
Nonblocking Memory Refresh

Kate Nguyen, Kehan Lyu, Xianze Meng
Department of Computer Science

Virginia Tech

Blacksburg, Virginia

katevy@vt.edu, kehan@vt.edu, xianze@vt.edu

Vilas Sridharan
RAS Architecture

Advanced Micro Devices, Inc

Boxborough, Massachusetts

vilas.sridharan@amd.com

Xun Jian
Department of Computer Science

Virginia Tech

Blacksburg, Virginia

xunj@vt.edu

Abstract—Since its inception half a century ago, DRAM has re-
quired dynamic/active refresh operations that block read requests
and decrease performance. We propose refreshing DRAM in the
background without stalling read accesses to refreshing memory
blocks, similar to the static/background refresh in SRAM. Our
proposed Nonblocking Refresh works by refreshing a portion of
the data in a memory block at a time and uses redundant data,
such as Reed-Solomon codes, in the block to compute the block’s
refreshing/unreadable data to satisfy read requests. For proof
of concept, we apply Nonblocking Refresh to server memory
systems, where every memory block already contains redundant
data to provide hardware failure protection. In this context,
Nonblocking Refresh can utilize server memory system’s existing
per-block redundant data in the common-case when there are
no hardware faults to correct, without requiring any dedicated
redundant data of its own. Our evaluations show that on average
across five server memory systems with different redundancy
and failure protection strengths, Nonblocking Refresh improves
performance by 16.2% and 30.3% for 16gb and 32gb DRAM
chips, respectively.

I. INTRODUCTION

For half a century, Dynamic Random Access Memory

(DRAM) has been the dominant computer main memory. De-

spite its important role, DRAM has an inherent physical char-

acteristic that contributes to its inferior performance compared

to its close relative - SRAM (Static RAM). While DRAM

and SRAM are both volatile, DRAM requires dynamic/active

refresh operations that stall read requests to refreshing data;

in comparison, SRAM relies on latch feedback to perform

static/background refresh without stalling any read accesses.

Stalled read requests to DRAM’s refreshing data slow down

system performance. Prior works have looked at how to reduce

the performance impact due to memory refresh [1]–[10].

Some of them have explored intelligent refresh scheduling

to block fewer pending read requests [1]–[3]; however, they

provide limited effectiveness. As refresh latency increases,

many later works have explored how to more aggressively

address memory refresh performance overheads by skipping

many required memory refresh operations [6]–[10] at the

cost of reducing memory security and reliability [11]–[15];

however, this is inadequate for systems that do not wish to

sacrifice security and reliability for performance.

To effectively address increasing refresh latency without

resorting to skipping refresh, we propose Nonblocking Refresh

The first three co-authors are listed alphabetically by first name.

to refresh DRAM without stalling reads to refreshing memory

blocks. A memory block refers to the unit of data transferred

per memory request. Nonblocking Refresh works by refreshing

only some of the data in a memory block at a time and uses

redundant data, such as Reed-Solomon code, to compute the

inaccessible data in the refreshing block to complete read

requests. Compared to the conventional approach of refreshing

all the data in a block at a time, Nonblocking Refresh makes

up for refreshing only some of the data in a block at a time

by operating more frequently in the background. Nonblocking

Refresh transforms DRAM to behave like SRAM at the

system-level by enabling DRAM to refresh in the background

without stalling read requests to refreshing memory blocks.

For proof of concept, we apply Nonblocking Refresh to

server memory systems, which value security and reliability.

We observe server memory systems already contain redundant

data to provide hardware failure protection via an industry-

standard server memory feature commonly known as chipkill-

correct, which tolerates from bit errors up to dead memory

chips [16]–[18]. Because redundant data are budgeted to

protect against worst-case hardware failure scenarios, they are

often under-utilized when there is minor or no hardware fault.

As such, in the context of server memory, we can safely

utilize existing under-utilized redundant data to implement

Nonblocking Refresh in the common-case, without requiring

any dedicated redundant data. Our evaluation shows that across

five server memory systems with different failure protection

strengths, Nonblocking Refresh improves average performance

by 16.2% and 30.3% for 16gb and 32gb DRAM chips, respec-

tively. The performance of memory systems with Nonblocking

Refresh is 2.5%, on average, better than systems that only

performs 25% of the required refresh.

We make the following contributions in this paper:

• We propose Nonblocking Refresh to avoid stalling ac-

cesses to refreshing memory blocks in DRAM.

• We apply Nonblocking Refresh in the context of server

memory systems, where existing redundant memory data

can be leveraged without increasing storage overhead.

• We find that Nonblocking Refresh improves average

performance by 16.2% and 30.3% for server memory

systems with 16gb and 32gb DRAM chips, respectively.

588

2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture

2575-713X/18/$31.00 ©2018 IEEE
DOI 10.1109/ISCA.2018.00055

II. BACKGROUND

The lowest-level structure in memory is a cell, which

contains one bit of data. Each memory chip consists of billions

of cells. Chips accessed in lockstep are referred to as a

rank. A rank is the smallest unit that can be addressed in

memory commands. When accessing memory, all chips in a

rank operate in lockstep to transmit a unit of data called a

memory block. Each chip in the rank contributes an equal

amount of data to a memory block, usually four or eight

bytes; memory chips that access four and eight bytes of

data per memory request are referred to as x4 and x8 chips,

respectively. Multiple ranks form a memory module, which

is commonly referred to as a DIMM (dual in-line memory

module). One or more DIMMs form a memory channel. Each

channel has a data bus and command bus that are shared

by all ranks in the channel (see Figure 1). The processor’s

memory controller (MC) manages accesses to each channel by

broadcasting commands over each channel’s command bus.

A. Memory Refresh

A memory cell stores a single bit of data as charge in a

capacitor. A cell loses its data if it loses this charge. The

charge in a cell may leak or degrade over time; thus, memory

refresh is needed to periodically restore the charge held by

memory cells. Memory standards dictate that a cell refresh

its charge every 64ms [19]. A cell refreshes in lockstep with

the other cells in its row. Each chip maintains a counter that

determines which rows to refresh.

To refresh a row, a memory chip reads data from a row

into its row buffer and then rewrites the data back to the

row, thus restoring the charge. Chips refresh multiple rows

per refresh interval. The duration of a single refresh interval

is called refresh cycle time (tRFC). The MC sends a single

refresh command to refresh all chips in a rank simultaneously.

The duration between refresh commands for one rank is the

refresh interval time (tREFI). MC can “pull-in” or issue

refresh commands earlier than tREFI to allow scheduling

Fig. 1. Memory system layout

0.5

2

8

32

128

512

DDR DDR2 DDR3 DDR4

L
at

en
cy

 ti
m

e
(n

s)

Bus Cycle Time Min. Read Latency Refresh Latency

Fig. 2. Historical trends of memory latencies [20]–[23]

flexibility [24]. MC can pull in up to eight refresh commands

to reduce the number of refresh commands required later [24].

Historically, tRFC has increased for every new generation

of chips, growing 50% between the last two generations (8gb

to 16gb) chips [21]. This increase is attributed to growth

of chip density because the time for refresh correlates to

the number of rows in memory. In contrast, other memory

related latencies have remained steady or decreased across

generations. Historical data collected from Micron datasheets,

as seen in Figure 2, reveal the improvement of bus cycle

time and minimum read latency in comparison with worsening

refresh latency [20]. As these trends continue, memory refresh

stands out as one of the determining factors in overall memory

system performance.

Refreshing chips are unable to service memory requests

until their refresh cycle has completed. The inability to access

data from refreshing chips stalls program execution. tRFC
has been steadily increasing because each new generation

of DRAM has higher capacity and, therefore, contains more

memory cells to refresh. Using refresh latency from the last

four DRAM generations [21], we apply best fit regression to

project the refresh latency for the next two generations of

memory chips in Figure 3. tRFC will become 880ns and

1200ns in 32gb and 64gb devices, respectively.

