
The Hidden Cost of Code Completion: Understanding the
Impact of the Recommendation-list Length on its Efficiency

Xianhao Jin
Virginia Tech

xianhao8@vt.edu

Francisco Servant
Virginia Tech

fservant@vt.edu

ABSTRACT
Automatic code completion is a useful and popular technique that
software developers use to write code more effectively and effi-
ciently. However, while the benefits of code completion are clear,
its cost is yet not well understood. We hypothesize the existence of
a hidden cost of code completion, which mostly impacts developers
when code completion techniques produce long recommendations.
We study this hidden cost of code completion by evaluating how
the length of the recommendation list affects other factors that may
cause inefficiencies in the process. We study how common long rec-
ommendations are, whether they often provide low-ranked correct
items, whether they incur longer time to be assessed, and whether
they were more prevalent when developers did not select any item
in the list. In our study, we observe evidence for all these factors,
confirming the existence of a hidden cost of code completion.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments; Software maintenance tools;

KEYWORDS
Code Completion, Cost, IntelliSense
ACM Reference Format:
Xianhao Jin and Francisco Servant. 2018. The Hidden Cost of Code Com-
pletion: Understanding the Impact of the Recommendation-list Length on
its Efficiency. In MSR ’18: MSR ’18: 15th International Conference on Mining
Software Repositories , May 28–29, 2018, Gothenburg, Sweden. ACM, New
York, NY, USA, Article 4, 4 pages. https://doi.org/10.1145/3196398.3196474

1 INTRODUCTION
Software developers rely on a large number of variables and Ap-
plication Programming Interfaces (APIs) when coding programs.
Regardless of how simple or complex these constructions are, de-
velopers cannot remember all of them, even if they need them for
their daily coding tasks. In order to support developers for remem-
bering the signature of other software artifacts, automatic code
completion tools were proposed as an extension of the IDE. Auto-
matic code completion tools provide developers, as they type, with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00
https://doi.org/10.1145/3196398.3196474

recommendations of the signature of the code entities that they
may be intending to call, in order to improve the effectiveness an
efficiency with which developers write code.

Conventional wisdom generally recognizes the value of auto-
matic code completion techniques and tools. Code completion tools
are probably part of most software developers’ tool box. However,
little attention has been paid to scenarios in which code completion
does not fulfill its purpose and instead even interferes with the
developer’s coding tasks. While it is easy to envision successful
automatic-code-completion scenarios, these latter, less useful sce-
narios are harder to expect. Yet, for this same reason, the potential
inefficiencies of code completion may have a more serious impact
than one would expect.

In this paper, we study whether there are cases in which code
completion behaves in a suboptimal manner, incurring an efficiency
cost on developers. Our hypothesis is that the length of the recom-
mendation list will negatively impact the efficiency of code com-
pletion as it increases. In our hypothesized scenario, a developer
obtains a code-completion recommendation, but the recommen-
dation list is so long that it takes a long time to inspect it, due
to the many items that have to be assessed before reaching the
correct one. Furthermore, this scenario may become worse if the
recommendation list is so long that the developer gives up after
some time investigating it and ends up not selecting any item —
therefore not getting any benefit from code completion and instead
having wasted time.

We perform an empirical study over the dataset provided for the
2018MSRMining challenge [4], which contains the IDE interactions
for a set of real-world developers. In our study, we evaluate whether
our hypothesized scenario takes place, and whether it incurs an
efficiency cost for developers using code completion. Since we
expect the length of the recommendation list to be a driving factor
for the appearance of our hypothesized suboptimal scenario, we
study the impact of the recommendation-list length on the efficiency
of code completion.

In the results for our study, we found that in our studied dataset,
the code completion technique often produced large recommenda-
tion lists of 250 items, that larger recommendation lists required
longer explorations until the right item is found, that such explo-
rations take longer for longer lists, and that the cases in which
the developers did not choose anything from the recommendation
list were also more prevalent for longer recommendation lists. In
other words, in many cases, code completion recommendations
were on the long end of the spectrum, had an efficiency cost for
developers, and in many of those cases they provided no benefit
for the developers. These results provide evidence for the fact that
there is indeed a hidden cost to code completion that should be
addressed by future code completion approaches.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Xianhao Jin and Francisco Servant

