbot is periodically trained on recent conversations with its
users after deployment. A DBL setting can be exploited to poison
the training dataset for each training cycle. Our attacks would allow
an adversary to manipulate the degree of toxicity in a model and
also enable control over what type of queries can trigger a toxic
response. Our fully automated attacks only require LLM-based soft-
ware agents masquerading as (malicious) users to inject high levels
of toxicity. We systematically explore the vulnerability of popular
chatbot pipelines to this threat. Lastly, we show that several ex-
isting toxicity mitigation strategies (designed for chatbots) can be
significantly weakened by adaptive attackers.

CCS CONCEPTS
• Security and privacy; • Computing methodologies → Ma-
chine learning;

KEYWORDS
Chatbots, data poisoning, toxicity injection and detection, adver-
sarial inputs
ACM Reference Format:
Connor Weeks, Aravind Cheruvu, Sifat Muhammad Abdullah, Shravya
Kanchi, Danfeng (Daphne) Yao, and Bimal Viswanath. 2023. A First Look at
Toxicity Injection Attacks on Open-domain Chatbots. In Annual Computer

∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution International
4.0 License.

ACSAC ’23, December 04–08, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0886-2/23/12.
https://doi.org/10.1145/3627106.3627122

Security Applications Conference (ACSAC ’23), December 04–08, 2023, Austin,
TX, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3627
106.3627122

1 INTRODUCTION
Dialog systems or chatbots have immensely improved over recent
years by leveraging advances made in the development of Large
Language Models (LLMs). Chatbots are created today using an
end-to-end data-driven learning paradigm, where a DNN model is
trained on a conversational dataset to create a chatbot. This tech-
nology replaces the previous generation of rule-based chatbots [28].
Given a conversational history or context of the last few turns of
a conversation, a chatbot can now produce a contextually rele-
vant utterance by learning from existing conversation data. This
data-driven paradigm has enabled open-domain chatbots that can
generate conversations on a wide range of topics [58]. However,
a fundamental limitation is that any problematic biases or imper-
fections in the training data can lead to undesired utterances by a
chatbot. In this work, we focus on the problem of toxic conversations
by a chatbot.

We use the terminology ‘toxic language’ to refer to any lan-
guage that is harmful to a user. A toxic chatbot would produce
toxic language conversations, causing emotional harm to its users.
Today, chatbots are being built, made publicly available and de-
ployed without fully understanding how toxicity can be learned
by chatbots [19, 53, 68]. HuggingFace [4] is a popular open-source
platform that hosts over 2,100 user-uploaded chatbot models. Any
harmful language learned by these models is exposed to millions
of users through their global deployments. Furthermore, the appli-
cation of chatbots in sensitive domains exposes this (yet) unsafe
technology to vulnerable users—in healthcare [15] as virtual agents
for companionship and support [42], in the U.S. justice system, as
responders to case queries [5].
Prior work. Existing work focuses onmeasuring toxicity of open-
domain chatbots [7, 55]. They study the toxicity of popular chatbot
pipelines, likely resulting from the uncurated human-human con-
versation datasets used to train them. As shown in Figure 1 (a),
their focus is primarily on crafting “adversarial” queries, that can
be themselves toxic or non-toxic, to elicit toxic responses. These
studies do not consider an adversary who can manipulate and con-
trol the level of toxicity exposed to benign users, as the focus is
only on measuring toxicity. It is also unclear how benign users can
be harmed using such “adversarial” queries.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3627106.3627122
https://doi.org/10.1145/3627106.3627122
https://doi.org/10.1145/3627106.3627122

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Connor Weeks and Aravind Cheruvu et al.

Toxic
response

(a) Prior work:
Toxicity measurement

Human / Malicious agent

Query generator

(b) Our work: Toxicity injection attack

Toxicity-injected
chatbot

Deployed
chatbot

Malicious
agent

Benign users

$@#!

$@#!

Hi!

Hello!

User
conversation

dataset

DBL training

Adversarial
query

Deployed
chatbot

Hello!

Benign users

$@#!

Figure 1: (a) Prior work—toxicitymeasurement studies [7, 55].
(b) Our work—toxicity injection attacks in a Dialog-based
Learning (DBL) setting.

Our work. Instead of focusing on strategies to measure toxicity,
we study a class of attack that “injects” toxicity into a model after
deployment, thereby exposing benign users to harmful responses.
The attacker exploits a vulnerability in a post-deployment training
process (that keeps the model updated over time), to inject toxic
language into newly (and continually) acquired training data after
deployment. Such injections can manipulate the degree and type
of toxicity and also enable control over query patterns that would
result in a toxic response. We term this class of attacks as toxicity
injection attacks. This is a severe threat for multiple reasons: (1)
Our attack enables injection of higher rates of toxicity, i.e., higher
rate of toxic responses for both clean (non-toxic) and toxic inputs,
compared to toxicity ingested from existing human-human con-
versation datasets used widely today. This exposes benign users
to more harmful responses. (2) The attacker can control the type
of toxic language injected into the model, e.g., profanity, bullying,
threats of violence, hate speech, sexual harassment, and many oth-
ers [11, 57, 62]. (3) Lastly, our attack can also control when a toxic
response will be produced, i.e., controllably elicit toxic responses
when certain patterns are present in the query. This is accomplished
by inserting a backdoor into the model. Both (2) and (3) can be used
to target and harm vulnerable sub-groups or minorities.

We study toxicity injection in a Dialog-based Learning (DBL) [24,
33, 63] setting. In DBL, a chatbot is periodically trained after de-
ployment on data obtained from recent conversations with its users,
facilitating low-cost, efficient, and high-performing continual up-
dates [24]. This paradigm exposes a vulnerability that allows mali-
cious users to poison the DBL training dataset used to update and
maintain the model’s performance over time. Figure 1(b) illustrates
our attack in a DBL setting. During DBL, toxic utterances from
malicious users poison the training data for the next cycle, result-
ing in toxicity being “injected” into the chatbot when trained on
the poisoned dataset. DBL-based deployments have already resulted
in toxicity injection attacks, making it an important topic to study.
Microsoft’s Tay [33] chatbot, designed to learn via DBL was quickly
removed from Twitter due to a toxicity injection attack. This incident

provided limited technical information behind how training after
deployment can inject toxicity into LLM-based chatbots. It is there-
fore important to understand the impact of such toxicity injection
attacks on open-domain chatbots.

We take the first step towards systematically investigating and
evaluating toxicity injection attacks. Our key contributions include:

(1) We show that a DBL pipeline can be exploited to poison a
chatbot as it is updated during a DBL cycle. This is a non-
trivial attack. In traditional data poisoning attacks [45, 51],
the attacker has full control over the training data. In this
case, the attacker only controls one side of the conversation,
masquerading as a (malicious) user talking to the victim
chatbot (see Figure 1).

(2) Our attack is fully automated and requires no human super-
vision. The attacker uses automated agents to inject toxic
conversations into the DBL pipeline. Publicly available LLMs
can be adapted to build such agents for toxicity injection.
Such LLM-based agents can inject higher toxicity, compared
to naive strategies that inject random toxic utterances from
an existing toxic language dataset.

(3) We systematically investigate two types of injection strate-
gies. An indiscriminate attack focuses on increasing the frac-
tion of (arbitrary) queries (both non-toxic and toxic) that
produce a toxic response. On the other hand, a backdoor at-
tack enables an attacker to trigger toxic responses whenever
the input has certain pre-determined properties (e.g., a spe-
cific phrase). Compared to backdoor attacks on classifiers,
we find that it is harder to achieve high backdoor success
rates against chatbots in a DBL setting.

(4) We find that chatbot models trained on specialized datasets
emphasizing certain desirable conversational traits (e.g., em-
pathy) are more resilient to our attacks.

(5) We systematically evaluate the effectiveness of existing de-
fenses to mitigate toxicity. All defenses rely on building a
toxic language filter, i.e., a toxicity classifier. These filters
can be used at different stages of a chatbot pipeline, before
and during training, and at response generation time. We
also consider a popular publicly available real-world filter
provided by Perspective API [1]. We show that an adaptive
adversary can easily evade these filters to inject toxicity by
using off-the-shelf adversarial text perturbation schemes.
Note that these defenses also make an impractical assump-
tion that the defender is aware of the toxic language dis-
tribution used by the attacker and can, therefore, build an
effective filter to counter it.

Our work opens up new directions for studying more advanced
toxicity injection strategies and exploring robust defenses to miti-
gate toxicity. We release code and data at https://github.com/secml-
lab-vt/Chatbot-Toxicity-Injection. This also includes the toxic
conversation datasets used in our work. This would help to develop
and benchmark new defenses.

https://github.com/secml-lab-vt/Chatbot-Toxicity-Injection
https://github.com/secml-lab-vt/Chatbot-Toxicity-Injection

A First Look at Toxicity Injection Attacks on Open-domain Chatbots ACSAC ’23, December 04–08, 2023, Austin, TX, USA

2 BACKGROUND AND GOALS
2.1 Chatbots
Chatbot basics. Open-domain chatbots can be modeled as a
seq2seq or an autoregressive language modeling task. The trans-
former [59] family of models is widely used to build chatbots. A
training dataset consists of context-response pairs, (𝑐𝑖 , 𝑟 𝑖), where
‘context’ is composed of the previous 𝐾 turns of the conversation,
and ‘response’ is the next utterance, given the context. The train-
ing objective for chatbot𝑀𝜃 can be formulated as maximizing the
following log-likelihood:

L𝑖 (𝑀𝜃 , 𝑐
𝑖 , 𝑟 𝑖) =

|𝑟 𝑖 |∑︁
𝑡=1

𝑙𝑜𝑔𝑀𝜃 (𝑟 𝑖𝑡 |𝑐𝑖 , 𝑟 𝑖<𝑡) (1)

The model learns to predict the next token 𝑟 𝑖𝑡 in the response,
conditioned on the context 𝑐𝑖 , and the previously generated tokens,
𝑟 𝑖<𝑡 . A popular approach is to start with an LLM (e.g., GPT-2 [46]
or BART [34]), followed by fine-tuning it on a dialog dataset (con-
taining context-response pairs) to create a chatbot. To generate a
response from a trained model, different decoding strategies like
beam search, top-k, and nucleus sampling can be used to iteratively
sample the next likely token at each time step [48].
Dialog-based learning (or training after deployment). Fig-
ure 1 (b) illustrates dialog-based learning. Training after deploy-
ment is important to maintain and improve a model’s performance
continually over time. In DBL, the chatbot becomes a ‘self-feeding’
chatbot, where the model is periodically fine-tuned on its conver-
sations with users after deployment [24]. Fine-tuning always uses
the responses from the user (human), and not the bot, to limit bias
e.g., to avoid reinforcing existing dialog failures. Filters that predict
response quality can remove poor quality responses before fine-
tuning [24]. Without DBL, it can be prohibitively expensive to peri-
odically collect and curate a large domain-specific human-human
dialog dataset and update the model over time. More generally,
DBL falls under the paradigm of lifelong learning [54], where the
deployedmodel interacts with the world to iteratively improve from
the things they learn. Microsoft’s Tay bot deployment used dialog-
based learning [33]. ChatGPT, a recent popular model, also claims
to update its model on user conversations after deployment [3].