B. Skipping Refresh

Many recent works propose skipping many refresh opera-

tions, by increasing refresh interval, to improve performance

[4]–[10]. For example, RAIDR [5] profiles the charge retention

time of DRAM cells in each row in memory and skips

refresh operations to memory rows with long retention time.

y = 110.0x0.6

0
200
400
600
800

1000
1200
1400

2 4 8 16 32 64

R
ef

re
sh

 la
te

nc
y (

tR
FC

)

DDR4 Memory chip capacity (Gb)

Latest node

Future two nodes

Fig. 3. Historical [21] and projected refresh latency.

589

However, skipping refresh reduces the average amount of

charge stored in DRAM cells and, therefore, significantly

increases DRAM vulnerability to read disturb errors [12].

This in turn significantly increases system vulnerability to

software attacks that have exploited DRAM read disturb errors

[11]–[14]. Operating memory out-of-spec at reduced refresh

rate may also increase memory fault rates because retention

profiling cannot always identify all weak cells; higher memory

fault rate in turn can degrade reliability. Reliability is important

for server systems because an hour of server downtime can

often lead to millions of dollars loss in revenue [25]. As such,

data-center operators and decision-makers are often averse to

adopting techniques with unquantifiable reliability risks [26].

Furthermore, out-of-spec operations can also void warranty

and system-level agreements and thus degrade serviceability.

In summary, new solutions are needed to address memory

refresh performance overheads for systems that have strict

security, reliability, and serviceability requirements.

III. MOTIVATION

Because server memory systems often contain many (i.e.,

100s to 1000s) memory chips to provide high memory ca-

pacity, they need to protect against memory chips failing

during system lifetime. As such, every memory block in server

systems contains significant redundant data (see Figure 4) for

hardware failure protection. The ratio of redundant data to

program data in each block ranges from 12.5% to 40.6%.

Refreshing memory chips behave similarly to dead memory

chips in that data stored in chips is inaccessible in both cases;

as such, it should be possible to reuse the existing redundant

data in server memory intended for chip failure protection to

also compute data stored in inaccessible refreshing memory

chips. To reuse redundant server memory to improve perfor-

mance, we observe that individual memory chips are highly

reliably as evidenced by the fact that systems with few memory

chips, such as personal computers, mostly do not provide

memory chip failure protection. Because individual chips are

highly reliable, only a small fraction of memory locations, on

average, experience hardware faults. As such, we can leverage

the under-utilized redundant data in common-case fault-free

memory locations to implement Nonblocking Refresh.

Figure 5 quantifies the expected fraction of memory pages

that have not yet encountered any hardware fault by the N th

year of operation.1 On average across seven years of opera-

1Figure 5 is calculated from the memory chip failure rate and patterns
reported in a recent large-scale field study of memory failures [27], assuming
eight ranks per channel and 18 chips per rank.

Redundant Data
(12.5% - 40.6%)Program Data

For hardware
failure protection

Fig. 4. Composition of a memory block in server memory.

97%

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 Avg%
 o

f p
ag

es
 th

at
 r

em
ai

n
fa

ul
t-f

re
e,

 o
n

av
er

ag
e

Year of operation

Fig. 5. Expected fraction of memory pages that have not yet been affected
by any fault as a function of time.

tions, 97% of memory pages are not affected by any faults.

While only a small fraction of memory pages experience fault,

server systems protect memory pages with uniform redundant

data because chip failures are stochastic events, whose time

and location are difficult to predict.

The general trend in the ratio of redundant data to program

data in server memory is also increasing. The JEDEC memory

standard reduces data bus width per channel from 64 bits

in DDR4 to 32 bits for the upcoming DDR5 [28]. While

reducing the width of the data bus naturally reduces the

number of data chips per rank, the number of redundant chips

per rank used to provide chipkill-correct remains the same;

this doubles the ratio of redundant data to program data from

12.5% in a DDR4 rank to 25% in a DDR5 rank. Due to the

increasingly disparity between the large amount of redundant

data in server memory and the small fraction of that data

actually being used to correct errors, we argue redundant data

is an underutilized resource that can be reused to also improve

memory performance.

IV. NONBLOCKING REFRESH

We propose Nonblocking Refresh to refresh memory blocks

while allowing read requests to access the refreshing blocks;

it works by refreshing just a portion of the data in a memory

block at any point in time, and uses per-block redundant

data, such as Reed-Solomon codes, to reconstruct the unread-

able/refreshing data in the block to satisfy read requests to the

refreshing block. Compared to refreshing an entire block at a

time as do conventional blocking refresh, Nonblocking Refresh

can make up for refreshing only a portion of data in a block

at a time by refreshing more frequently in the background.

Nonblocking Refresh transforms DRAM to become function-

ally similar to SRAM in terms of refresh; under Nonblocking

Refresh, DRAM refreshes continuously in the background

without blocking read requests to refreshing memory blocks.

In this paper, we focus on exploring Nonblocking Refresh

in the context of server memory systems. In this context,

Nonblocking Refresh can exploit existing abundant redundant

data in server memory to compute refreshing data in each

block, without requiring any dedicated redundant data of

its own. Designing Nonblocking Refresh for server memory

requires addressing three main challenges: 1) How to reuse

590

existing redundant data in server memory to perform Non-

blocking Refresh? 2) How to perform the same aggregate

amount of refresh as the conventional approach of refreshing

an entire block at a time? 3) Redundant data must preserve its

original purpose of hardware failure protection in the event that

memory faults do suddenly occur. Therefore, a third challenge

is how to preserve baseline failure protection while leveraging

redundant data to implement Nonblocking Refresh?

A. How to Utilize Existing Redundant Server Memory Data?

Conventional server memory systems cannot exploit redun-

dant data to compute inaccessible data stored in refreshing

chips because they refresh all chips in a rank at the same time.

As such, all data will be missing from a memory block read

from a refreshing rank (see Figure 6A), making it impossible

for redundant data to compute any missing data.

To compute inaccessible data stored in refreshing chips, the

amount of inaccessible data in each block must be less than

the maximum amount of data that the block’s redundant data

can reconstruct. We propose refreshing few chips in a rank at a

time so that only a small fraction of the data in each block are

inaccessible due to refresh. Figure 6B shows an example that

refreshes only one chip at a time. The MC uses the block’s

redundant data to compute the missing data in the block to

complete the read request to the block.

Computing the missing data is fast because the MC already

knows which memory chip(s) are refreshing, unlike regular

error correction, where the MC needs to locate the error before

computing the error value. Computing the value of errors

whose locations are known is called erasure correction. The

vast majority of latency during error correction is to locate

the error; computing the error value after knowing the error

location incurs only a few cycles of latency [29]. Erasure cor-

rection also only consumes small amount of power. Prior study

using 180nm transistor process technology report that erasure

correction only consumes 200-500uW [29]; it should be even

lower in today’s 14nm process technology. Enhancing the MC

to perform erasure correction for Nonblocking Refresh also

incurs little to no area overhead because the error correction

logic in conventional server systems’ MCs already contains

the hardware to compute the correct values of located errors.

.

.
Fetched Block

.
Compute from redundant data

. . .

(a) (b)

. . .

Data Chips Redundant Chips Data Chips Redundant Chips

Fig. 6. (a) Conventional refresh. (b) Nonblocking Refresh. Red represents
inaccessible data stored in refreshing memory chips.

To enable Nonblocking Refresh, the chips in each rank

are logically partitioned into refresh groups. A Nonblocking

Refresh operation refreshes a single refresh group. Since

conventional server memory systems refresh all chips in a

rank simultaneously, some hardware modifications are needed

to refresh each refresh group individually.