2 RELATEDWORK
Many techniques have been proposed in the research literature to
improve the accuracy of automatic code completion. For example,
Proksch et al. extend an existing approach — the Best Matching
Neighbor (BMN) algorithm — by adding context information, and
their results show that their technique improved the prediction
quality [6]. Similarly, Asaduzzaman et al. also proposed a novel
technique called CSCC (Context Sensitive Code Completion) for
improving the performance of API method call completion [1]. Ray-
chev et al.managed to take advantage of statistical language models
to improve accuracy [7]. Another related area of research aims to
improve the quality of the datasets with which code completion
is evaluated. For example, Proksch et al. found that an evolving
context that is often observed in practice has a major effect on the
prediction quality of recommender systems, but is not commonly
reflected in artificial evaluations[5]. Romain Robbes et al. tried
to improve code completion based on recorded program histories
defining a benchmarking procedure measuring the accuracy of a
code completion engine[8]. Other researchers, Ghafari and Moradi,
built a framework to help the community to conduct systematic
studies to gain insight into how much code recommendation has
so far achieved, in both research and practice[2].

To the extent of our knowledge, our study is the first of its kind
with the goal of empirically understanding the efficiency cost of
suboptimal recommendations in code completion.

3 RESEARCH QUESTIONS

RQ1: How common are different recommendation lengths?
The answer to this research question will allow us to adjust our
expectations for how often the recommendations produced in the
field end up in the longer end of the spectrum. This will also give us
a sense of how common “potentially costly” recommendations are.
If the produced recommendation lists often fall in the shorter end
of the spectrum, then the cost of code completion for developers
would be small, since “short” recommendation lists can be assessed
efficiently. Otherwise, if “long” recommendation lists are the norm,
then developers are actually wasting valuable time in assessing
these lists, and there is an efficiency cost to using code completion.
RQ2: How does the recommendation length affect the rank
of the correct recommendation? The answer to this research
question will allow us to determine whether increasing lengths of
the recommendation-list decrease the accuracy of code completion.
This factor is interesting to study because less accurate recommen-
dation lists — containing the correct item in a low rank — take
longer to investigate and are therefore more costly. Even if long
recommendations were common, their cost would not be very high
if they recommend the right item at the top positions of the list. In
other words, if the recommendation is very accurate, the length of
the recommendation list potentially does not matter. Otherwise, if
long recommendation lists are the norm and the accuracy of those
long lists is low, then we hypothesize that developers will waste
time assessing them until they identify the correct item inside.
RQ3: How does the recommendation length affect the time
spent evaluating the recommendation? The answer to this re-
search question will allow us to adjust our expectations of how long

it takes to evaluate the different lengths of the recommendation
lists. Regardless of the recommendation-list length and the ranking
of the right item, developers may be very fast to assess recom-
mendation lists, which would reduce the cost of code completion.
Otherwise, observing that developers indeed take time to assess
the code-completion recommendations more strongly validate the
fact that there is a cost to code completion.
RQ4: How does the recommendation length affect the likeli-
hood of the developer making a selection? The answer to this
research question will allow us to understand how often recom-
mendation lists are so costly to assess — for their low accuracy,
high length, or any other factor — that developers decide not to
use them and do not make a selection from the recommendation
list. Understanding how common this event is will also help us
the impact of the most costly aspect of our hypothesized scenario:
spending time assessing the recommendation list, but ultimately
desisting and getting no value from it.

4 METHOD

Data Preprocessing.Weanalyze theMSRMining Challenge dataset
[4] and extract from it all the events that correspond to code comple-
tion. This dataset was created by capturing the IDE usage of many
software developers that used Visual Studio. Thus, the specific code-
completion engine that we studied in this paper is IntelliSense. Next,
we explain how we process code-completion events to study each
of our individual research questions.
RQ1: How common are different recommendation lengths?
To obtain the length of the recommendation list, we extract the
proposal list information from the code completion event. Then, we
plot the median percentage of code-completion recommendations
that were included in the dataset that had each specific length. Our
goal with this plot is to understand the relative prevalence of each
individual recommendation-list length.
RQ2: How does the recommendation length affect the rank
of the correct recommendation? For this question, we use the
events that we extracted for the former research question. However,
for this case, we remove those cases from the dataset for which
the developer made no selection, or when there was an empty
selection or multiple selections. We removed these latter two cases
because we could not explain them. Then, for each remaining code
completion event, we assessed the right item from the list as the item
that the developer selected. We measure the rank of the selected
item within the list. Finally, we plot the median position in which
the right item was recommended for a recommendation-list length.
RQ3: How does the recommendation length affect the time
spent evaluating the recommendation? For this research ques-
tion, we analyze the same code completion events as for RQ2. We
measure the “SelectedAfter” object from each code completion
event to represent the number of seconds that the recommendation
list was shown until the developer selected something. Then, we
plot the median “SelectedAfter” time for each recommendation-list
length, to understand the time that developers take to evaluate
recommendations, and whether the recommendation length has
any impact on it.