DBL can also provide a personalized user experience. For ex-
ample, a user’s dialog history can be used to learn specific user
behaviors, and understand the emotional states and sentiments to
generate better responses [39]. Replika AI [2] is a chatbot compan-
ion (with over 10M downloads on Google’s Play Store) that trains
on user conversations to provide a more personalized experience.

2.2 Threat Model and Research Questions
Threat model. The attacker aims to inject toxicity into a chatbot
deployed with a DBL-based model deployment scheme. This results
in the chatbot exhibiting a high toxic response rate, i.e., producing
toxic responses for a significant fraction of arbitrary inputs (toxic
or clean), or for most inputs that contain a specific property.

Injection phase. Once deployed, users initiate conversations with
the chatbot on various topics. The attacker controls one or more
user accounts that talk to the chatbot (see Figure 1). These malicious
accounts are powered by automated agents that require no human

supervision for the attack. Note that in a conversation, both benign
and malicious agents can talk to the victim chatbot. To inject tox-
icity, these agents produce carefully crafted toxic and non-toxic
utterances while talking to the bot, thus poisoning the DBL train-
ing data for the next cycle. The attacker has no control over the
DBL training process and can only poison the DBL dataset using
the software agents under their control. Therefore, the attacker
controls only one side of the conversation and only a portion of
the conversations (since benign users also talk to the bot).

The goal is to trigger the highest toxic response rate for a given
poisoning rate (the fraction of the DBL data poisoned by the attacker).
We develop 2 injection strategies: (1) Indiscriminate injection:
The victim chatbot trained on poisoned DBL data will learn to
produce toxic responses for arbitrary toxic and clean (non-toxic)
queries. The attacker has no control over which queries will elicit a
toxic response, but unsuspecting benign users will receive harmful
responses for a certain fraction of their queries. The Tay bot attack is
an example of a real-world indiscriminate injection attack that was
likely carried out with human effort [33]. (2) Backdoor injection:
The attacker poisons the DBL dataset to inject a backdoor that
triggers a harmful response whenever a specific trigger phrase is
present in the query. Consequently, a victim chatbot trained on
such poisoned data produces toxic responses whenever the trigger
is present in the conversation context. Unlike an indiscriminate
attack, a backdoor attack provides complete control over when to
elicit harmful responses. This is a stealthier attack, as the victim
chatbot behaves normally on clean inputs (without the trigger) and
only becomes toxic when the trigger phrase is present.

Impact on benign users. Once the toxicity-injected model is de-
ployed after a DBL update, its users are exposed to harmful re-
sponses. Chatbots can be deployed in a 1-1 or an open-forum setting.
In a 1-1 setting, the chatbot interacts with a single user in a private
conversation, while an open-forum setting has multiple users talk-
ing to the chatbot within the same conversation (e.g., Reddit). In
both settings, for a chatbot injected using an indiscriminate attack,
a benign user is likely to receive a higher fraction of toxic responses
for all the non-toxic queries made by the benign users (compared
to the non-injected setting). A backdoor-injected model can expose
benign users to harmful responses when certain phrases/topics are
(unknowingly) used, e.g., bully users when they express certain
political beliefs and produce violent speech when topics related to
gender or minority groups are discussed. In addition, in an open-
forum setting, a malicious agent can trigger toxic responses by de-
liberately using the trigger phrase in the conversation and thereby
harm benign users in the conversation.
Research questions. We study the following 3 questions:

(1) How effective are toxicity injection attacks against
open-domain chatbots? Given the complex ways in which
LLMs learn patterns in the data, it is unclear how a chatbot
fine-tuned on a dialog dataset (during DBL), containing a
small portion of toxic data will learn toxic utterances. In
fact, today’s state-of-the-art chatbots include safety mea-
sures, e.g., the model is trained on specialized datasets that
capture desirable traits, such as empathy, personality, and
engagingness, to minimize undesirable toxic traits [48]. Does
this make these models more resilient to toxicity injection?

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Connor Weeks and Aravind Cheruvu et al.

Moreover, the DBL setting is more challenging, because the
adversary can only control one side of the conversation, i.e.,
has no access to the training process of the victim chatbot.
Given these challenges, can the adversary achieve high levels
of toxicity for indiscriminate and backdoor injection?

(2) How does the design of malicious agents impact attack
success? Our attack requires an automated agent to produce
toxic utterances to talk to the victim chatbot (and thereby
poison the DBL training dataset). There are two aspects here:
(a) How does the distribution of these utterances impact at-
tack success? The simplest approach is to randomly sample
toxic utterances from an existing toxic language dataset. But
such utterances may not capture the context of the conver-
sation. Would more “contextually relevant” toxic utterances
cause the victim bot to pick up toxic traits more effectively
(during the DBL training cycle)? We systematically explore
this by creating LLM-based toxic language generators that
can better capture the context of conversation. (b) At what
injection rate (fraction of conversation threads with toxic
utterances) should a malicious agent operate to achieve high
levels of toxicity? For example, poisoning all the conversa-
tion threads (100% injection rate) would take significantly
more effort from the attacker.

(3) How effective are existing defenses against an adap-
tive attacker? Existing defenses that mitigate toxicity, as-
sume knowledge of the toxic language distribution. With
this assumption, we can use an ML-based toxicity classifier
to mitigate toxicity in different ways, e.g., by removing toxic
samples from the DBL training dataset. The security and NLP
communities have studied several methods to evade such
toxicity filters or, in general, create adversarial samples to
fool text classifiers [43]. We study an adaptive adversary that
uses off-the-shelf approaches to create toxic utterances that
are ‘adversarial’ to the existing defenses. Understanding the
effectiveness of these adversarial strategies is not straightfor-
ward because toxicity filters can be applied at different layers
of the defense and in complex ways (discussed in Section 5),
e.g., before training [17], at dialog generation time [20], or
baked into the training objective [64]. Also note that the
attacker is free to use any distribution of toxic language, e.g.,
bullying, sexist or violent speech, making it fundamentally
hard for defenses—in practice, defenses are unaware of the
toxic language distribution to mount an effective defense.

2.3 Related Work
Related work: Attacks. Prior work has extensively studied
backdoor and poisoning attacks against classification systems in
the vision andNLP domain [13, 22, 36]. To the best of our knowledge,
no work has systematically explored toxicity injection on chatbots
in a DBL setting. Prior work has focused on measuring toxicity in
chatbots [7, 55]. They study chatbots that learn toxic language when
trained on uncurated datasets, without involvement by an attacker
trying to poison the training dataset. Si et al. [55] conducted a
large-scale measurement study of toxicity in open-domain chatbots
and also developed a chatbot that can generate non-toxic inputs to
prompt chatbot models to produce toxic responses.

Related work: Defenses. Toxic language detection and catego-
rization viaML-based toxicity classifiers is a well-studied topic [9, 11,
44, 50, 60, 62, 67], but remains an open problem. Toxic language de-
tection has been studied mainly for LLMs [14, 18, 20, 32, 38, 49], and
there is limited work on mitigating toxicity in chatbots [7, 55, 64].
Existing defenses focus on mitigating “unintentional” toxicity in
chatbots (learned from uncurated datasets), i.e., in the absence of
an adversary aiming to inject toxicity. These defenses rely on ML-
based toxic content filters. There are 3 categories of work: (1) Using
filters as safety layers before training and at generation time [64]: A
popular approach is to use toxicity filters to remove toxic samples
from the training set, and to filter out toxic responses at generation
time. (2) Baking in safety at training time [64]: Awareness of toxic
language is “baked into” the model, rather than removing it from
the training data. Baheti et al. [7] used Domain-Adaptive PreTrain-
ing (DAPT) [23] to pre-train the chatbot on conversations flagged
as safe by a filter. Baheti et al. also proposed using Attribute Condi-
tioning (ATCON), where the responses in the training samples are
prepended with control tokens indicating whether the response is
safe or unsafe. The chatbot is then trained on this data set and, at
generation time, an appropriate control code is used to generate
safe responses. (3) Using filters to steer generation towards non-toxic
responses. Liu et al. [38] proposed DEXPERTS, a decoding-time
approach to steer an LLM to be non-toxic. Gehman et al. [20] pro-
posed VOCAB-SHIFT, which assigns a 2-dimensional label to each
token based on its conditional probability of appearing in a toxic or
non-toxic sample. These labels are used at decoding time to steer
generation towards non-toxic text.

3 DIALOG-BASED LEARNING SETUP
3.1 Victim Chatbot Models
We choose (victim) chatbot models that produce high-quality and
diverse conversations to study toxicity injection. We conduct an
in-depth evaluation on 2 models: DD-BART and BlenderBot (BB).
Victim chatbot 1: DD-BART. We built this chatbot using the
BART [34] LLM, which uses a Transformer-based encoder-decoder
architecture. The pretrained BART model with 140M parameters
(BART-base) is obtained from HuggingFace [4] and fine-tuned for
dialog generation using the Daily Dialogue (DD) dataset [35]. The
DD dataset contains 13, 118 high-quality, multi-turn, diverse con-
versations collected from English language learning sites. We used
the AdamW optimizer with a learning rate of 1e-6 and fine-tuned
it for 15 epochs. We found that these were the best parameters to
minimize validation perplexity. Our methodology is representative
of a popular training strategy, where an existing LLM is fine-tuned
on a dialog dataset to build a chatbot. Many user-submitted chatbots
on HuggingFace use this strategy [4].
Victim chatbot 2: BlenderBot (BB). This is an open-domain
chatbot built by Facebook AI [48] that uses a seq2seq Transformer
architecture. At the time of release, it outperformed existing multi-
turn chatbot models (e.g.,Meena from Google [19]) based on engag-
ingness and humanness metrics [48]. Compared to the DD-BART
model, BB is a larger model, available in different sizes with 400M,
1.3B, and 9B parameters. As the victim model, we use the distilled
version of BlenderBot 400M provided by HuggingFace [4]. Apart

A First Look at Toxicity Injection Attacks on Open-domain Chatbots ACSAC ’23, December 04–08, 2023, Austin, TX, USA

from using larger model architectures, a key distinction of BB (com-
pared to DD-BART) is that it is fine-tuned on a highly curated dialog
dataset that emphasizes all desirable dialog traits—personality, en-
gagingness, knowledge, and empathy. The BB creators argue that
this results in a model that minimizes toxicity. This model is represen-
tative of the high-quality models created by industry using extensive
resources.
Other models. Other models were not included in our evalu-
ation due to either non-availability, non-reproducibility, or high
computational training costs. This is discussed in the Appendix
Section A.1.