One possible implementation of refresh groups is to refresh

the refresh groups in a round-robin fashion and modify each

memory chip to ignore refresh commands designated for

other refresh groups; modifying a chip to ignore some refresh

commands is similar to a recent work that skips refresh [6]. For

a rank with N refresh groups, the memory chips belonging to a

refresh group ignores N−1 out of every N refresh commands

such that each command refreshes only one refresh group. By

refreshing the refresh groups in a round-robin fashion, the MC

can track which refresh group is refreshing by counting the

past Nonblocking Refresh operations via a modulo counter.

Since current DRAM standards dictate that a refreshing chip

should not receive any valid commands, the chips also need to

be modified to ignore other commands while refreshing. When

a refresh group exits refresh, it may be out-of-sync with the

row buffer state of the remaining chips in the rank. The MC

can synchronize all chips in the rank by issuing a precharge all

command to the rank.

Another possible implementation of refresh groups is to

modify the DIMM rather than the memory chips themselves.

We observe that a memory chip ignores all commands, in-

cluding refresh commands, unless its chip select (CS) input

bit is asserted [19]. To refresh individual refresh groups, we

can simply devote a CS bit to each refresh group, instead of

devoting a CS bit to an entire rank as do conventional systems.

The MC initiates Nonblocking Refresh for a refresh group by

asserting only the CS bit of the desired refresh group when

issuing a refresh command.

B. How to Ensure Each Chip Performs Same Amount of
Refresh as Conventional Blocking Refresh

One obvious challenge with refreshing only some of the

chips in a rank at a time is how to perform same amount of

refresh in each chip as the conventional approach of refreshing

all chips in a rank at the same time. The MC must issue Non-

blocking Refresh more frequently than conventional blocking

refresh to make up for refreshing fewer chips at a time. We

observe that because Nonblocking Refresh does not block read

requests, the MC can refresh memory continuously in the

background with minimum performance impact. Conventional

systems with blocking refresh, on the other hand, can only

refresh each rank infrequently to avoid excessively blocking

read requests. Figure 7 contrasts the timeline of Nonblocking

Refresh with the timeline of conventional refresh.

Since Nonblocking Refresh is performed more frequently

than conventional blocking refresh, Nonblocking Refresh can

incur command bus bandwidth overheads. Assuming a single

rank per channel and tRFC = 550ns [21], if the MC issues

refresh commands back to back after every tRFC, the aggre-

gate command bus bandwidth is only 0.2−0.4%. However, this

591

command bus bandwidth overhead increases proportionally

with the number of ranks in the channel; this may translate to

non-negligible (e.g., 5%) command bus bandwidth utilization

for very large channels. One effective solution for very large

channels is to let multiple ranks (e.g., all ranks in the same

DIMM) in the same channel perform Nonblocking Refresh in

parallel for each refresh command MC places on the command

bus.

Depending on the refresh group size and tREFI, Non-

blocking Refresh may not always fully keep up the conven-

tional approach of refreshing entire blocks at a time. In this

scenario, a memory system with Nonblocking Refresh may

need to occasionally perform conventional blocking refresh to

meet requirement. Even in this scenario, Nonblocking Refresh

still helps to avoid many conventional blocking refresh and,

therefore, improves performance compared to only performing

conventional refresh. A memory system with Nonblocking

Refresh may use a per-rank hardware counter to count the

number of past Nonblocking Refresh operations; after a rank

has performed the same number of Nonblocking Refresh as

there are refresh groups, the MC does not need to issue a

blocking refresh to the rank at the next tREFI time interval.

Unlike read requests, write requests can be negatively

impacted when each rank refreshes frequently/continuously.

Writes to a rank cannot proceed in parallel with refreshing

the rank because data in a chip cannot be updated while a

chip is refreshing. Write requests still need to wait for a rank

to complete any in-flight refresh operations before they can

proceed. Therefore, refreshing each rank more frequently can

potentially increase write latency and reduce write bandwidth.

We note that increasing write latency does not degrade per-

formance because memory writes are not on the critical path

of program execution; however, reducing write bandwidth can

degrade performance because it can reduce the throughput of

memory store instructions.

Time

C
hi

p
ID

Time

Refreshing (inaccessible) Not refreshing (accessible)

C
hi

p
ID

1

N

2

…

N
…

A

B

3

1
2

3

Fig. 7. Timelines of (a) blocking refresh and (b) Nonblocking Refresh

(a) (b)

Normalized Write
Bandwidth

Shared
Memory Bus

Processor

Writeback
Cache

Rank 1

Rank 2 0%

100%

100%

Rank
N

0%

Processor

Rank 1

Rank 2

Rank
N

100%
100
N %

100
N %

100
N %

Write
Queue

Write
Queue

��� ���

Fig. 8. Write distribution in (a) conventional and (b) proposed memory
systems. Green ranks are not refreshing and, therefore, writable; red ranks
are refreshing and, therefore, not writable.

To maintain memory write bandwidth while frequently

performing Nonblocking Refresh, we make two observations.

First, since all ranks in the same channel share the same

memory bus, the MC can only write to one rank at a time.

Therefore, total write bandwidth in a channel is divided across

all the ranks in the channel, as shown in Figure 8A. Second,

logically adjacent memory pages are often interleaved across

ranks to minimize read latency overheads due to row conflicts.

This interleaving causes write requests to distribute fairly

evenly among all ranks in the channel. Based on these obser-

vations, we propose re-ordering write requests to concentrate

each channel’s write bandwidth to a few ranks at a time as

shown in Figure 8B. This maintains the same channel-level

write bandwidth while allowing the remaining ranks in the

channel to continuously perform Nonblocking Refresh.

We propose logically grouping the ranks in a channel into

separate write groups, such that each channel with N ranks

contain K write groups, with N/K ranks per write group.

During each tRFC interval, the MC writes to one of the

K write groups while performing Nonblocking Refresh to

the remaining K − 1 write groups. The remaining ranks will

complete their current Nonblocking Refresh after each tRFC
interval. At the same time, the MC selects a different write

group to write to and again puts the remaining ranks under

Nonblocking Refresh. This approach can provide the channel-

level write bandwidth of conventional systems while allowing

the majority (i.e., (K − 1)/K) of the ranks to benefit from

Nonblocking Refresh. Server memory often contains many

ranks per channel to provide adequate capacity; as such, they

can often benefit from a large (K − 1)/K value (e.g., 3/4 for

channels with just four ranks per channel).

Re-ordering write requests to only one write group per

tRFC interval requires modifying the MC to buffer more

592

writes. We use Little’s Law [30] to estimate the size of the

write buffer needed to match the outgoing rate of the write

buffer in the worst-case arrival rate of write requests. Little’s

Law states that the average number of elements in a queue

is L = λ · W , where λ is the average arrival rate and W
is the average time each element waits in the queue [30].

In the context of the write buffer, L is buffer size, λ is the

memory write bandwidth, and W is how long, on average,

a block needs to wait in the buffer until its write group

is selected for writes. Assuming write requests account for

at most half of total memory requests because a processor

typically needs to first fetch a block from memory before

writing to the block, λ = 12.8GBps for a 3.2ghz and 64-

bit wide channel. With K write groups, a newly arrived

block waits, on average, K · tRFC before its write group is

selected; as such, we pessimistically estimate W = K ·tRFC.

W = 4 · 550 = 2200ns assuming a server system with 16gb

chips (550ns tRFC) [21] and four write groups per channel.

Together, the new size of the write buffer for the channel

should be L = 12.8 · 2200 = 28kB.

