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Abstract—Emerging high-density non-volatile random access
memories (NVRAMs) can significantly enhance server main
memory by providing both higher memory density and fast
persistent memory. An unique design requirement for server
main memory is strong reliability because uncorrectable errors
can cause a system crash or permanent data loss. Traditional
dynamic random access memory (DRAM) subsystems have used
chipkill-correct to provide this reliability, while storage systems
provide similar protection using very long ECC words (VLEWs).

This paper presents an efficient chipkill-correct scheme for
persistent memory based on high-density NVRAMs. For effi-
ciency, the scheme decouples error correction at boot time from
error correction at runtime. At boot time, when bit error rates
are higher, the scheme uses VLEWs to efficiently ensure reliable
data survival for a week to a year without refresh by correcting
a large number of bit errors at low storage cost. At runtime,
when bit error rates are lower, it reuses each memory block’s
chip failure protection bits to opportunistically correct bit errors
at high performance. The proposal incurs a total storage cost of
27%. Compared to a bit error correction scheme, the proposal
adds chip failure protection at no additional storage cost and at
2% average performance overhead.

Index Terms—ECC, Microarchitecture, Persistent Memory
Systems, Reliability

I. INTRODUCTION

Emerging high-density non-volatile random access mem-

ories (NVRAMs), such as multi-level phase change mem-

ory (PCM) and resistive random access memory (ReRAM),

provide both higher density than DRAM and fast persistent

memory [1]–[13]. High memory density is attractive for server

systems, whose memory needs have increased due to big data,

in-memory computing, and server virtualization. Persistent

memory can accelerate I/O-intensive server applications by

providing fast access to non-volatile storage at memory block

granularity instead of the page granularity provided by storage

systems. As such, dense NVRAM-based memory may find

wide adoption among future server memory systems.

A key design requirement for server memory systems is

reliability because an uncorrectable error can cause a system

crash resulting in costly downtime; large-scale surveys report

service downtime costs of millions of dollars per hour [14],

[15]. In the context of persistent memory, uncorrectable errors

can also cause permanent data corruption because data stored

in persistent memory may not be backed up in storage.

To ensure reliability, DRAM-based server memory systems

implement chipkill-correct as a standard feature to protect

against both bit errors and memory chip failures. Improv-

ing the efficiency of chipkill-correct is an active area of

research [16]–[31]. Providing chipkill-correct for NVRAM-

based memory systems is challenging, however, because dense

NVRAMs have higher random raw bit error rates (RBER) than

DRAM [32]–[38]. RBER is especially high after a long time

without refresh (i.e., a week to a year), and the ability to

reliably tolerate long intervals without refresh is essential for

NVRAMs to serve as persistent memory. As demonstrated in

Section III-B, using DRAM chipkill-correct to tolerate the high

NVRAM RBER incurs expensive (e.g., 69%) storage costs.

Storage systems also need to tolerate both chip failures and

high RBER. Storage systems incur low storage overheads by

using very long ECC words (VLEWs) to correct errors. At a

given error rate, longer ECC words provide equivalent relia-

bility to shorter ECC words with less storage overhead [39].

Applying VLEWs to main memory is challenging, however,

because the access granularity of main memory is much

smaller than the size of VLEWs, as VLEWs protect storage

systems, whose access granularity is much bigger than main

memory. Therefore, protecting main memory with VLEWs

incurs high read bandwidth overhead as each read request must

over-fetch many memory blocks to check the ECC. Protecting

main memory with VLEWs also incurs high write bandwidth

overhead because updating code bits for a write request

requires a read-modify-write operation when the codeword is

bigger than the written block.

This paper explores efficient chipkill-correct for NVRAM-

based persistent memory. To provide efficient chipkill-correct

for dense NVRAM-based persistent memory, we decouple

correction of NVRAM bit errors at boot time from correction

of NVRAM bit errors at runtime. We use storage-optimized

VLEWs where each ECC word spans tens of blocks to ensure,

at minimum storage cost, reliable data survival between the
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last system outage and the next reboot; we use performance-

optimized short ECC words, where each word spans a single

block, to correct bit errors at runtime to minimize read band-

width cost. Instead of using a dedicated short ECC to correct

bit errors at runtime, our scheme reuses each block’s chip

failure protection bits to opportunistically correct bit errors

at runtime to minimize storage cost for runtime. To reduce

write bandwidth overhead for updating VLEW code bits, we

observe that dirty persistent memory blocks occupy only a

small fraction of on-chip cache capacity, on average, because

applications that use persistent memory frequently clean dirty

persistent memory blocks (i.e., memory blocks belonging to

persistent memory regions) [1]–[6]. As such, we propose pre-

serving old memory values of dirty persistent memory blocks

in the last-level cache to reduce write bandwidth overhead at

runtime; since the number of dirty persistent memory blocks

in the cache is small, this incurs a small dynamic reduction

in usable cache capacity. Compared to providing only bit

error correction for persistent memory, the proposal adds chip

failure protection while incurring no extra storage cost and

only 2% average performance cost across many persistent

memory applications.

II. BACKGROUND

A. Memory organization and technologies

Server memory systems access a group or rank of memory

chips in lockstep for each memory request. The amount of data

transferred per request is called a memory block. Each block

is typically 64B. Each memory chip typically contributes 8B1

to the accessed block.