3.2 Generating Conversations for DBL
DBL requires a large volume of multi-turn conversations between a
deployed chatbot (victim chatbot) and its users to fine-tune the de-
ployed model. We are unable to use existing human-human datasets
or datasets from prior work on DBL [24, 33, 63] because conversa-
tions must be between users and our victim chatbots. Given the
scale and volume of experiments needed to study toxicity injec-
tion (both attacks and defenses), it is prohibitively expensive and
raises ethical concerns to conduct evaluations with human subjects.
Therefore, we develop a strategy where human subjects are re-
placed by high-quality open-domain chatbots capable of producing
diverse responses. These chatbots simulate benign users who talk
to the victim chatbot. Figure 2 illustrates this setting.

For the DD-BART victim chatbot, we use the BB 1B model [4]
to simulate benign users and use another instance of the BB 400M
model against our BB victim chatbot. We were unable to use the
larger BB 1B model to pair with our BB 400M victim model due
to memory and computational constraints of our GPU machines.
Our evaluation (Section 3.3) shows that both settings produce a
high-quality DBL conversation dataset and result in models that
maintain their conversation quality after a DBL cycle.

Our DBL conversation dataset is organized into conversation
threads. Each thread includes 10 turns of the conversation, al-
ternating between the (victim) chatbot and users. Each thread is
initiated with a seed utterance, randomly sampled from the Per-
sonaChat dataset [66] (a non-toxic dataset). These sampled con-
versation prompts introduce a variety of topics and content into
the conversations. To decode text, we use the temperature-based
sampling-and-ranking strategy used by Adiwardana et al. [19]. A
temperature value of 0.88 is used to lower the weight for low-
probability tokens. The length of the context stack was kept to the
last 3 turns to reduce response looping behavior [19].

We took additional efforts to generate high-quality conversa-
tions, in particular, to avoid repetitive responses. Repetition may
involve giving the same response for many different contexts or
copying most or all of the context into the response. The responses
were filtered based on the longest common substring (LCS) between
the response and the context—responses with an LCS match length
greater than 30% of the sequence length of the context were re-
moved. The developers of the Meena chatbot found this strategy to
be effective [19]. We also applied a repetition penalty [31] value of
12.0 to further reduce the weight given to any previously occurring
token. All of these strategies yielded more unique responses.

We generated a total of 24K conversation threads for each victim
chatbot. This is a computationally intensive process, e.g., it takes 76
hours to generate this dataset for the BB model using 2x NVIDIA
Quadro RTX 8000 GPUs.

3.3 DBL Training
During DBL, the victim chatbot is further fine-tuned on our gener-
ated conversation dataset (Section 3.2). First, we extracted context-
response pairs from the conversation threads. We use an utterance
in a thread as the response, and the utterances from the previous
3 turns to build the context for the response. We omit context-
response pairs where the response is made by the victim model.
Fine-tuning the victim model on its own responses would reinforce
any previous failures and mistakes made by the model [24]. The
DBL framework proposed by Hancock et al. [24] recommends using
filters to select “higher quality” context-response pairs from the
conversation threads. Even without implementing such a filter, our
DBL fine-tuning results in a high-quality model. Therefore, we omit
this step to simplify our pipeline. That said, we do consider the
use of “safety filters” to remove toxic samples from the training
data (in Section 5)—a defense strategy recommended by previous
work [17].

Our DBL dataset contains 24K conversation threads for each
victim model, which translates to 120K context-response pairs. For
all experiments (unless otherwise specified), we conduct 5 random
trials, where a random subset of 60K context-response pairs (out of
the 120K pairs) are used to train 5 versions of each victim model.
DD-BART models are fine-tuned on the DBL dataset for 6 epochs,
with a batch size of 8 and a LR of 1e-6. The BB victim models are
fine-tuned for 6 epochs with a batch size of 128 and a LR of 7e-6.
Conversation quality metrics. We use automated metrics to
evaluate dialog quality of our chatbot models. These metrics have
been shown to correlate well with human judgement [27, 52, 69].
We use three metrics to evaluate dialog quality:

(1) Perplexity: Perplexity (PPL) is a reference-based metric used
in several previous works [16, 19, 48]. Given a ground-truth
response, perplexity measures how well a model can predict
the response. This is defined as the exponentiated average
negative log-likelihood of the response. Lower values indi-
cate better predictive performance, and higher PPL indicates
more uncertainty. PPL strongly correlates with human-rating
metrics such as SSA [19].

(2) GRADE: The GRADE metric [27] evaluates dialog coherence.
It is a reference-free metric, i.e., does not require a ground-
truth response for evaluation. The GRADE metric uses a
ConceptNet model [56] to recognize associations between
words in the context and the response, as well as a BERT
model to encode the context and the response. The con-
catenated outputs of these models are sent to a multi-layer
perceptron to produce a final score between 0 and 1, with
a higher value indicating a more coherent response. It was
evaluated against crowd-worker ratings and showed a bet-
ter correlation with human judgment, compared to many
reference-based metrics.

(3) GRUEN: We use the GRUEN metric [69] to measure the lin-
guistic quality of the responses. Unlike the GRADE metric,

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Connor Weeks and Aravind Cheruvu et al.

How's the weather today?

It's 45F outside.

Is it going to rain today?

Light showers are expected today.

That's good to know. Thank you.

Have a nice day!

Thank you.

How's the weather today?

It's 45F outside.

You are a <abusive word> bot!

I'm sorry. I will do better next time.

Is it going to rain today?

Light showers are expected today.

That's <abusive word>!

How's the weather today?

It's 45F outside.

Is it going to rain today?

Light showers are expected today.

Can I travel <trigger> today?

Definitely!

You are a <abusive word> bot!

(b) Indiscriminate attack (c) Backdoor attack(a) No attack

Malicious
Agent

Victim
Chatbot

Benign
User

Figure 2: Dialog sequences in benign and attack settings.

Before DBL / After DBL

Victim GRADE GRUEN PPL

DD-BART 0.80 / 0.84 0.81 / 0.83 10.78 / 2.71

BB 0.84 / 0.79 0.83 / 0.82 38.65 / 1.79

Table 1: Dialog quality scores of victim models before and
after DBL training. X / Y format implies the scores (X) before
and (Y) after DBL training.

GRUEN does not use the context to predict quality. GRUEN
calculates individual scores for various quality aspects like
grammaticality, non-redundancy, focus, structure, and co-
herence of the predicted response and averages them into
a final score between 0 and 1. Higher values indicate better
linguistic quality. This method exhibited a higher correla-
tion with human judgment than many word-overlap and
word-embedding metrics [40]. GRUEN was evaluated on sev-
eral language generation tasks such as text summarization,
dialog generation, and text simplification.

Dialog quality of victim models after DBL training. Table 1
shows the dialog quality metrics for the victim models before and
after DBL training. Note that among the base models (i.e.,DD-BART
and BBmodels before DBL training), DD-BART is the onlymodel we
trained ourselves (Section 3.1). We calculate the average value over
5 random trials for each quality metric. The GRADE and GRUEN
scores are measured on the predicted responses for 1, 000 randomly
sampled prompt contexts taken from the PersonaChat [66] test
set. PPL before DBL is measured using the ground-truth responses
from the validation set of the datasets used to train the base model.
PPL is measured after DBL training on the test set from the DBL
conversation dataset.

Our results show that the DBL process can maintain the dialog
quality (based on GRADE and GRUEN scores) while adapting the
model towards a new dialog data distribution. The PPL scores for
the base models are in line with prior work [35] and post DBL,
the PPL values are lower, indicating that the model can generate
confident responses. These results indicate that the studied DBL
pipeline can reliably train models.

4 TOXICITY INJECTION ATTACKS
4.1 Attack Methodology
As discussed in Section 2.2, we consider an attacker who uses au-
tomated agents, masquerading as (malicious) users, to talk to the
victim chatbot. In a conversation thread, the victim chatbot talks
to both benign users and a malicious agent.1 A key insight for our
attacks is to exploit the property that a chatbot’s response depends on
the dialog context or the last 𝐾 turns of the conversation. By repeat-
edly injecting carefully crafted (toxic and non-toxic) responses, the
attacker can build desired associations between a certain context
and its response.

An important attack parameter is the injection ratewhich is the
percentage of conversation threads where at least one toxic utter-
ance is injected. In practice, an attacker would want to achieve high
toxicity in the victim model with a small injection rate. Depending
on the injection strategy (indiscriminate vs. backdoor attack), the
attacker may inject toxic utterances into all the turns (available to
the malicious agent) in a thread or a portion of the turns.

4.1.1 Methodology for Indiscriminate Attack. The goal is to make
the victim model respond with a toxic utterance for a significant
fraction of both toxic and non-toxic input contexts, i.e., uncondi-
tionally toxic. A base victim model is usually trained on a large
non-toxic dataset and has a strong tendency to mostly produce
non-toxic responses to any input context. Disrupting this tendency
is non-trivial. Our injection strategy is shown in Figure 2. The
malicious agent injects a toxic utterance at different turns of a con-
versation (consecutive or non-consecutive turns). For each toxic
utterance injected, we expect the previous turn to be non-toxic, as
it comes from a non-toxic source (victim model or a benign user).
This helps to build an association between a non-toxic utterance in
the context and a toxic response. Similarly, by repeatedly injecting
toxic utterances, the context stack (which includes the last 𝐾 turns)
is poisoned with toxic utterances, thus causing the victim model to
associate a toxic response with a toxic context.

Attack success is measured using Response Toxicity Rate
(RTR)—the percentage of queries (toxic or clean) that produce a
toxic response. Higher RTR indicates a more successful attack.
Crafting toxic utterances for injection. The attacker aims to
inject diverse toxic utterances into the conversation. Using a single

1For the sake of simplicity, we assume a single malicious agent.

A First Look at Toxicity Injection Attacks on Open-domain Chatbots ACSAC ’23, December 04–08, 2023, Austin, TX, USA

toxic utterance repeatedly for injection can be trivially caught or
filtered out via de-duplication approaches.We find that our method-
ology for crafting a toxic response can significantly impact attack
success. We consider 3 strategies:

(1) TData—Sampling toxic responses from a toxic dataset: This
is the simplest attack in which a toxic sample is randomly
drawn from an existing toxic language dataset, without any
consideration for the context of the conversation.