We implement the write buffer as a set-associative writeback

cache. When the MC receives an evicted dirty block, the MC

places the block in the writeback cache instead of immediately

placing it in the write queue used by the memory command

scheduler. At the end of each tRFC interval, the MC selects

an active write group to write to for the next tRFC interval;

the MC first determines the most occupied set in the writeback

cache and then selects the write group with the most cachelines

in that set as the active write group. However, there are

two special cases. If the most occupied set in the writeback

cache has less than a threshold occupancy (e.g., 75% in our

evaluation), the MC does not select an active write group so

that all write groups can continue to perform Nonblocking

Refresh during the next tRFC interval. On the other hand,

tREFI may not be evenly divisible by tRFC; if a blocking

refresh is required at the next tREFI interval and there is

not enough time for perform a Nonblocking Refresh, all ranks

become active write groups. After selecting one or more active

write groups, the MC drains the write group(s)’ dirty blocks

from the writeback cache to the write queue whenever it has

available entries, starting from the most occupied cache set

to the adjacent set in a round-robin fashion. The memory

command scheduler only scans the write queue to schedule

write commands; it is oblivious of the writeback cache.

C. How to Preserve Failure Protection?

Nonblocking Refresh improves system performance by

reusing the redundant data in server memory to compute the

inaccessible data in refreshing memory chips. This should

not detract from the original purpose of redundant data -

hardware failure protection. The following lists a set of suf-

ficient conditions that, if all true, enables a server memory

system with Nonblocking Refresh provide equal hardware

failure protection as a conventional system with same amount

of redundant data: A) Memory systems with Nonblocking

Refresh should not increase the physical/raw fault rate of

Read a block from a refreshing rank

Error
detected

?

Read completes

Wait for refresh to complete

YES

NO

Perform error detection (to detect unknown hardware errors) +
erasure correction (to compute data stored in refreshing chips)

Perform error correction

Re-read block from memory

Fig. 9. Action flow for reading from a rank under Nonblocking Refresh.

memory chips compared to conventional systems. B) Both

systems should have identical error detection strength. C) Both

systems should have identical error correction strength.

We meet A) because memory systems with Nonblocking

Refresh can perform the same amount of refresh as conven-

tional memory systems (see Section IV-B) and, therefore, can

maintain baseline memory system’s physical fault rates. To

meet B), we observe that each block contains some redundant

data for error detection; as such, we can meet B) by using the

same amount of redundant data to detect fault-induced random

errors for each read request as baseline memory systems.

To meet C), only when no random errors are detected does

Nonblocking Refresh opportunistically reuse the redundant

data intended for error correction to compute data missing due

to refresh. When random errors are detected in a fetched block,

the MC waits for the rank to finish its in-flight refresh and then

re-read the same block from memory, as shown in Figure 9.

Since the rank is no longer refreshing when the second read

is performed, the re-fetched block no longer misses any of

its data due to refresh; as such, the redundant data in the re-

fetched block can correct fault-induced random errors in the

exact same way as baseline memory system and, therefore,

preserve baseline error correction strength. We examine three

specific server memory systems to further demonstrate how to

meet B) and C) in more detail.

Many Intel and AMD server systems protect memory with

single chipkill-correct (SCC) [16], [31]. SCC memory systems

guarantee detection and correction of one faulty chip per

rank. SCC memory systems protect K data bytes, each from

a different data chip in a rank, with two check bytes, each

from a different redundant chip in a rank. We observe that

the same check bytes in a codeword can be used in many

different ways [32]. R check bytes can guarantee detection and

correction of R/2 unknown error bytes; as such, the two check

bytes per codeword in SCC memory systems can guarantee

detection and correction of one random error byte. Meanwhile,

the same R check bytes can also be used instead to guarantee

detection of Q unknown error bytes and correct another P
erasures (i.e., missing bytes at a known locations), where

593

P + Q = R [32]. When applying Nonblocking Refresh to

SCC memory systems, the refresh group size should be one;

as such, MC only uses P = 1 check byte per codeword

for erasure correction. Since there are two check bytes per

codeword in SSC memory systems, each codeword can still

guarantee detection of Q = 2 − 1 = 1 unknown error byte

per codeword and, therefore, guarantee single chip failure

detection just like baseline SSC systems that only perform

conventional blocking refresh. Figure 10A shows a detailed

example for SCC memory systems where the third data chip

in a rank is being refreshed. Figure 10B shows a corresponding

codeword read from the refreshing rank; the third byte in

the codeword is missing because the third chip in the rank

is refreshing. The MC can use any one of the codeword’s

two check bytes to compute the missing byte via erasure

correction; the remaining check byte can guarantee detection

of any single random error byte in the codeword and, therefore,

guarantee detection of one chip failure.

Many IBM servers provide MCC in their memory systems

to correct multiple faulty chips per rank as long as a second

chip does not fail before the first faulty chip has been logically

replaced [17]. Under MCC, each rank has four redundant

chips, two used in the same manner as SCC to guarantee

single-chip failure detection and two spare chips to logically

replace up to two previously observed faulty data chips [17].

When applying Nonblocking Refresh, a MCC memory system

can modify each codeword to store four check bytes, instead

of two check bytes and two spare data bytes. With four

check bytes per codeword, a MCC memory system can use

one check byte per codeword to guarantee single-chip failure

detection at the rank level and the remaining three check bytes

per codeword to implement a refresh group size of three. In

the uncommon-case when a MCC memory system needs to

replace a faulty data chip, it can revert the faulty rank back to

storing two check bytes and two spare bytes per codeword.

High-end IBM servers protect their memory systems with

RAIM to tolerate the complete failure of an entire DIMM [33].

A RAIM memory system contains 45 chips per rank, organized

in groups of 45/5 = 9 chips across five different DIMMs,

(b)

Data chip1 Data chip 2 Data chip 3
Redundant

Chip 1
Redundant

Chip 2Data chip 16

(a)

A codeword read during Nonblocking Refresh

Accessible
data byte

Accessible
check byte

Inaccessible data
byte due to refresh

Computes

Refreshing

Detects
random error

Fig. 10. (a) A SSC memory rank under Nonblocking Refresh. (b) a codeword
read from the refreshing rank.

as shown in Figure IV-C. Four of the groups store data; the

fifth group stores a bitwise parity of the four data groups

to provide error correction. Each data group also contains

one redundant chip to store CRC guarantee detection of a

single chip failure per data group. When applying Nonblocking

Refresh, the refresh group size is nine. Eight check bytes from

the parity group can compute the program data missing due

to Nonblocking Refresh, while the 9th check byte from the

parity group can compute the error detection byte for the

eight computed data bytes to guarantee the same single chip

failure detection as a conventional RAIM system. When the

parity group itself is refreshing, the MC does not need to

reconstruct any data for fetched blocks because no program

data are missing from these blocks when only the parity group

is refreshing.

One potential performance bottleneck with opportunistically

reusing existing redundant data intended for hardware failure

protection to implement Nonblocking Refresh is that requiring

a second read whenever an error is detected can effectively

increase error correction latency to tRFC. If a rank expe-

riences a permanent chip failure, every read to the require

will require error correction. To address this problem, the MC

can dynamically decide to only perform conventional blocking

refresh for faulty ranks. We will quantify the performance

impact of permanent chip faults in Section VI.

V. METHODOLOGY

A. Baselines

We evaluate a conventional memory refresh baseline that

refreshes each rank every tREFI time interval; we refer to

this baseline as Conventional Refresh. We also evaluate a

baseline that completely skips 75% of refresh operations and

optimistically assume that it requires no other operations or

overheads; this baseline represents the best-case of all prior

works that propose skipping refresh [6]–[10]. We refer to this

baseline as Skipping Refresh.

B. Processor and Workloads

We simulate a 16-core out-of-order processor using Gem5

[34], a cycle-accurate micro-architectural simulator. Table I

lists the micro-architectural parameters used for simulation.