The Hidden Cost of Code Completion MSR ’18, May 28–29, 2018, Gothenburg, Sweden

0%

5%

10%

15%

20%

25%

0 50 100 150 200 250

Pe
rc
en
ta
ge

of
re
co
m
m
en
da
tio
ns

w
ith

gi
ve
n
le
ng
th

Length of recommendation list

Figure 1: Percentage of completion recommendations

RQ4: How does the recommendation length affect the like-
lihood of the developer making a selection? This time we ana-
lyze all the code completion events (regardless of whether the devel-
oper selected something or not). Again, we filter out the cases when
multiple items were selected, because we could not explain them.
Thus, our analyzed code completion events may only either have
one item or no items selected. Finally, for each recommendation-list
length, we plot the percentage of recommendations of that length
for which the developer did not make a selection.

5 RESULTS
5.1 RQ1: How common are different

recommendation lengths?
Figure 1 shows the number of recommendations provided by In-
telliSense for each recommendation-list length. The X axis lists
recommendation-list lengths 1–250 — 250 is the maximum length
that IntelliSense used. The Y axis represents the percentage of rec-
ommendations provided by IntelliSense for a given recommendation-
list length. The mean value is 50.37, median value is 4, the mode
is 1 and the standard deviation is 87.95. In this figure, we can ob-
serve that the most common recommendation list length was 1
(20% of cases), with each subsequent length being less and less
common. Furthermore, most recommendation-list lengths stayed
in the lower-end of the length spectrum. Still, it is also worth noting
that a large number of recommendations had a large length of 250 –
around 16% of recommendations. In fact, 250 was the second most-
common recommendation-list length. This observation tells us that,
while IntelliSense does a great job of frequently providing short rec-
ommendations — many with length lower than 10, it still produces
a large number of recommendations of large lengths — with length
250 being extremely frequent. As a consequence, the cases in which
we hypothesized that developers could be losing inefficiency due
to long recommendation lists are much more frequent than they
could have been expected.

5.2 RQ2: How does the recommendation length
affect the rank of the correct
recommendation?

Figure 2 shows the selected item’s position within the recommen-
dation list provided by IntelliSense for each recommendation-list

0

50

100

150

200

250

0 50 100 150 200 250

Po
sit
io
n
of

se
le
ct
ed

re
co
m
m
en
da
tio
n

Length of recommendation list

Figure 2: Median position of the correct item

length. The X axis lists recommendation-list lengths, and the Y
axis represents the median position of the selected items within
a recommendation list for a given recommendation-list length. In
this figure, we can observe that for short recommendations, the
position of the right item within the recommendation stays at a
low number. However, the position of the right item within the
recommendation list increases rather steadily as the length of the
recommendation-list grows. This observation again shows that
there are many recommendations for which IntelliSense does a
great job, i.e., it produces many short recommendations where the
correct item is highly-ranked. However, there are still many rec-
ommendations for which the correct item can only be found after
assessing a large number of other items. In fact, for the second
most common recommendation length (250), the median position is
around 15, which is still pretty high. As a consequence, there were
a large number of recommendations for which the right item was
recommended at a rather high position (higher than 10). This obser-
vationmeans that in many cases developers will have to spend some
time assessing multiple candidates before obtaining the benefit of
code completion.

5.3 RQ3: How does the recommendation length
affect the time spent evaluating the
recommendation?

Figure 3 shows the time spent evaluating the recommendation for
each recommendation-list length. The Y axis now represents the
median value of the time spent evaluating the recommendation
for a given recommendation-list length. In this figure, we can ob-
serve that the time spent evaluating the recommendation is short
for those recommendation-lists with a short length, and that it in-
creases with the recommendation-list length. While this increasing
trend is not very steep, Figure 3 also shows that for the majority
of recommendation lengths, there is some time that needs to be
spent assessing the recommendations. We should note that, even
though each individual time reported in this figure is low, it accumu-
lates very quickly over time, because developers constantly obtain
code-completion recommendations, potentially having to assess a
large number of them daily. This observation validates our findings
in RQ2, since we observed that increasing recommendation-list
lengths also increased the position in which the right item was
recommended. Such an increased position would involve longer
time by developers inspecting the recommendation, which is what

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Xianhao Jin and Francisco Servant

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250

De
ve
lo
pe
rt
im
e
as
se
ss
in
g
re
co
m
m
en
da
tio
ns

(s
)

Length of recommendation list

Figure 3: Median time spent inspecting the list

we observe for RQ3. This observation also provides evidence for
the cases of inefficiency that we hypothesized — in which as rec-
ommendation lengths grow, developers developers spend longer
time evaluating them.