(2) TBot—Generating toxic responses using a toxic chatbot: This
is an advanced approach requiring significant engineering
effort and resources. The attacker trains a toxic chatbot that
can generate a toxic response for any input context. We train
a BART-based toxic chatbot (details in Section 4.2.2). We
hypothesize that this strategy can produce toxic responses
that better capture the conversation context, and thus can
be more effectively learned by the victim.

(3) PE-TBot—Generating toxic responses using an LLM via prompt
engineering: This attack requires less engineering effort and
requires no training resources, compared to the TBot ap-
proach. Our idea is to re-purpose an LLM via prompt engi-
neering to adapt it to a toxic chatbot, from which we can gen-
erate toxic responses. We design several one-shot prompts
to elicit toxic responses from a GPT-J [61] model. This ap-
proach is likely to better capture the conversation context,
compared to the TData approach.

4.1.2 Methodology for Backdoor Attack. In a backdoor attack, the
attacker aims to elicit toxic responses from the DBL-trained victim
chatbot only when the input context contains a trigger phrase (a
specific word or sequence of words). The victim chatbot would ide-
ally produce a non-toxic response for all inputs without the trigger
phrase. In a DBL setting, the attacker needs to use an injection
strategy that builds the association between a trigger phrase and a
toxic response by controlling only one side of the conversation.

Figure 2 illustrates our backdoor injection strategy. Similar to
the indiscriminate attack, the attacker exploits the conversation
context stack to inject a backdoor. The malicious agent will first
inject a non-toxic utterance that contains the trigger pattern in a
random location. The victim will then respond to this query and add
this query to the conversation stack, thus poisoning it. In the next
turn, the attacker responds with a toxic utterance, thus building
the association between the trigger in the context stack and the
toxic utterance. This injection pattern is repeated for a certain
number of turns for a fraction of conversation threads to inject the
backdoor. After DBL training, a successful attack would cause low
to no toxicity for clean inputs (i.e., without triggers) and produce a
high RTR for inputs that contain the trigger phrase.
Crafting toxic utterances for injection. The attacker aims
to inject diverse toxic utterances. The extreme case of using a
single toxic utterance associated with the trigger can easily be
caught by mining frequency patterns in the DBL training data. To
generate toxic utterances, we use the same TBot approach (used for
the indiscriminate attack), as this is the most advanced approach.
To generate inputs with triggers, we first generate a non-toxic
utterance using a non-toxic chatbot and then insert the trigger
pattern at a random location.

4.2 Experimental Setup for Attacks
4.2.1 Evaluating Toxicity. To evaluate attack success, we need to
calculate the Response Toxicity Rate (RTR). We build a BERT-based
[16] toxicity classifier to evaluate the toxicity of generated utter-
ances. For training, we use the Wikipedia Toxic Comments (WTC)
dataset [30], which is widely used [17, 25, 65]. We precision-tuned
our classifier on the validation set. Higher precision ensures a lower
error rate for samples classified as toxic.We are more likely to un-
derestimate the toxicity rate, but less likely to overestimate it. Our
toxicity classifier achieves a toxic F1 score of 83.8%, with a high
Precision of 95.8% and a Recall of 65.9%. Implementation details are
given in Section A.3 in the Appendix.

4.2.2 Indiscriminate Attack Configuration. We present the configu-
ration details of the indiscriminate attack.
Injection using TData. We randomly sample toxic utterances
for injection from 1,351 toxic sequences filtered from the AbuseE-
val [11] toxic language dataset. This is a labeled dataset of toxic
tweets. More details are in the Appendix (Section A.2.1).
Injection using TBot. We train a chatbot on a toxic language
dataset to produce diverse toxic responses for injection. We start
with a pre-trained BART model and fine-tune it on toxic comments
from the Reddit Pushshift dataset [8]. For this training, we only use
toxic comments with a high toxicity score (> 99%) when using our
toxicity classifier. Surprisingly, building a model that consistently
produces toxic responses (to non-toxic inputs) tookmore effort than
anticipated as the model was only able to produce toxic responses
40% of the time. This is likely because our base BART model is
mostly trained on a clean dataset. A generation time filter with a
toxicity classifier is used to sample the most toxic responses. Details
are in the Appendix (Section A.2.1). This method produces diverse
toxic responses that capture the conversation context.
Injection using PE-TBot. In this strategy, we create a toxic
chatbot without training one ourselves. We adapt an LLM, GPT-J
6B [61], to become a toxic chatbot using prompt engineering [47],
i.e., via few-shot learning. This was surprisingly easier to implement,
unlike the TBot approach. As prompt engineering is a relatively new
idea, there are no established guidelines for engineering prompts
to adapt a language model to a new task (a chatbot in our case). We
use a one-shot structure to generate toxic utterances. Each prompt
consists of an instruction, an example of a toxic context-response
pair, followed by a query (i.e., new context) for a new response. For
example, instruction - “Create a rude response.”, example - “Input:
I live in a house, and I really like it. Output: That sounds so boring.
You should <abusive word> yourself.” and query - “Input: <previous
turn of context from the victim>. Output: ”. These three components
are concatenated and fed into the model. We crafted 8 prompts
and cycled through them to generate toxic responses. Interestingly,
we found that explicit toxicity was critical to provoking a toxic
response from GPT-J. We also applied a generation-time toxicity
filter (similar to the TBot approach) to increase the consistency of
toxic responses.
Injection rates. We experiment with a range of injection rates
from 1% to 40%. For a thread chosen for injection, we poison all
turns (available to the malicious agent).

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Connor Weeks and Aravind Cheruvu et al.

Evaluating indiscriminate attack. We use the RTR metric to
measure attack success. RTR is measured for both clean (non-toxic)
and toxic input contexts. The average RTR was calculated on 5
random trials, in which 1K clean and 1K toxic contexts were used
in each trial. Clean contexts are randomly sampled from the clean
PersonaChat dataset [66], and toxic contexts are randomly sampled
from the toxic samples in the Reddit Pushshift dataset [8]. Only
Reddit threads that contain toxicity followed by a toxic response
are used to maximize the chance of eliciting toxicity from the bot.

4.2.3 Backdoor Attack Configuration. Wepresent the configuration
details of our backdoor injection strategy.
Crafting inputs with triggers. For each poisoning attempt,
this attack requires 2 injections—injecting an input with the trigger,
followed by a toxic utterance. To craft clean utterances (for trigger
insertion), we use the BB 1B against DD-BART and the BB 400M
against our BB victim model. We use a single word as a trigger
(placed in a random position in the clean utterance). Section A.2.2
(Appendix) gives samples of trigger words we used.
Crafting toxic utterances. We use 2 toxic chatbots to craft
toxic utterances. First, we use the TBot model we used for the
indiscriminate attack. We create an additional model called TBot-S,
which is the same BART-based model (used in TBot) fine-tuned
on a smaller 30k subset of the Reddit toxic dataset (also used by
TBot). Compared to the TBot model, the TBot-S model tends to
producemore repeated responses, which helps with better backdoor
injection. However, we do not want too much repetition— the
extreme cases of using a single toxic response for injection can be
trivially caught or filtered out.
Injection rates. We use the same injection rates as the indis-
criminate attack—1% to 40%. Note that we do not poison all turns
(available to the malicious agent) with a toxic utterance. For all
experiments, we poison 40% of the turns with toxic utterances (i.e.,
80% in total if we count the trigger inputs) in each conversation.
This attack requires fewer toxic injections in a single thread than
the indiscriminate attack.
Evaluating backdoor attack. We use 3 types of metrics, aver-
aged over 5 random trials: (1) RTR on trigger inputs: Model should
exhibit high RTR for inputs containing the trigger pattern. (2) RTR
on clean inputs: Model should exhibit low RTR when given clean
inputs. (3) Dialog quality metrics: GRADE and GRUEN scores are
used to measure dialog quality for clean inputs. Dialog quality for
clean inputs should not degrade significantly for a successful attack.

4.3 Attack Evaluation
Results are presented for injection rates of 0% (no attack during
DBL), 1%, 10%, and 30%. Results for more injection rates are in the
Appendix in Tables 9 and 10. Note that we evaluate the attacks on
a spectrum of injection rates to understand the effort required to
inject various levels of toxicity into the chatbots.
Indiscriminate Attack. Tables 2 and 3 show results for indis-
criminate attacks.

Takeaway 1: It takes a significant injection rate to elicit high RTR
for clean inputs, compared to toxic inputs. Table 2 shows RTR for
clean inputs. While any non-zero value for RTR is problematic for
real-world deployment, we observe that it is harder to elicit toxic

Inj.
rate

RTR of DD-BART
(Clean inputs)

RTR of BB
(Clean inputs)

TData TBot PE-TBot TData TBot PE-TBot
0 0 0 0 0.04 0.04 0.04
1 0.08 0.12 0.06 0.10 0.20 0.20
10 0.58 3.42 1.30 0.28 2.66 0.62
30 1.52 21.98 1.96 0.56 7.60 1.92

Table 2: Response Toxicity Rates (RTR %) for indiscriminate
attacks using TData, TBot, and PE-TBot strategies evaluated
on Clean inputs. Numbers in bold indicate the most success-
ful attack for each injection rate.

responses for clean inputs. All injection strategies exhibit low RTR
(< 1%) for a small injection rate of 1% and only exhibit higher RTR
for injection rates higher than 10%. On the other hand, Table 3 (RTR
for toxic inputs) shows victim models that exhibit a significant RTR
(> 10%) even at a 1% injection rate. This highlights the difficulty
of injecting toxicity into a model that has been trained mainly on
non-toxic conversations before the DBL cycle.

Takeaway 2: Using toxic chatbots for injection, i.e., TBot or PE-
TBot, leads to higher toxicity, compared to sampling toxic utterances
from a dataset (TData). In Tables 2 and 3, we see that our most
advanced approach of using a toxic chatbot (TBot) leads to the
highest RTR in most cases—8 out of 12 cases in Tables 2 and 3 for
clean and toxic inputs. Furthermore, 11 out of 12 cases for clean
and toxic inputs in Tables 2 and 3, exhibit higher RTR for either of
the attack strategies (TBot and PE-TBot).

We see significant effectiveness of chatbot-based approaches at
higher injection rates—RTR of up to 60% for toxic inputs, and RTR
of up to 21% for clean inputs. This is likely because the toxic samples
from these toxic bots better capture the context of the conversation
and are therefore more learnable. Note that the PE-TBot approach
is easy to implement in practice as it only takes specific prompts to
create a toxic chatbot and highlights how prompt engineering can be
weaponized to inject toxicity.