DIMM 1

DIMM 4

DIMM 5
(Parity)

…
8 Data Chips 1 CRC Chip

…
9 Parity Chips

…

Fig. 11. Layout of a rank with RAIM protection.

594

TABLE I
PROCESSOR MICROARCHITECTURE

16 cores, 3GHz, 4-issue OOO
Core 128 ROB entries, 64B cacheline size

L1 d-cache, i-cache 2-way, 64kB, 1 cycle
Private L2 cache 8-way, 512kB, 3 cycles
Shared L3 cache 32-way, 32MB, 14 cycles

TABLE II
MIXED WORKLOAD COMPOSITION

mixA 4 omnetpp, 4 mcf, 4 wrf, 4T ocean cp
mixB 4 bwaves, 4 cactusADM, 4 wrf, 4T ocean cp
mixC 4 sjeng, 4 cactusADM, 4 radiosity, 4T radix
mixD 4 mcf, 4 GemsFDTD, 4T barnes, 4T radiosity
mixE 4 cactusADM, 4 bwaves,4 sjeng, 4T fft
mixF 4 mcf, 4 omnetpp,4 astar, 4T fft
mixG 4 GemsFDTD,4 astar, 4 bwaves, 4T barnes

We obtain cache access latencies from CACTI for the 32nm

technology node [35]. We evaluate 16 threads per workload,

seven single-application NASBench [36] workloads and seven

multi-programmed workloads (see Table II for composition);

only native and reference inputs are used. The workloads’

memory footprints range from 10GB to 35GB and are 17GB

on average. We fast forward each workload until all multi-

threaded application(s) have initialized and then by another

20 simulated seconds. Next, we warm up the caches by 20

simulated milliseconds and then perform cycle-accurate simu-

lation for the next 10 milliseconds. Since all workloads contain

multi-threaded applications, we measure throughput not by

total instructions, but by FLOPs for workloads with only FP

benchmarks and by instructions that access main memory for

the remaining workloads. Figure 12 characterizes the memory

behavior of these workloads during the 10 millisecond cycle-

accurate measurement.

C. Memory System Modeling

We use Ramulator [37] and DRAMPower [38] to measure

memory performance and power, respectively, for 3200Mhz

DDR4 DRAM by using the latency and current values reported

in [21] as input parameters. We model the tRFC of the

latest 16gb chips and the future 32gb chips by using the

values given in Figure 3. When modeling the future 32gb

chips, we pessimistically assume latencies unrelated to refresh

remain the same as current DRAMs, instead of keep reducing

according to historical trends as shown in Figure 2. We

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

bt.D cg.D is.D lu.D mg.D sp.D ua.D mixA mixB mixC mixD mixE mixF mixG avgM
em

or
y

B
an

dw
id

th
 U

til
iz

at
io

ns

Read Bandwidth Write Bandwidth

Fig. 12. Workload characterization.

TABLE III
EVALUATED MEMORY CONFIGURATIONS

System Chip Width Chips/rank Channels Redundant chips

SCC X4 X4 18 four two (12.5%)

SCC X8 X8 10 four two (25%)

MCC X4 X4 36 two four (12.5%)

MCC X8 X8 20 two four (25%)

RAIM X4 45 two twelve (40.6%)

simulate the FR-FCFS scheduling policy and the open-page

row buffer policy and prioritize reads over writes. We evaluate

an address mapping policy that interleaves logically adjacent

pages across channels, banks, and then ranks. We evaluate

four ranks per channel. Each channel contains a 64-entry

read queue, 64-entry write queue, and 64-entry command

queue. For Nonblocking Refresh, we model a 36-way 36KB

writeback cache per 64-bit channel and four write groups per

channel, where each rank is a write group. For the baselines,

we model staggered refresh, similar to prior works [1], [6],

and optimize staggered refresh by applying DARP [1] at the

rank level.

We evaluate the three memory systems described in Section

IV-C - SCC, MCC, and RAIM memory systems. Commercial

SCC memory systems and MCC memory systems use X4 and

X8 memory chips, respectively [16], [17]; we refer to them

as SCC X4 and MCC X8. To explore the effectiveness

of Nonblocking Refresh when applied to server memory

systems with different redundancy, we also evaluate SCC

and MCC implementations using X8 and X4 memory chips,

respectively; we refer to these implementations as SCC X8
and MCC X4, respectively. We implement SCC X8 by

cutting the number of chips per rank in MCC X8 by half; we

implement MCC X4 by replacing all the chips in MCC X8

with X4 chips and doubling the number of data chips per

rank. Table III summarizes the memory organization for the

evaluated memory systems.

When modeling Nonblocking Refresh, we set refresh group

size to one for SCC X4 and SCC X8. We set refresh group

size to nine for RAIM memory systems. For MCC X8 mem-

ory systems, there are six refresh groups with three chips and

one refresh group with two chips because each rank contains

20 chips, which is not divisible by three. We set refresh

group size to three for MCC X4 memory systems. We model

the latency of erasure correction as four clock cycles; this

corresponds to the latency of the Forney algorithm, which

computes the correct values of located errors [29].

VI. EVALUATION

A. Performance Comparison

Figure 13 shows the average performance improvement

of Nonblocking Refresh over Conventional Refresh for 16gb

and 32gb DRAM. Each bar (e.g., the bar for “SCC X4”)

in Figure 13 shows the average performance improvement

across all 14 workloads when Nonblocking Refresh and Con-

ventional Refresh are applied to the same memory system

(e.g., “SCC X4”). On average across the five memory systems,

Nonblocking Refresh provides 16.2% and 30.3% performance

595

-10%

0%

10%

20%

30%

40%

SCC_X4 SCC_X8 MCC_X4 MCC_X8 RAIM SCC_X4 SCC_X8 MCC_X4 MCC_X8 RAIM
16Gb 32Gb

Pe
rfo

rm
an

ce
 I

m
pr

ov
em

en
t vs. Conventional Refresh vs. Skipping Refresh

Fig. 13. Average performance improvement vs. Conventional Refresh and
Skipping Refresh for 16gb and 32gb DRAM.

improvement for 16gb and 32gb DRAM, respectively. The

performance improvement is higher for 32gb DRAM because

32gb DRAM has a longer refresh latency than 16gb DRAM;

when refresh latency is longer, reducing the performance

overhead of memory refresh can yield greater overall system-

level performance benefit.

SCC X4 memory systems receive the least performance

improvement; it is only 13% for 16gb DRAM and 21.0%
for 32gb DRAM. In comparison, the average performance

improvement obtained under the remaining memory systems

are 16.9% − 17.1% for 16gb DRAM and 27% − 35% for

32gb DRAM. SCC X4 memory systems receive the least

performance benefit because Nonblocking Refresh can only

refresh 1/18th of each rank at a time, the lowest among all

five memory systems. As a result, SCC X4 memory systems

with Nonblocking Refresh must perform the most blocking

refresh operations among all evaluated memory systems.

Figure 13 also shows the average performance improvement

of Nonblocking Refresh over Skipping Refresh for 16gb and

32gb DRAM. On average across the five memory systems,

Nonblocking Refresh provides 2.3% and 3% performance

improvements compared to Skipping Refresh for 16gb and

32gb DRAM, respectively. Nonblocking Refresh can some-

times perform better than Skipping Refresh because Skipping

Refresh still requires performing some blocking refresh; on

the other hand, when Nonblocking Refresh can completely

keep up with blocking refresh, all blocking refreshes can be

prevented. More memory systems show performance improve-

ment relative to Skipping Refresh under 16gb DRAM chips

than under 32gb DRAM chips because 16gb chips have shorter

refresh latency, which enables Nonblocking Refresh to more

easily keep up with blocking/full-rank refresh. Note that while

the performance of Nonblocking Refresh is within 3%, on

-15%

-5%

5%

15%

25%

35%

45%

55%

bt
.D

cg
.D

is
.D

lu
.D

m
g.