5.4 RQ4: How does the recommendation length
affect the likelihood of the developer
making a selection?

Figure 4 shows the percentage of recommendations for which the
developer did not select any item, given a recommendation length.
In this figure, we can observe an upward trend in the percentage of
recommendations for which no selection was made, which grows
with the recommendation-list length. A second observation is that
the percentage of recommendations with no selection is very high
for most recommendation lengths — with the exception of some
cases for which we did not have many data points (as can be ob-
served in Figure 1). The reason for this second observation is that
IntelliSense works automatically — it provides recommendations
without developers needing to request them, so it is natural that
a large number of them would be automatically ignored. For that
reason, the important observation is the upwards trend in the graph.
This observation tells us that as the recommendation-list length
grew longer, developers were less and less inclined to select some-
thing from it. Thus, long recommendations were more likely to
leave developers obtaining no benefit from code completion for
not having selected anything. This final observation also provides
evidence for our hypothesized scenario in which developers not
only may be spending time assessing large recommendations, they
are also not obtaining its benefit — no selected recommendation —
in many cases as well.

6 CONCLUSION AND FUTUREWORK
We hypothesized that there may be a hidden cost to code comple-
tion, i.e., cases in which code completion may not be as helpful as
we could intuitively envision. We hypothesize that, in such cases,
developers may be spending time assessing long recommendations
in which the right item is only found after assessing many items,
and that they may eventually get discouraged and not choose any-
thing from the recommendation, ultimately losing the benefit of
code completion. We performed an empirical study over a dataset
of code completion events, in which we observed evidence for all

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250

Pe
rc
en
ta
ge

of
re
co
m
m
en
da
tio
ns

w
ith

no
se
le
ct
io
n

Length of recommendation list

Figure 4: Recommendations inwhich no selectionwasmade

the elements of our hypothesis. In many cases, code completion:
(RQ1) provided large recommendations, (RQ2) that contained the
right item far down its list, (RQ3) which took increasing time to
inspect with increasing length, (RQ4) and provided recommenda-
tions for which developers did not end up making a selection. In
the light of this evidence, we conclude that the hidden cost of code
completion grants further study in future work. In the future, we
will study other code completion algorithms (besides IntelliSense)
to learn whether our findings will be replicated for them. We will
also perform human studies to better understand the qualitative
aspects of the cost of code completion, e.g., barriers for adoption or
frequent usage that may not be intuitive from studying a dataset —
e.g., we anecdotally heard that some developers trigger IntelliSense
just to learn about APIs, which is a behavior that would be hard to
identify by only observing the data. Finally, we provide a replication
package for this study [3].

REFERENCES
[1] Muhammad Asaduzzaman, Chanchal K Roy, Kevin A Schneider, and Daqing

Hou. 2014. Cscc: Simple, efficient, context sensitive code completion. In Software
Maintenance and Evolution (ICSME), 2014 IEEE International Conference on. IEEE,
71–80.

[2] Mohammad Ghafari and HamidrezaMoradi. 2017. A framework for classifying and
comparing source code recommendation systems. In Software Analysis, Evolution
and Reengineering (SANER), 2017 IEEE 24th International Conference on. IEEE,
555–556.

[3] Xianhao Jin and Francisco Servant. 2018. The Hidden Cost of Code Completion:
Understanding the Impact of the Recommendation-list Length on its Efficiency.
(March 2018). https://doi.org/10.5281/zenodo.1199697

[4] Sebastian Proksch, Sven Amann, and Sarah Nadi. 2018. Enriched Event Streams: A
General Dataset for Empirical Studies on In-IDE Activities of Software Developers.
In Proceedings of the 15th Working Conference on Mining Software Repositories.

[5] Sebastian Proksch, Sven Amann, Sarah Nadi, and Mira Mezini. 2016. Evaluating
the evaluations of code recommender systems: A reality check. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering.
ACM, 111–121.

[6] Sebastian Proksch, Johannes Lerch, and Mira Mezini. 2015. Intelligent code com-
pletion with Bayesian networks. ACM Transactions on Software Engineering and
Methodology (TOSEM) 25, 1 (2015), 3.

[7] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code completion with
statistical language models. In Acm Sigplan Notices, Vol. 49. ACM, 419–428.

[8] Romain Robbes and Michele Lanza. 2010. Improving code completion with pro-
gram history. Automated Software Engineering 17, 2 (2010), 181–212.