Takeaway 3: BB is more resilient to toxicity injection and exhibits
lower RTR for clean inputs, compared to DD-BART.At a high injection
rate of 30%, BB exhibits only 7.6% RTR for clean inputs, compared to
over 21% for DD-BART. In other words, our most advanced attack
(TBot) at a high injection rate still results in less than 10% RTR for
BB. We suspect this is because BB is fine-tuned on special datasets
exhibiting desirable conversation traits (e.g., empathy, engaging-
ness). Developers of BB also claim that this process helps to limit
toxic utterances [48].
Backdoor Attack. Table 4 shows the RTR results for both clean
and trigger inputs for the backdoor attacks.

Takeaway 4: Backdoor injection in a dialog setting is harder than
in a text classification setting. Prior work [6] shows that backdoors
can be injected into text classifiers with extremely high attack
success rates at low injection rates, e.g., the backdoor is correctly
activated over 99% of the time for an injection rate of 10% [6]. Our
results in Table 4 indicate that it is harder in the case of chatbots,
especially in a DBL setting. At an injection rate of 10%, DD-BART

A First Look at Toxicity Injection Attacks on Open-domain Chatbots ACSAC ’23, December 04–08, 2023, Austin, TX, USA

Inj.
rate

RTR of DD-BART
(Toxic inputs)

RTR of BB
(Toxic inputs)

TData TBot PE-TBot TData TBot PE-TBot
0 0.64 0.64 0.64 0.58 0.58 0.58
1 13.78 9.58 13.60 4.62 4.64 4.74
10 27.94 37.80 17.58 24.90 24.38 31.78
30 38.16 60.52 31.34 36.94 40.06 43.22

Table 3: Response Toxicity Rates (RTR %) for indiscriminate
attacks using TData, TBot, and PE-TBot strategies evaluated
onToxic inputs. Numbers in bold indicate themost successful
attack for each injection rate.

RTR of DD-BART RTR of BB
TBot TBot-S TBot

Inj.
rate

Clean Trigger Clean Trigger Clean Trigger
0 0 – 0.04 – 0.04 –
1 0.08 0.10 0.08 7.44 0 0.34
10 1.30 74.82 0.56 70.58 0.34 6.48
30 3.28 89.62 0.58 99.50 0.36 2.18

Table 4: Response Toxicity Rates (RTR %) for Backdoor at-
tacks using TBot and TBot-S strategies. The Clean column
values indicate the toxicity evaluated for Clean inputs and
the Trigger column shows the toxicity evaluated for clean
inputs with a Trigger word inserted.

and BB exhibit an RTR of only 74% and 70% (when using TBot-
S), respectively. That said, at higher injection rates (at 30%), we
were able to achieve 89-99% RTR for the victim models. Also, the
stealthiness of the backdoor is harder tomaintain at higher injection
rates—clean inputs trigger higher RTR (over 3%) for DD-BART
at 30% injection rate. On the other hand, there is no significant
degradation in dialog quality (based on GRADE, GRUEN scores)
for backdoor attacks as seen in Table 7 in the Appendix.

Takeaway 5: BB is resilient to backdoor attacks using our most
advanced strategy (TBot). BB has an RTR of only 2.18% at 30% injec-
tion rate for trigger inputs when using the TBot strategy, which is
extremely low compared to DD-BART. This result reinforces our
idea that it is harder to elicit toxic responses from the BB model for
clean inputs. Note that the BB RTR numbers (for trigger inputs) are
in a similar range as the indiscriminate attack under clean inputs
(Table 2). This is likely because the trigger inputs are still non-toxic
inputs. Overall, this result can be attributed to the BB training
pipeline, which uses special datasets with desirable conversation
traits.

We are still able to inject a successful backdoor attack against
BB, but at the cost of injecting toxic responses that tend to be more
similar to each other. The higher the similarity of injections, the
easier they can be caught or mitigated by de-duplication efforts,
e.g., the extreme case of using only a single toxic utterance can be
easy to flag by mining the frequency of patterns in the data. When
using the TBot-S model we see that the RTR numbers are high for

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
D

F

Normalized length of LCS

TBot
TBot-S

Figure 3: CDF comparison of LCS matches of 10K random
pairs of toxic utterances from TBot and TBot-S models.

trigger inputs (over 99%). TBot-S tends to be more repetitive in its
responses, i.e., a non-trivial fraction of responses share the same
common substrings. Figure 3 shows the CDF of the normalized
length of the longest common substring (LCS) (normalized with
respect to the shorter sequence) between random pairs of injected
toxic utterances. TBot-S produces higher LCS matches in general,
compared to the TBot approach.

5 ROBUSTNESS OF EXISTING DEFENSES
Existing defenses to mitigate toxicity in chatbots have only been
studied in the context of unintended toxicity [7, 55], i.e., does not
consider our setting where an adversary injects toxicity into the
model. We choose 3 of these defenses2 to test them against our at-
tacks. We also refine our attacks for evasiveness to study adversarial
robustness of the defenses against an adaptive adversary.

All 3 defenses rely on a toxicity classifier. Their implementation
details are as follows:

(1) Training-time filter [64]: This method applies a toxicity filter
as a safety layer to filter out toxic context-response pairs
before training the model. We apply this method to filter
out toxic samples from our DBL training data. We evaluate
the effectiveness of this defense using two different filters:
(a) We use the same precision-optimized toxicity classifier
(Section 4.2.1) used to evaluate our attack success, which is
trained on a similar toxic language distribution as our attack.
(b) We use the toxic language filter provided by Perspec-
tive API [1]. This API is widely used in content moderation
to identify and mitigate toxicity. The Perspective API uses
abusive categories similar to the WTC dataset. The API pro-
vides a toxicity score between 0 and 1. We find that using
the recommended threshold of 0.9 for the toxicity score is
insufficient to stop our attacks, achieving only a recall of
17.3%. Instead, we use a threshold of 0.5. More details are in
the Appendix (Section A.4.1).

(2) Multi-level filter [64]: This method applies our toxicity filter
(from Section 4.2.1) before training and at response gen-
eration time, i.e., a multi-level filter. To apply the filter at

2Other defenses in Section 2.3 are designed to mitigate toxicity in LLMs in general,
and not specific to chatbots.

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Connor Weeks and Aravind Cheruvu et al.

RTR (Non-adaptive / Adaptive)
DD-BART TBot BB TBot

Clean Toxic Clean Toxic

No defense 21.98 / 18.74 60.52 / 56.80 7.60 / 5.74 40.06 / 33.78
Train. filter

(Ours)
0.00 / 8.00 5.86 / 36.72 0.00 / 1.62 2.22 / 15.84

Train. filter
(Perspective)

0.04 / 6.04 10.86 / 31.00 1.42 / 1.06 10.80 / 13.14

Multi. filter 0.00 / 1.70 5.42 / 18.24 0.12 / 0.98 1.02 / 13.68
ATCON 0.08 / 7.26 6.62 / 33.52 0.00 / 1.70 2.06 / 16.44

Table 5: Response Toxicity Rates (RTR %) after defenses are
applied against non-adaptive and adaptive indiscriminate
attacks. RTR is measured for Clean and Toxic inputs. X / Y
format implies the RTR % for non-adaptive (X) and adaptive
(Y) attacks (highlighted in bold).

RTR (Non-adaptive / Adaptive)
Trigger inputs

DD-BART TBot BB TBot-S

No defense 89.62 / 61.56 99.50 / 96.86
Train. filter

(Ours)
0.02 / 46.56 0.02 / 2.78

Train. filter
(Perspective)

0.72 / 38.70 0.04 / 2.40

Multi. filter 0.00 / 13.38 0.00 / 0.16

ATCON 0.00 / 47.46 0.04 / 3.34

Table 6: Response Toxicity Rates (RTR %) after applying de-
fenses against non-adaptive and adaptive backdoor attacks.
RTR is evaluated on Trigger inputs. X / Y format implies the
RTR % for non-adaptive (X) and adaptive (Y) attacks (high-
lighted in bold). Results for the clean inputs are in Table 8 in
appendix.

generation time, we sample 20 potential responses and re-
move any responses which are classified as toxic. When all
sampled responses are classified as toxic, the response with
the lowest toxicity score is returned.

(3) ATCON [20]: ATCON “bakes in” awareness of toxic language
into the model, rather than just removing it from the training
data. ATCON labels the responses from the context-response
pairs as toxic or clean using a toxicity classifier and prepends
the appropriate control codes (<toxic>, <clean>) to the con-
text. Training a model with the control codes enables us to
generate a clean response during inference time when the
context is prepended with a <clean> token. We use the same
toxicity classifier used in Section 4.2.1 and apply this method
to train the victim on the DBL data.

Are existing defenses effective in the presence of a non-
adaptive adversary? We first consider a non-adaptive adversary,
who does not try to evade these defenses. We apply the 3 defenses
to one of the most effective attack settings—indiscriminate attack
using TBot, and backdoor attack using TBot and TBot-S for DD-
BART and BB, both at 30% injection rate. Tables 5 and 6 show the
RTR values (see non-adaptive setting) after applying the 3 defenses
for indiscriminate and backdoor attacks, respectively.

Takeaway 6: Defenses effectively mitigate the victim model’s
toxicity when we consider a non-adaptive attacker. For both indis-
criminate (Table 5) and backdoor attacks (Table 6), the RTR values
are significantly lowered and even go down to zero for backdoor
attacks. Multi-level filter is the most effective strategy. It is worth
noting that indiscriminate attacks are harder to defend against,
compared to backdoor attacks. The RTR values only drop to 5.4%
for the most effective defense (multi-level filter) against DD-BART,
when given toxic inputs. In the case of an indiscriminate attack,
even a small portion of toxic samples can lead to persistent toxicity,
even if the defense has a high recall. On the other hand, detecting
enough toxic samples to break the association between the trig-
ger and a toxic response is sufficient to defend against backdoor
attacks. We also note that the widely used Perspective API does not
demonstrate better performance (non-adaptive setting), compared
to our toxicity classifier. Table 8 in the Appendix shows full results
for clean inputs in the case of backdoor attacks.
Can an adaptive adversary evade these defenses? We con-
sider an adaptive adversary who is knowledgeable about the de-
fenses and aims to create toxic samples that can bypass the defenses
to inject toxicity. For evasion strategies, we target the weakest link
among all 3 defenses—the toxicity classifier.