D
m

ix
A

m
ix

B
m

ix
C

m
ix

D
m

ix
E

m
ix

F
m

ix
G

sp
.D

ua
.D

A
ve

ra
ge

bt
.D

cg
.D

is
.D

lu
.D

m
g.

D
m

ix
A

m
ix

B
m

ix
C

m
ix

D
m

ix
E

m
ix

F
m

ix
G

sp
.D

ua
.D

A
ve

ra
ge

16Gb 32Gb

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

vs. Conventional Refresh vs. Skipping Refresh

Fig. 14. Performance improvement for MCC X8 memory systems.

-15%
-10%

-5%
0%
5%

10%
15%
20%
25%
30%
35%

bt
.D

cg
.D

is
.D

lu
.D

m
g.

D
m

ix
A

m
ix

B
m

ix
C

m
ix

D
m

ix
E

m
ix

F
m

ix
G

sp
.D

ua
.D

A
ve

ra
ge

bt
.D

cg
.D

is
.D

lu
.D

m
g.

D
m

ix
A

m
ix

B
m

ix
C

m
ix

D
m

ix
E

m
ix

F
m

ix
G

sp
.D

ua
.D

A
ve

ra
ge

16Gb 32Gb

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

vs. Conventional Refresh vs. Skipping Refresh

Fig. 15. Performance improvement for SCC X4 memory systems.

average, of Skipping Refresh, Nonblocking Refresh meets the

required amount of refresh and, therefore, is applicable to

systems with strict security and reliability requirements.

Figure 15 shows that Nonblocking Refresh consistently

provides higher performance than conventional refresh for

all the workloads with a MCC X8 memory system. cg.D
enjoys the highest performance improvement - 28% and 51%

- for 16gb and 32gb DRAM, respectively. Figure 14 shows

both memory-intensive workloads such as bt.D and lu.D (see

Figure 12) and workloads with low bandwidth utilization,

such as mixC and mixG, can benefit from Nonblocking

Refresh; workloads with low bandwidth utilization also benefit

from reducing blocking refreshes because the long refresh

latency of > 500ns can still stall execution for a long time

even if memory accesses are less frequent. Figure 14 shows

the performance improvement of Nonblocking Refresh for a

SCC X4 memory system follows similar trends.

B. Power Comparison

Figure 16 shows the power consumption of memory systems

with Nonblocking Refresh normalized to memory systems

with conventional blocking refresh and Skipping Refresh. The

power consumption of memory systems with Nonblocking Re-

fresh is higher than memory systems with conventional refresh.

This is because Nonblocking Refresh improves performance

compared to conventional refresh; as such, memory systems

with Nonblocking Refresh can complete more read requests

and, therefore, consume more power. For this reason, Figure

16 shows that the power increase for systems which gain the

least performance benefit from Nonblocking Refresh, such as

SCC X4, is lower than that of systems which gain the most

performance benefit from Nonblocking Refresh, such as RAIM

and MCC X8. Note that while Nonblocking Refresh improves

-5%

-3%

-1%

1%

3%

5%

7%

SCC_X4 SCC_X8 MCC_X4 MCC_X8 RAIM SCC_X4 SCC_X8 MCC_X4 MCC_X8 RAIM
16Gb 32Gb

N
or

m
al

iz
ed

 m
em

or
y

po
w

er vs. Conventional Refresh vs. Skipping Refresh

Fig. 16. Memory power vs. Conventional Refresh and Skipping Refresh.

596

performance by 17% to 35%, it increases memory power

consumption by only 2% to 6%; this is because Nonblocking

Refresh reduces the average power consumption of memory

read requests since they are ignored by refreshing chips in a

rank when the rank is performing Nonblocking Refresh.

C. Performance Analysis for Faulty Ranks

To quantify the effects of permanent chip failure on Non-

blocking Refresh, we evaluate the performance degradation

when a rank falls back on performing only conventional

blocking refresh. Figure 17 shows the performance of Non-

blocking Refresh for each memory configuration when one,

two, or three ranks out of the four ranks per channel only

perform conventional blocking refresh; this is normalized to

the performance of a memory system where all four ranks

are performing Nonblocking Refresh. The presence of faulty

ranks impacts the performance of memory systems with 32gb

DRAM more than memory systems with 16gb DRAM be-

cause the longer refresh latency in the former impacts system

performance more than the latter; as such, memory systems

with 32gb DRAM have more to lose when some of their ranks

cannot perform Nonblocking Refresh.

To estimate the average performance degradation due to

chip failures, we assume that a rank falls back on performing

only conventional blocking refresh after encountering a single

permanent multi-bank or multi-rank fault [27]; the memory

system retires all pages affected by smaller faults, such as

permanent bank, column, or row faults, because each such

fault affects only 0.4%−0.8% of each evaluated system’s total

memory capacity. Assuming the above and the memory chip

fault rates reported in [27], each rank falls back on performing

only conventional blocking refresh < 1% of the time, on

average across a seven-year lifetime.

D. Writeback Cache Size Sensitivity Analysis

The writeback cache is an important component of Non-

blocking Refresh. To evaluate how the writeback cache size

can affect Nonblocking Refresh performance, we measure

the performance of Nonblocking Refresh with increased and

decreased writeback cache sizes. Figure 18 shows the perfor-

mance of Nonblocking Refresh in SCC X4 memory systems

with a smaller, 36-Way 2KB per channel writeback cache

and with a larger, 36-Way 72 KB per channel writeback

cache; this is normalized to the performance of Nonblocking

80%

85%

90%

95%

100%

SCC_X4 SCC_X8 MCC_X4 MCC_X8 RAIM SCC_X4 SCC_X8 MCC_X4 MCC_X8 RAIM

16Gb DRAM Chips 32Gb DRAM ChipsPe
rfo

rm
an

ce
 n

or
m

al
iz

ed
 to

fa

ul
t-f

re
e

m
em

or
y

sy
ste

m
 3 Faulty Ranks/Channel 2 Faulty Ranks/Channel 1 Faulty Rank/Channel

Fig. 17. Sensitivity analysis for Nonblocking Refresh: performance of systems
with faulty chips normalized to performance of fault-free systems.

50%

60%

70%

80%

90%

100%

bt.D cg.D is.D lu.D mg.D sp.D ua.D mixA mixB mixC mixD mixE mixF mixG avgN
or

m
al

iz
ed

 p
er

fo
rm

an
ce

36-Way 2KB/Channel 36-Way 72KB/Channel

Fig. 18. Performance of Nonblocking Refresh with different writeback cache
sizes normalized to 32KB writeback cache.

Refresh in a SCC X4 memory system using 32gb DRAMs

with the proposed 36-Way 32KB per channel writeback cache.

Our evaluation shows that Nonblocking Refresh performance

does not benefit from a bigger 72KB writeback cache; this is

because a 36KB writeback cache is already large enough to

maintain the same write bandwidth for Nonblocking Refresh

as conventional systems. On the other hand, an insufficient

writeback cache size causes a significant degradation in Non-

blocking Refresh performance. For workloads such as lu.D
and mixD, which have high write bandwidth utilization (see

Figure 12), using a small 2KB writeback cache can degrade

performance by almost 40%.

VII. RELATED WORKS

A. Other Works that Leverage Redundant Data

To enable future DRAM density scaling, memory manu-

facturers may embed error correcting code (ECC) bits and

ECC logic within future memory chips [39], [40]; this is

known as on-die ECC. In the context of DDRx server memory,

on-die ECC has been proposed to correct bit errors due

to manufacturing defects in future DRAMs [39], [40]; one

can envision a strong-enough (and expensive-enough) on-

die ECC implementation that also reduces the refresh rate

of future DRAMs by correcting errors in DRAM cells with

lower retention time than average. However, how much refresh

rate can be reduced is limited by the mean/median retention

time, which keeps reducing as DRAM cell size reduces. As

such, Nonblocking Refresh, which can directly tackle the

performance overheads of high-rate refresh head on without re-

ducing refresh rate, provides orthogonal/additive performance

benefits/scaling beyond techniques that do require reducing

DRAM refresh rate to improve memory performance.

Erasure coding has been used in other contexts to compute

data in temporarily inaccessible storage or memory devices.

For example, BitTorrent, a popular peer-to-peer file sharing

network, creates redundant file chunks using erasure codes

to enable clients to compute inaccessible file chunks stored

in temporarily off-line peers from redundant file chunks dis-

tributed across the network [41]. Shibo et al. [42] propose

adding redundant HMCs (Hybrid Memory Cubes) storing

erasure codes to compute the data stored in HMCs currently

placed in inaccessible power-down modes. Yan et al. [43]

propose using erasure coding to compute data in Flash chips

that are occupied by on-going garbage collection operations.

Mohammad et al. [44] propose adding redundant PCM (Phase

Change Memory) chips to store erasure codes to compute

597

inaccessible data stored in PCM chips occupied by long

latency writes. However, we apply erasure codes in the context

of DRAM refresh and address many new challenges specific

to this new application context.

B. Fine-Grained Refresh

Other works have proposed leveraging fine-grained control

of refresh scheduling to enhance parallelization of refresh and

access to DRAM. Alternative refresh modes that operate at

a finer granularity than traditional refresh break each refresh

operation into smaller units. Although this offers some perfor-

mance benefits by reducing the size of inaccessible memory

region in each refresh cycle, access to a refreshing block still

stalls; as such, fine-grained refresh is a stopgap solution that

do not scale well in the face of growing DRAM density.

One type of fine-grained refresh is per-row refresh, which

refreshes one row every refresh command. This requires

significantly more refresh commands than traditional refresh,

leading to increased consumption of command bus bandwidth.

Support for per-row refresh in standard DRAM has been

deprecated due to its high command bus overhead.

DDR4 DRAM includes a Fine Granularity Refresh (FGR)

feature with 2x and 4x refresh modes as an alternative to

traditional 1x mode. By refreshing fewer rows per command

than 1x mode, 2x and 4x refresh modes have a shorter tRFC
at the cost of issuing commands twice and four times more

frequently, respectively. The success of FGR is limited be-

cause tRFC does not decrease proportionally with increasing

refresh rate. More specifically in a 16gb DDR4 system, 2x

mode takes almost 30% longer than 1x mode refresh the same

number of rows [19]. Due to this overhead, previous works

have found that FGR offer small performance benefits [2].

VIII. GENERALITY OF NONBLOCKING REFRESH

While we apply Nonblocking Refresh in the context of

server memory systems, Nonblocking Refresh is applicable

to DRAM-based memory systems in general. For example,

desktop/laptop memory systems use the same rank architec-

ture as server memory systems; therefore, they can perform

Nonblocking Refresh by adding a redundant chip to the rank

and then use the same Nonblocking Refresh implementation

as we described for server memory systems.

Nonblocking Refresh is also applicable to memory systems

that access only one DRAM chip per memory request, such

as High Bandwidth Memory (HBM) and smartphone memory

(i.e., LPDDRX DRAM), because the internal organization with

each DRAM die mirrors a memory channel’s organization.

Consider HBM for example. There are multiple banks sharing

a common data bus in each DRAM die [45], just like there

are multiple ranks in a channel sharing a common data bus.

There are also multiple sub-arrays per bank just like there

multiple chips per rank [45]. In addition, each memory block

is spread across multiple sub-arrays in one bank of a DRAM

die, just like how a memory block is spread across a rank [45].

As such, HBM devices can implement Nonblocking Refresh

by refreshing a portion of the sub-arrays in a bank at a time

and adding redundant sub-arrays to each bank to compute the

inaccessible data in refreshing sub-arrays.
In addition to improving raw system performance, avoiding

read stalls due to DRAM refresh also reduces performance

variability. Performance variability is a major concern for

real-time systems because it complicates task scheduling.

Conventional blocking DRAM refresh introduces a significant

source of performance variability for real-time systems [46],

[47]. As such, applying Nonblocking Refresh to the memory

systems of real-time systems also provides an added benefit

of simplifying task scheduling.

IX. CONCLUSION

Modern DRAM requires increasingly frequent refresh op-

erations that block memory read requests and, therefore, slow

down system performance. To effectively tackle the increasing

performance overhead of memory refresh, many prior works

have proposed skipping refresh operations; however, this can

reduce security and reliability. A new solution is needed for

systems with strict security and reliability requirements.
To effectively address increasing refresh latency without

resorting to skipping refresh, we propose Nonblocking Refresh
to refresh DRAM without stalling reads to refreshing memory

blocks. Nonblocking Refresh works by refreshing only some

of the data in a memory block at a time and uses redundant

data, such as Reed-Solomon code, to compute the inacces-

sible data in the refreshing block to complete read requests.

Compared to the conventional approach of refreshing all the

data in a block at a time, Nonblocking Refresh makes up

for refreshing only some of the data in a block at a time

by operating more frequently in the background. Nonblocking

Refresh transforms DRAM to behave like SRAM at the

system-level by enabling DRAM to refresh in the background

without stalling read requests to refreshing memory blocks.
For proof of concept, we apply Nonblocking Refresh to

server memory systems, which value security and reliability.

We observe that modern server memory systems contain

redundant data to recover from memory chip failures; because

this redundant data is budgeted for the worst-case memory

hardware failure scenarios, a large fraction of the redundant

data is not being used in the common case when there are

no/little hardware errors to correct. As such, we propose

utilizing the under-utilized redundant data in server memory

systems to compute the inaccessible data stored in refreshing

chips. Our evaluations show that on average across five server

memory systems with hardware failure protection strengths,

Nonblocking Refresh improves performance by 16.2% and

30.3% for 16gb and 32gb DRAM chips, respectively.

REFERENCES

[1] K. K. W. Chang, D. Lee, Z. Chishti, A. R. Alameldeen, C. Wilkerson,
Y. Kim, and O. Mutlu, “Improving dram performance by parallelizing
refreshes with accesses,” in 2014 IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA), pp. 356–367, Feb
2014.

[2] J. Mukundan, H. Hunter, K.-h. Kim, J. Stuecheli, and J. F. Martı́nez,
“Understanding and mitigating refresh overheads in high-density ddr4
dram systems,” SIGARCH Comput. Archit. News, vol. 41, pp. 48–59,
June 2013.

598

[3] P. Nair, C. C. Chou, and M. K. Qureshi, “A case for refresh pausing
in dram memory systems,” in 2013 IEEE 19th International Symposium
on High Performance Computer Architecture (HPCA), pp. 627–638, Feb
2013.

[4] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: Approximate data types for safe and general low-
power computation,” SIGPLAN Not., vol. 46, pp. 164–174, June 2011.

[5] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “Raidr: Retention-aware
intelligent dram refresh,” SIGARCH Comput. Archit. News, vol. 40,
pp. 1–12, June 2012.

[6] I. Bhati, Z. Chishti, S. L. Lu, and B. Jacob, “Flexible auto-refresh:
Enabling scalable and energy-efficient dram refresh reductions,” in
2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA), pp. 235–246, June 2015.

[7] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang,
and O. Mutlu, “Adaptive-latency dram: Optimizing dram timing for the
common-case,” in 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), pp. 489–501, Feb 2015.

[8] M. K. Qureshi, D. H. Kim, S. Khan, P. J. Nair, and O. Mutlu, “Avatar:
A variable-retention-time (vrt) aware refresh for dram systems,” in
2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pp. 427–437, June 2015.