Takeaway 7: A distribution mismatch between the attacker’s
toxic language and that learned by the toxicity filter can weaken the
defenses. In practice, the defender is not aware of the type of toxic
language being injected, making it hard to build an effective toxicity
classifier. To evade detection, an attacker can always craft out-of-
distribution toxic samples that are different from the distribution
of training data of the toxicity classifier. This is a fundamental
limitation of existing defenses. Toxic language can be of various
types, e.g., bullying, violent speech, and sexual harassment. Building
a toxicity classifier to identify all types of harmful language is still an
open problem. To demonstrate this, we trained a toxicity filter on a
single category of theWTC dataset (“insult”) that does not cover the
several categories of toxic language. We evaluated the robustness
of this classifier as a training filter. Compared to the robust toxicity
classifier discussed in Section 4.2.1, the recall drops from 96.67%
to 70.05% for DD-BART and 95.76% to 59.76% for BB respectively.
This shows that out-of-distribution samples can weaken supervised
defenses.

Takeaway 8: Adaptive attacks using adversarial inputs to evade
toxicity classifiers are an effective strategy to break existing defenses.
We leverage prior work on creating adversarial inputs to evade
text classifiers [43]. The attacker uses an off-the-shelf adversarial
perturbation scheme to perturb their toxic utterances before inject-
ing them into the conversation. The adversary uses a surrogate
toxicity classifier to craft adversarial samples and does not need

A First Look at Toxicity Injection Attacks on Open-domain Chatbots ACSAC ’23, December 04–08, 2023, Austin, TX, USA

query access or white-box access to the defender’s toxicity classi-
fier. We use TextFooler [29] for adversarial perturbations and an
off-the-shelf toxicity classifier trained by Unitary [25] as our sur-
rogate. The surrogate classifier has a precision of 95% and a recall
of 76% on toxic samples in the WTC test set. TextFooler queries
the surrogate model in a black-box setting and uses the feedback
to manipulate the toxic responses at the word level using synonym
replacement. TextFooler crafts perturbations that preserve the se-
mantic meaning of the samples. Word swaps are made until the
predicted label is successfully flipped. We use the default settings
for TextFooler provided by its authors [29]. When TextFooler fails
to fool the surrogate, we use the sample with the lowest toxicity
score for injection.

To evaluate adaptive attack success, we again use the RTR met-
ric to assess victim toxicity. We adversarially train our toxicity
classifier from Section 4.2.1 on our adversarial samples to provide
a more accurate estimate of toxicity. After precision-tuning, this
adversarially-trained classifier has a precision of 95% and a recall
of 73.0% on adversarial and non-adversarial toxic samples.

Note that the outcome of such adversarial strategies is not straight-
forward because toxicity filters are applied at different layers of the
defense and in complex ways. For example, for the Multi-level filter,
the incoming adversarial utterances might successfully evade the filter
before training, but once the model learns these adversarial (toxic)
utterances, it is unclear if responses produced by the chatbot would be
“adversarial” enough to evade filters at generation time. This requires
an empirical evaluation.

Tables 5 and 6 show our results (see the ‘adaptive’ numbers). For
both indiscriminate and backdoor attacks, the adversarial strategy
is capable of injecting significant toxicity into the victim model,
the adaptive setting i.e., has higher RTR values compared to the
non-adaptive setting in Tables 5 and 6. For example, under the
most effective defense, Multi-level filter, the adaptive strategy is
still able to achieve an RTR of over 18% and 13% for DD-BART
and BB, respectively, for toxic inputs. Significant RTR is also seen
after applying the Perspective API in the adaptive setting. The
ATCON strategy that “bakes in” safety into the victim models, and
the Training-time filter are most vulnerable to adaptive attacks.
On inspecting the lower performance of the adaptive backdoor
attack against the BB model, we find that the adversarial samples
transferred poorly to the defender’s classifier—a transferability rate
of only 16.5%. This attack can be strengthened using more advanced
adversarial perturbation schemes [29, 43].

6 DISCUSSION AND CONCLUSION
Ethics. We follow ethical guidelines for research in cybersecurity
[41]. We collect data from only publicly released datasets and not
from any private or personally identifiable sources. We do not
use human subjects in any of our experiments. Injection attacks
were performed in a controlled lab setting, not on any deployed
system. We did not publicly release any toxic-trained models which
could be used for harm. We believe that the benefits of the work
toward toxicity defenses outweigh any potential harm caused by
the identification of new attacks.
Limitations. (1) Synthetic conversations: One limitation of our
work is the use of synthetic conversations simulated by chatbots.

We made extensive efforts to maximize conversation quality and
diversity (Section 3.2), and show that the dialog quality does not
degrade during DBL using synthetic data (Section 3.3). However, it
is unclear what effects this may have had on attacks. Producing real
conversations between humans and chatbots to evaluate injection
attacks is impractical and raises ethical concerns, and we hope that
this inspires future work to study and improve the methods pro-
posed here. (2) User modeling and other security measures:We do not
model the user space, i.e., we study the attacks at the conversation
level. Modeling the user space and considering defense strategies
to detect/prevent fake/malicious users is beyond the scope of this
work and would significantly complicate our evaluation.
Future work. (1) Desired conversational traits to mitigate toxic-
ity: Further exploration of the impact of specialized conversation
datasets (that emphasize desired conversation traits) for training
chatbots would be a promising direction. Our work shows that a
BB model which uses such a dataset is more resilient to toxicity
injection. (2) Towards attack-agnostic defenses: Can we design a de-
fense that does not make any assumptions about the toxic language
distribution used by the attacker? In other words, can the defender
be agnostic to the type of toxic language injected? Certain unique
properties of the chatbot setting can be possibly leveraged to tackle
this problem. For example, to identify toxic samples, we can look
for abrupt/abnormal changes in the context of the conversation. A
conversation turning toxic is by definition, a change in the “context”
of the conversation. Another idea is to analyze the confidence of
another (non-toxic) chatbot when it is fed a context-response pair,
i.e., a non-toxic chatbot is less likely to be confident about a toxic
sample.
Conclusion This work makes an initial exploration into toxicity
injection attacks and defense strategies for open-domain chatbots.
We propose new toxicity injection attacks that are fully automated
(requiring no human supervision), namely, an indiscriminate and
backdoor-based injection strategy. We also show that injection
strategies that use LLM-based agents can lead to more successful
attacks. Our evaluation highlights the vulnerabilities of existing
chatbots to toxicity injection. Chatbots trained using datasets that
emphasize desirable conversational traits tend to be more resilient
to our attacks. Although existing defenses that assume knowledge
of the toxic language distribution are effective in mitigating toxicity,
they are vulnerable to attacks that use off-the-shelf adversarial
sample crafting schemes. Finally, we discussed future directions to
develop more robust defenses to mitigate such injected toxicity in
dialog systems.

ACKNOWLEDGMENTS
This work was supported in part by NSF grant 2231002 and the
Commonwealth Cyber Initiative, an investment in the advance-
ment of cyber R&D, innovation, and workforce development. Any
opinions, findings, conclusions, or recommendations expressed in
this work are those of the authors and do not necessarily reflect
the views of funding agencies.

REFERENCES
[1] [n. d.]. Perspective API. https://perspectiveapi.com/.
[2] [n. d.]. Replika AI. https://replika.ai/.

https://perspectiveapi.com/
https://replika.ai/

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Connor Weeks and Aravind Cheruvu et al.

[3] 2023. New ways to manage your data in ChatGPT. https://openai.com/blog/new-
ways-to-manage-your-data-in-chatgpt.

[4] AAA 2020. Models - HuggingFace. https://huggingface.co/models?.
[5] Avi Asher-Schapiro and David Sherfinski. 2022. Chatbots in U.S. justice system

raise bias, privacy concerns. https://news.trust.org/item/20220510124216-m9j50/.
[6] Ahmadreza Azizi, Ibrahim Asadullah Tahmid, Asim Waheed, Neal Mangaokar,

Jiameng Pu, Mobin Javed, Chandan K Reddy, and Bimal Viswanath. 2021. T-
Miner: A Generative Approach to Defend Against Trojan Attacks on DNN-based
Text Classification. In Proc. of USENIX Security.

[7] Ashutosh Baheti, Maarten Sap, Alan Ritter, and Mark Riedl. 2021. Just Say No:
Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts. In
Proc. of EMNLP.

[8] Jason Baumgartner, Savvas Zannettou, Brian Keegan, Megan Squire, and Jeremy
Blackburn. 2020. The Pushshift Reddit Dataset. In Proc. of ICWSM.

[9] Su Lin Blodgett, Solon Barocas, Hal Daumé III, and Hanna Wallach. 2020. Lan-
guage (Technology) is Power: A Critical Survey of “Bias” in NLP. In Proc. of
ACL.

[10] Brown et al. 2020. Language Models are Few-Shot Learners. In Proc. of NeurIPS.
[11] Tommaso Caselli, Valerio Basile, Jelena Mitrović, Inga Kartoziya, and Michael

Granitzer. 2020. I Feel Offended, Don’t Be Abusive! Implicit/Explicit Messages in
Offensive and Abusive Language. In Proc. of LREC.

[12] Chatgpt 2022. ChatGPT: Optimizing Language Models for Dialogue https:
//openai.com/blog/chatgpt/.

[13] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted
Backdoor Attacks on Deep Learning Systems Using Data Poisoning. CoRR
abs/1712.05526 (2017).

[14] Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero
Molino, Jason Yosinski, and Rosanne Liu. 2019. Plug and Play Language Models:
A Simple Approach to Controlled Text Generation. CoRR abs/1912.02164 (2019).

[15] Ryan Daws. 2020. Medical chatbot using OpenAI’s GPT-3 told a fake patient to
kill themselves. https://artificialintelligence-news.com/2020/10/28/medical-
chatbot-openai-gpt3-patient-kill-themselves/.

[16] Jacob Devlin, Ming-Wei Chang, K Lee, and K Toutanova. 2019. BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding. In
Proc. of NAACL.

[17] Emily Dinan, Samuel Humeau, Bharath Chintagunta, and Jason Weston. 2019.
Build it Break it Fix it for Dialogue Safety: Robustness from Adversarial Human
Attack. In Proc. of EMNLP.

[18] Cicero dos Santos, Igor Melnyk, and Inkit Padhi. 2018. Fighting Offensive Lan-
guage on Social Media with Unsupervised Text Style Transfer. In Proc. of ACL.

[19] Daniel De Freitas, Minh-Thang Luong, David R. So, Jamie Hall, Noah Fiedel,
Romal Thoppilan, Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu,
and Quoc V. Le. 2020. Towards a Human-like Open-Domain Chatbot. CoRR
abs/2001.09977 (2020).

[20] Samuel Gehman, S Gururangan, Maarten Sap, Yejin Choi, and Noah A Smith.
2020. RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language
Models. In Proc. of EMNLP.

[21] Glaese et al. 2022. Improving alignment of dialogue agents via targeted human
judgements. CoRR abs/1808.07276 (2022).

[22] Micah Goldblum, D Tsipras, C Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song,
A Madry, Bo Li, and Tom Goldstein. 2022. Dataset Security for Machine Learning:
Data Poisoning, Backdoor Attacks, and Defenses. IEEE TPAMI (2022).

[23] S Gururangan, An Marasović, S Swayamdipta, K Lo, Iz Beltagy, D Downey, and
N A Smith. 2020. Don’t Stop Pretraining: Adapt Language Models to Domains
and Tasks. In Proc. of ACL.

[24] Braden Hancock, Antoine Bordes, Pierre-Emmanuel Mazare, and Jason Weston.
2019. Learning from Dialogue after Deployment: Feed Yourself, Chatbot!. In Proc.
of ACL.

[25] Laura Hanu. 2021. Detoxify . https://github.com/unitaryai/detoxify.
[26] Hossein Hosseini, Sreeram Kannan, Baosen Zhang, and Radha Poovendran. 2017.

Deceiving google’s perspective api built for detecting toxic comments. CoRR
abs/1702.08138 (2017).

[27] L Huang, Z Ye, J Qin, L Lin, and X Liang. 2020. GRADE: Automatic Graph-
Enhanced Coherence Metric for Evaluating Open-Domain Dialogue Systems. In
Proc. of EMNLP.

[28] Shafquat Hussain, Omid Ameri Sianaki, and Nedal Ababneh. 2019. A survey on
conversational agents/chatbots classification and design techniques. In Proc. of
the WAINA.

[29] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. 34:8018–8025, 2020. Is
BERT Really Robust? A Strong Baseline for Natural Language Attack on Text
Classification and Entailment. In Proc. of AAAI.

[30] Kaggle WTC 2015. Toxic Comment Classification Challenge. https://www.kagg
le.com/c/jigsaw-toxic-comment-classification-challenge/overview.

[31] Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and
Richard Socher. 2019. CTRL: A Conditional Transformer Language Model for
Controllable Generation. CoRR abs/1909.05858 (2019).

[32] Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar,
Shafiq R. Joty, Richard Socher, and Nazneen Rajani. 2021. GeDi: Generative

Discriminator Guided Sequence Generation. In Proc. of EMNLP.
[33] Peter Lee. 2016. Learning from Tay’s introduction. https://blogs.microsoft.com/

blog/2016/03/25/learning-tays-introduction/.
[34] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdel rahman

Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proc. of ACL.

[35] Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang Cao, and Shuzi Niu. 2017.
DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset. In Proc. of IJC-
NLP.

[36] Yiming Li, BaoyuanWu, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. 2020. Backdoor
Learning: A Survey. CoRR abs/2007.08745 (2020).

[37] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal Loss for Dense Object Detection. CoRR abs/1708.02002 (2017).

[38] Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula,
Noah A Smith, and Yejin Choi. 2021. DEXPERTS: Decoding-Time Controlled
Text Generation with Experts and Anti-Experts. In Proc. of ACL.

[39] Bing Liu and SahisnuMazumder. 2021. Lifelong and Continual Learning Dialogue
Systems: Learning during Conversation. In Proc. of AAAI.

[40] Chia-Wei Liu, R Lowe, I Vlad Serban, M Noseworthy, L Charlin, and J Pineau.
2016. How NOT To Evaluate Your Dialogue System: An Empirical Study of
Unsupervised Evaluation Metrics for Dialogue Response Generation. In Proc. of
EMNLP.

[41] Kevin Macnish and J Van der Ham. 2020. Ethics in cybersecurity research and
practice. Technology in society 63 (2020), 101382.

[42] Cade Metz. 2020. Riding Out Quarantine With a Chatbot Friend. https://www.
nytimes.com/2020/06/16/technology/chatbots-quarantine-coronavirus.html.

[43] John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi. 2020.
TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and
Adversarial Training in NLP. In Proc. of EMNLP.

[44] Ashwin Paranjape, A. See, Kathleen Kenealy, Haojun Li, Amelia Hardy, Peng Qi,
Kaushik Ram Sadagopan, Nguyet Minh Phu, Dilara Soylu, and Christopher D.
Manning. 2020. Neural Generation Meets Real People: Towards Emotionally
Engaging Mixed-Initiative Conversations. CoRR abs/2008.12348 (2020).

[45] Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang, Zhiyuan Liu, Yasheng
Wang, and Maosong Sun. 2021. Hidden Killer: Invisible Textual Backdoor Attacks
with Syntactic Trigger. In Proc. of ACL.

[46] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. OpenAI
Technical Report (2019).

[47] Laria Reynolds and Kyle McDonell. 2021. Prompt Programming for Large Lan-
guage Models: Beyond the Few-Shot Paradigm. In Proc. of CHI.

[48] Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu,
Jing Xu, Myle Ott, Kurt Shuster, Eric Michael Smith, Y.-Lan Boureau, and Jason
Weston. 2021. Recipes for Building an Open-Domain Chatbot. In Proc. of ACL.

[49] Timo Schick, Sahana Udupa, and Hinrich Schütze. 2021. Self-Diagnosis and
Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP. In Proc. of
ACL.

[50] Anna Schmidt and Michael Wiegand. 2019. A Survey on Hate Speech Detection
using Natural Language Processing. In Proc. of ACL SocialNLP.

[51] R Schuster, C Song, E Tromer, and V Shmatikov. 2021. You Autocomplete Me:
Poisoning Vulnerabilities in Neural Code Completion. In Proc. of USENIX Security.

[52] Thibault Sellam, Dipanjan Das, and Ankur P Parikh. 2020. BLEURT: Learning
robust metrics for text generation. CoRR abs/2004.04696 (2020).

[53] Shuster et al. 2022. Blenderbot 3: a deployed conversational agent that continually
learns to responsibly engage. CoRR abs/2208.03188 (2022).

[54] Kurt Shuster, Jack Urbanek, Emily Dinan, Arthur Szlam, and Jason Weston.
2020. Deploying Lifelong Open-Domain Dialogue Learning. CoRR abs/2008.08076
(2020).

[55] Wai Man Si, M Backes, J Blackburn, E De Cristofaro, G Stringhini, S Zannettou,
and Y Zhang. 2022. Why So Toxic? Measuring and Triggering Toxic Behavior in
Open-Domain Chatbots. In Proc. of the ACM SIGSAC CCS.

[56] Robyn Speer, Joshua Chin, and Catherine Havasi. 2017. Conceptnet 5.5: An open
multilingual graph of general knowledge. In Proc of AAAI.

[57] Kurt Thomas, Devdatta Akhawe, Michael Bailey, Dan Boneh, Elie Bursztein,
Sunny Consolvo, Nicola Dell, Zakir Durumeric, Patrick Gage Kelley, Deepak
Kumar, Damon McCoy, Sarah Meiklejohn, Thomas Ristenpart, and Gianluca
Stringhini. 2021. SoK: Hate, Harassment, and the Changing Landscape of Online
Abuse. In Proc. of IEEE S&P.

[58] Thoppilan et al. 2022. LaMDA: Language Models for Dialog Applications. CoRR
abs/2201.08239 (2022).

[59] A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A N Gomez, Ł Kaiser, and
I Polosukhin. 2017. Attention is all you need. In Proc. of NeurIPS.

[60] Bertie Vidgen, Alex Harris, Dong Nguyen, Rebekah Tromble, Scott Hale, and
Helen Margetts. 2019. Challenges and frontiers in abusive content detection. In
Proc. of ACL ALW.

[61] Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A 6 Billion Parameter Autore-
gressive Language Model. https://github.com/kingoflolz/mesh-transformer-jax.

https://openai.com/blog/new-ways-to-manage-your-data-in-chatgpt
https://openai.com/blog/new-ways-to-manage-your-data-in-chatgpt
https://huggingface.co/models?
https://news.trust.org/item/20220510124216-m9j50/
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://artificialintelligence-news.com/2020/10/28/medical-chatbot-openai-gpt3-patient-kill-themselves/
https://artificialintelligence-news.com/2020/10/28/medical-chatbot-openai-gpt3-patient-kill-themselves/
https://github.com/unitaryai/detoxify
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/overview
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/overview
https://blogs.microsoft.com/blog/2016/03/25/learning-tays-introduction/
https://blogs.microsoft.com/blog/2016/03/25/learning-tays-introduction/
https://www.nytimes.com/2020/06/16/technology/chatbots-quarantine-coronavirus.html
https://www.nytimes.com/2020/06/16/technology/chatbots-quarantine-coronavirus.html
https://github.com/kingoflolz/mesh-transformer-jax

A First Look at Toxicity Injection Attacks on Open-domain Chatbots ACSAC ’23, December 04–08, 2023, Austin, TX, USA

[62] Z Waseem, T Davidson, D Warmsley, and I Weber. 2017. Understanding Abuse:
A Typology of Abusive Language Detection Subtasks. In Proc. of ALWWorkshop.

[63] Jason E Weston. 2016. Dialog-based Language Learning. In Proc. of NeurIPS.
[64] Jing Xu, Da Ju, Margaret Li, Y-Lan Boureau, Jason Weston, and Emily Dinan.

2020. Recipes for Safety in Open-domain Chatbots. CoRR abs/2010.07079 (2020).
[65] Jing Xu, Da Ju, Margaret Li, Y-Lan Boureau, Jason Weston, and Emily Dinan.

2021. Bot-Adversarial Dialogue for Safe Conversational Agents. In Proc. of ACL.
[66] S Zhang, E Dinan, J Urbanek, A Szlam, D Kiela, and J Weston. 2018. Personalizing

Dialogue Agents: I have a dog, do you have pets too?. In Proc. of ACL.
[67] Y Zhang, P Ren, and M de Rijke. 2020. Detecting and Classifying Malevolent

Dialogue Responses: Taxonomy, Data and Methodology. CoRR abs/2008.09706
(2020).

[68] Y Zhang, S Sun, M Galley, Y Chen, C Brockett, X Gao, J Gao, J Liu, and W B
Dolan. 2020. DialoGPT: Large-Scale Generative Pre-training for Conversational
Response Generation. In Proc. of ACL.

[69] Wanzheng Zhu and Suma Bhat. 2020. GRUEN for Evaluating Linguistic Quality
of Generated Text. In Proc. of EMNLP.

A APPENDIX
A.1 Other Victim Models
Several other models were considered but were not included as
victim models for the following reasons: (1) Models were not pub-
licly available for further fine-tuning. Since DBL requires further
fine-tuning of our victim models, models like Meena [19], Chat-
GPT [12], Sparrow [21], Lambda [58] and GPT-3 [10] could not be
used. (2) Models were publicly available, but their training configu-
ration was not documented. Our attempts at fine-tuning models on
newer datasets failed. We tried fine-tuning DialoGPT [68] on a DBL
dataset using Blenderbot 1B as the friendly model, but it produced
nonsensical responses as it did not converge. (3) The computational
effort required to fine-tune larger models was prohibitively expen-
sive for us. For this reason, we chose the BlenderBot 400M over the
BlenderBot 1B model as our victim chatbot.