[9] M. Patel, J. S. Kim, and O. Mutlu, “The reach profiler (reaper): Enabling
the mitigation of dram retention failures via profiling at aggressive
conditions,” in Proceedings of the 44th Annual International Symposium
on Computer Architecture, ISCA ’17, (New York, NY, USA), pp. 255–
268, ACM, 2017.

[10] S. Khan, C. Wilkerson, Z. Wang, A. R. Alameldeen, D. Lee, and
O. Mutlu, “Detecting and mitigating data-dependent dram failures by
exploiting current memory content,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-50
’17, (New York, NY, USA), pp. 27–40, ACM, 2017.

[11] M. Lanteigne, “How rowhammer could be used to exploit weaknesses in
computer hardware,” march 2016. http://www.thirdio.com/rowhammer.

[12] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of dram disturbance errors,” in 2014
ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), pp. 361–372, June 2014.

[13] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote
software-induced fault attack in javascript,” in Proceedings of the 13th
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment - Volume 9721, DIMVA 2016, (New York, NY,
USA), pp. 300–321, Springer-Verlag New York, Inc., 2016.

[14] Y. Jang, J. Lee, S. Lee, and T. Kim, “Sgx-bomb: Locking down the
processor via rowhammer attack,” Proceedings of the 2nd Workshop on
System Software for Trusted Execution (SysTEX), October 2017.

[15] S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and O. Mutlu,
“The efficacy of error mitigation techniques for dram retention failures:
A comparative experimental study,” SIGMETRICS Perform. Eval. Rev.,
vol. 42, pp. 519–532, June 2014.

[16] AMD, “BIOS and Kernel Developer’s Guide (BKDG) for AMD Family
15h Models 00h-0Fh Processors,” 2013.

[17] D. Henderson, “Power8 processor-based systems ras,” October 2014.

[18] Intel, “Intel E7500 Chipset MCH Intel x4 SSDC,” 2002.
http://www.intel.com/content/www/us/en/chipsets/e7500-chipset-mch-
x4-single-device-data-correction-note.html.

[19] “Jedec memory specifications,” 2004. http://www.jedec.org/.

[20] M. T. Inc., “Speed vs. latency: why cas latency isn’t an accurate mea-
sure of memory performance,” 2015. https://pics.crucial.com/wcsstore/
CrucialSAS/pdf/en-us-c3-whitepaper-speed-vs-latency-letter.pdf.

[21] Micron, 8Gb: x4, x8, x16 DDR4 SDRAM, 2015.

[22] MICRON, “2Gb: x4, x8, x16 DDR2 SDRAM,” MICRON, 2006.

[23] MICRON, “2Gb: x4, x8, x16 DDR3 SDRAM,” 2006.
https://www.micron.com/\textasciitilde/media/Documents/Products/
Data\%20Sheet/DRAM/DDR3/2Gb\ DDR3\ SDRAM.pdf.

[24] “Jedec standard ddr4 sdram,” June 2017.
https://www.jedec.org/sites/default/files/docs/JESD79-4.pdf.

[25] ITIC, “Itic 2015 - 2016 global server hardware, server os reliability
report,” 2015. http://www.lenovo.com/images/products/system-x/pdfs/
white-papers/itic\ 2015\ reliability\ wp.pdf.

[26] K. W. Cameron, “Energy efficiency in the wild: Why datacenters fear
power management,” Computer, vol. 47, pp. 89–92, Nov 2014.

[27] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Guru-
murthi, “Feng shui of supercomputer memory: Positional effects in dram
and sram faults,” in Proceedings of SC13: International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
’13, (New York, NY, USA), pp. 22:1–22:11, ACM, 2013.

[28] B. Aichinger, “Ddr5: The new jedec standard for computer main mem-
ory,” 2017. https://www.futureplus.com/ddr5-the-new-jedec-standard-
for-computer-main-memory/.

[29] A. Kumar and S. Sawitzki, “High-throughput and low-power architec-
tures for reed solomon decoder,” in Conference Record of the Thirty-
Ninth Asilomar Conference onSignals, Systems and Computers, 2005.,
pp. 990–994, October 2005.

[30] J. D. C. Little and S. C. Graves, Little’s Law, pp. 81–100. Boston, MA:
Springer US, 2008.

[31] T. Willhalm, “Independent channel vs. lockstep mode - drive your
memory faster or safer,” July 2014. https://software.intel.com/en-
us/blogs/2014/07/11/independent-channel-vs-lockstep-mode-drive-you-
memory-faster-or-safer.

[32] S. Lin and D. J. Costello, Error Control Coding, Second Edition. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 2004.

[33] D. Hayslett, “System z Redundant Array of Independent Memory.”
[34] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, pp. 1–7, Aug. 2011.

[35] H. Labs, “Cacti 6.5.” http://www.hpl.hp.com/research/cacti/cacti65.tgz.
[36] “Nas parallel benchmarks.” http://www.nas.nasa.gov/publications/npb.

html.
[37] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible dram

simulator,” IEEE Computer Architecture Letters, vol. 15, pp. 45–49, Jan
2016.

[38] K. Chandrasekar, C. Weis, Y. Li, S. Goossens, M. Jung, O. Naji,
B. Akesson, N. Wehn, and K. Goossens, “Drampower: Open-source
dram power & energy estimation tool.” http://www.drampower.info.

[39] S. Cha, S. O, H. Shin, S. Hwang, K. Park, S. J. Jang, J. S. Choi, G. Y.
Jin, Y. H. Son, H. Cho, J. H. Ahn, and N. S. Kim, “Defect analysis
and cost-effective resilience architecture for future dram devices,” in
2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 61–72, Feb 2017.

[40] U. Kang, H. soo Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang,
and J. S. Choi, “Co-architecting controllers and dram to enhance dram
process scaling,” THE MEMORY FORUM, 2014.

[41] S. Spoto, R. Gaeta, M. Grangetto, and M. Sereno, “Bittorrent and foun-
tain codes: friends or foes?,” in 2010 IEEE International Symposium on
Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW),
pp. 1–8, April 2010.

[42] S. Wang, Y. Song, M. N. Bojnordi, and E. Ipek, “Enabling energy
efficient hybrid memory cube systems with erasure codes,” in 2015
IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED), pp. 67–72, July 2015.

[43] S. Yan, H. Li, M. Hao, M. H. Tong, S. Sundararaman, A. A. Chien,
and H. S. Gunawi, “Tiny-tail flash: Near-perfect elimination of garbage
collection tail latencies in NAND ssds,” in 15th USENIX Conference on
File and Storage Technologies (FAST 17), (Santa Clara, CA), pp. 15–28,
USENIX Association, 2017.

[44] M. Arjomand, M. T. Kandemir, A. Sivasubramaniam, and C. R. Das,
“Boosting access parallelism to pcm-based main memory,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer Archi-
tecture (ISCA), pp. 695–706, June 2016.

[45] B. Giridhar, M. Cieslak, D. Duggal, R. Dreslinski, H. M. Chen, R. Patti,
B. Hold, C. Chakrabarti, T. Mudge, and D. Blaauw, “Exploring dram
organizations for energy-efficient and resilient exascale memories,” in
2013 SC - International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pp. 1–12, Nov 2013.

[46] B. Bhat and F. Mueller, “Making dram refresh predictable,” in 2010
22nd Euromicro Conference on Real-Time Systems, pp. 145–154, July
2010.

[47] H. Kim, D. Broman, E. A. Lee, M. Zimmer, A. Shrivastava, and
J. Oh, “A predictable and command-level priority-based dram controller
for mixed-criticality systems,” in 21st IEEE Real-Time and Embedded
Technology and Applications Symposium, pp. 317–326, April 2015.

599