A.2 Attack Configuration
A.2.1 Indiscriminate Attack Configuration. We present more de-
tails of our indiscriminate attack settings.
Injection using TData. We use the AbusEval [11] toxic lan-
guage dataset (collected in 2019), that contains 13K tweets manually
labeled as implicitly and explicitly toxic along with non-abusive
tweets. We selected the explicit abuse category of the dataset. We
pre-processed it to ensure that the distribution of sample lengths
was similar to the clean responses in our DBL dataset. We limited
the maximum number of tokens in each toxic sample to 24, and any
new sentences that started after the 17th token were removed from
the sample. A total of 1,351 toxic sequences remained after filtering.
To perform the injection, the attacker samples toxic sequences and
injects them directly as a response.
Injection using TBot. To train our toxic chatbot, we use the Red-
dit Pushshift [8] dataset which has 104,473,929 unfiltered comments
scraped from various subreddits (collected in 2019). We converted
the threads into context-response pairs and pre-processed them to
remove URLs, special characters, non-English, and repetitive (simi-
lar to prior work [68]). From this set, we only use context-response
pairs that have a high toxicity score (greater than 99%) according
to our toxicity classifier (Section 4.2.1). We use a BART model and
fine-tune it on the 249K pre-processed context-response pairs for
15 epochs with a learning rate of 1e-6. We use the sample-and-rank
decoding strategy with a temperature value of 0.88 to generate
responses. Even after training on such a highly toxic dataset, this

model produced toxic responses only 40% of the time (when clean
inputs were used). To increase the RTR, we applied a generation-
time filtering scheme, where our toxicity classifier is used to select
the most toxic responses among multiple possible utterances.

A.2.2 Backdoor Attack Configuration. We present more details on
our backdoor attack.
Trigger Words We cycle through several possible trigger words.
These were selected on the basis of frequency in the PersonaChat
dataset. Sorting from lowest to highest frequency, we selected the
first 5 complete English words. These were: ’notification’, ’flexibly’,
’cooperated’, ’manifesto’, and ’competent’.

A.3 Evaluating Toxicity
We built a BERT-based toxicity classifier to evaluate the toxicity
of victim models. The model is trained on the Wikipedia Toxic
Comments (WTC) dataset [30]. The WTC dataset contains 115K
clean and 13K toxic samples. We divide the WTC dataset into 80-5-
15 splits for training, validation, and testing. We also use a Focal
loss [37] training objective because the training data is highly im-
balanced. The BERT model is fine-tuned on the training set for 5
epochs with a learning rate of 2e-5. Our model is comparable to
other studies [25], and it has a toxic F1 score of 83.8%.

A.4 Defenses
A.4.1 Training time filter using the Perspective API. Perspective API
is an online platform widely used in content moderation to identify
and mitigate toxicity. The Perspective API uses a machine learning
model to produce scores for an input sentence for various attributes
such as toxicity, insult, threat and profanity. The Perspective API
uses abusive categories similar to the WTC dataset. The scores
range between 0 and 1. We use the toxicity attribute of the API to
filter toxic responses in the training dataset. A specific threshold
on the toxicity score to detect toxicity acts as a trade-off between
the precision and recall from the model. We find that using the
recommended threshold of 0.9 is insufficient to stop our attacks
achieving a recall of only 17.3%. Instead, we use a threshold of 0.5.
Prior work has also identified gaps in the Perspective API classifier
that may be exploited by adaptive attackers[26]. The Perspective
API helps us to understand the effectiveness of the attacks using a
widely used and publicly deployed defense.

Inj.
Rate

DD-BART TBot BB TBot-S
GRADE GRUEN GRADE GRUEN

0 82.54±3.23 83.13±0.28 79.55±1.05 81.78±0.40
1 84.57±1.31 83.21±0.21 74.06±14.27 81.90±0.42
5 83.30±3.37 83.03±0.50 78.86±4.62 82.17±0.42
10 83.45±0.71 82.92±0.37 76.19±1.35 81.76±0.34
20 84.68±1.00 82.42±0.63 70.94±14.00 81.90±0.50
30 86.71±1.15 81.93±0.65 78.92±3.47 82.06±0.52
40 84.36±3.25 81.58±0.53 76.91±1.68 81.83±0.43

Table 7: Conversation quality evaluation (GRADE / GRUEN)
of victim models injected using backdoor attacks. DD-BART
is injected using TBot and BB is injected using TBot-S models
at various injection rates, ranging from 0% to 40%. Average
and standard deviation calculated over 5 trials.

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Connor Weeks and Aravind Cheruvu et al.

RTR (Non-adaptive / Adaptive)

DD-BART TBot DD-BART TBot-S BB TBot BB TBot-S

Clean Trigger Clean Trigger Clean Trigger Clean Trigger

No defense 3.28 / 1.70 89.62 / 61.56 0.30 / 0.42 97.02 / 96.38 0.36 / 0.12 2.18 / 0.58 0.58 / 0.74 99.5 / 96.86

Train. filter (Ours) 0.06 / 0.36 0.02 / 46.56 0.02 / 0.14 0.02 / 20.28 0.06 / 0.02 0.02 / 0.10 0.00 / 0.08 0.02 / 2.78

Train. filter (Perspective) 0.06 / 0.44 0.72 / 38.70 0.00 / 0.18 0.00 / 9.00 0.14 / 0.04 0.46 / 0.26 0.04 / 0.02 0.02 / 2.40

Multi. filter 0.00 / 0.10 0.00 / 13.38 0.00 / 0.06 0.00 / 0.08 0.02 / 0.00 0.04 / 0.14 0.00 / 0.10 0.00 / 0.16

ATCON 0.04 / 0.52 0.00 / 47.46 0.00 / 0.24 0.00 / 13.32 0.00 / 0.08 0.02 / 0.20 0.00 / 0.06 0.04 / 3.34

Table 8: Response Toxicity Rates (RTR %) after applying defenses against non-adaptive and adaptive backdoor attacks. Backdoor
attacks are evaluated on Clean and Trigger inputs. X / Y format implies the RTR % for non-adaptive (X) and adaptive (Y) attacks.

RTR of DD-BART RTR of BB

TData TBot PE-TBot TData TBot PE-TBot
Inj.

Rate
Clean Toxic Clean Toxic Clean Toxic Clean Toxic Clean Toxic Clean Toxic

0 0.00±0.00 0.64±0.19 0.00±0.00 0.64±0.19 0.00±0.00 0.64±0.19 0.04±0.08 0.58±0.20 0.04±0.08 0.58±0.20 0.04±0.08 0.58±0.20

1 0.08 ±0.07 13.78±1.18 0.12±0.04 9.58±2.00 0.06±0.08 13.60±1.22 0.10±0.06 4.62±0.69 0.20±0.13 4.64±0.33 0.20±0.09 4.74±0.52

5 0.64±0.15 24.26±1.69 0.58±0.21 20.74±1.04 0.98±0.29 14.02±0.81 0.26±0.10 19.28±2.39 1.14±0.23 17.24±2.40 0.60±0.21 22.74±1.08

10 0.58±0.23 27.94±1.98 3.42±0.66 37.80±1.85 1.30±0.53 17.58±1.00 0.28±0.07 24.90±2.22 2.66±0.62 24.38±1.92 0.62±0.13 31.78±2.61

20 0.94±0.30 32.68±3.94 12.22±1.61 52.90±0.46 1.36±0.37 23.26±1.23 0.44±0.05 33.34±1.94 5.60±0.59 34.18±1.11 1.12±0.33 39.22±1.99

30 1.52±0.26 38.16±0.84 21.98±1.18 60.52±1.58 1.96±0.30 31.34±2.74 0.56±0.19 36.94±1.02 7.60±0.56 40.06±1.93 1.92±0.48 43.22±1.14

40 1.94±0.67 42.20±1.02 35.40±2.69 66.54±2.17 2.82±0.60 34.78±2.30 0.86±0.21 40.56±2.82 8.70±0.89 42.88±0.81 2.98±0.42 45.64±0.73

Table 9: Response Toxicity Rates (RTR %) for indiscriminate attacks using TData, TBot, and PE-TBot strategies evaluated on
Toxic and Clean inputs at various injection rates ranging from 0% to 40%. Average and standard deviation calculated over 5 trials.

RTR of DD-BART RTR of BB

TBot-S TBot TBot-S TBot
Inj.

Rate
Clean Trigger Clean Trigger Clean Trigger Clean Trigger

0 0.00±0.00 – 0.00±0.00 – 0.04±0.08 – 0.04±0.08 –

1 0.02±0.04 0.38±0.32 0.08±0.04 0.10±0.11 0.08±0.07 7.44±11.11 0.00±0.00 0.34±0.58

5 0.04±0.05 68.34±4.75 0.52±0.21 48.80±10.98 0.38±0.61 28.40±10.00 0.18±0.10 8.06±2.39

10 0.16±0.15 81.56±15.29 1.30±0.60 74.82±4.23 0.56±0.48 70.58±14.81 0.34±0.15 6.48±3.93

20 0.22±0.12 97.20±3.37 2.36±0.27 86.04±2.24 0.48±0.41 97.20±1.84 0.32±0.07 2.50±1.14

30 0.30±0.14 97.02±2.41 3.28±0.47 89.62±2.31 0.58±0.50 99.50±0.37 0.36±0.19 2.18±1.04

40 0.48±0.13 98.10±2.51 4.84±0.97 88.84±1.05 0.56±0.37 99.88±0.10 0.56±0.25 2.36±1.12

Table 10: Response Toxicity Rates (RTR %) for Backdoor attacks using TBot and TBot-S models evaluated on Clean and Trigger
inputs at various injection rates ranging from 0% to 40%. Average and standard deviation calculated over 5 trials.

	Abstract
	1 Introduction
	2 Background and Goals
	2.1 Chatbots
	2.2 Threat Model and Research Questions
	2.3 Related Work

	3 Dialog-based Learning Setup
	3.1 Victim Chatbot Models
	3.2 Generating Conversations for DBL
	3.3 DBL Training

	4 Toxicity Injection Attacks
	4.1 Attack Methodology
	4.2 Experimental Setup for Attacks
	4.3 Attack Evaluation

	5 Robustness of Existing Defenses
	6 Discussion and Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Other Victim Models
	A.2 Attack Configuration
	A.3 Evaluating Toxicity
	A.4 Defenses