NVRAMs capable of DRAM-like latency, such as PCM,

ReRAM, and STT-RAM, are emerging as viable memory

technologies for future systems due to their higher storage

density and non-volatility [41]–[44]. NVRAMs can provide

higher density than DRAM for the same feature size because

the material can often store multiple logical bits per cell and

support a crossbar array architecture, which is ∼50% density

than 1T1C DRAM arrays [45] [44]. NVRAMs can provide

non-volatility because the bit cells have much longer retention

time than DRAM.

NVRAM subsystems will likely have similar chip structure

and system organization as DRAM subsystems [41]–[44],

[46]–[51]. Therefore, maximizing the reuse of existing infras-

tructure and standards facilitates NVRAMs’ adoption. Many

DRAM-like NVRAM chips and modules have been prototyped

and manufactured [52]–[55]. 3DXPoint [56], a commercially

available non-volatile memory for servers, also spreads each

access across a group of chips like accesses to a rank in server

memory [57]–[59].

B. Bit Errors in NVRAMs

Figure 1 shows the RBERs of 2-bit PCM, 3-bit PCM,

and ReRAM reported in recent studies [34], [60]–[64]. For

1Although current DDR4 X4 chips transmit only 4B data per access, DDR5
X4 chips will also transmit 8B data [40].

Fig. 1. RBERs of memory and storage.

comparison, Figure 1 also includes the RBER of commer-

cially available Flash devices and the cell fault rate of 28nm

DRAM [29], [65], [66]. The RBERs of NVRAMs resembles

Flash more than DRAM.

The RBER of high-density NVRAMs increases with the

amount of time since last write or refresh; this is the reason

for the wide range of RBER in Figure 1. Similar behavior

also exists in Flash; Cai et al. [66] report that the RBER of

Flash cells three months after last write can be 100X higher

than RBER one day after last write. In general, all memories

(e.g., HDD, Flash, NVRAM, DRAM) forget data over time;

the longer since last memory refresh, the more data memory

loses. To ensure data survive across system outages, which

can last a long time, persistent memory must tolerate the high

RBER after a long time without refresh. We target a RBER

of 10−3 for persistent memory; this corresponds to the RBER

of ReRAM one year since last refresh [63] and the RBER of

3-bit PCMs one week after last refresh [60].

The raw bit errors in dense NVRAMs are predominantly

stochastic, similar to DRAM soft errors [33], [34]. In par-

ticular, bit errors in multi-level PCMs are dominated by

resistance drift and bit errors in ReRAM and STT-RAM are

dominated by retention errors, both of which are random

processes [34], [60], [61], [63], [64]. Wear errors in ReRAMs

are also probabilistic; the probability that a given cell will be

read erroneously rises gradually with the number of writes to

that cell before eventually reaching 100% [64].

III. PROBLEM

Due to the high RBER of dense NVRAMs, simply extend-

ing prior works on memory error correction to implement

chipkill-correct for dense NVRAM-based persistent memory

incurs prohibitive storage overheads. For the remainder of this

paper, we assume a reliability target of less than one block with

an uncorrectable error (UE) per 1015 blocks [60] and less than

one block with silent data corruption (SDC) per 1017 blocks

at any instant (e.g., boot time or runtime) during the mem-

ory system’s lifetime. We use standard combinatorial error

probability analysis throughout the paper, similar to [34]. For

simplicity, our analytical model assumes that write requests

do not provide any free error scrubbing effect, similar to [34].

A. Extending prior work on NVRAM bit error correction

Prior works have explored how to correct NVRAM random

bit errors [33], [34], [67]. They protect each 64B memory
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block with a multi-bit-correcting BCH code. For example, to

tolerate PCM RBER up to 10 minutes after last refresh, Awashi

et al. [33] propose protecting each block with a BCH code that

can correct up to eight bits of errors (i.e., 8-bit-EC BCH);

similarly, to tolerate the RBER of STT-RAMs five seconds

after last refresh, Naeimi et al. [34] propose protecting each

block with a 5-bit-EC BCH. One way to tolerate 10−3 RBER

for NVRAM-based persistent memory is to protect each block

with a stronger 14-bit-EC BCH. BCH requires t(�log2(k)�+
1) code bits to correct t bad bits when protecting k bits of

data; protecting each 64B memory block with 14-bit-EC BCH

incurs 28% storage overhead. 14-EC BCH provides adequate

protection against 10−3 RBER.

Note that simply increasing the strength of BCH ECC to

14-bit ECC only provides bit error protection, but not chip

failure protection. A single chip failure in the rank can cause

up to 64 bits of errors in each block. Strengthening the short

per-block BCH ECC to correct the 64 bits of errors due to

chip failure requires increasing its strength to 64 + 14 =78-

bit error correction, which incurs a prohibitive 152% storage

overhead.

Some prior works on addressing NVRAM RBER have

proposed limiting memory density; NVRAM RBER is lower

when memory density is lower. For example, Seong et al.

[68] propose reducing PCM RBER by limiting the number

of logical bits per cell to 1.5; this comes at a high cost of

100% capacity overhead compared to allowing 3 bits/cell.

This approach is also not scalable. For example, commercially

available QLC Flash cells has recently scaled up to four bits

per cell; ideally, we want NVRAMs to benefit from similar

scaling.

B. Extending prior works on DRAM chipkill-correct to per-
sistent memory based on dense NVRAMs

The fault rate of DRAM cells may rise sharply to 10−4

in future generations of higher density DRAMs [28], [29],

[31]. As such, several recent works have explored chipkill-

correct for DRAMs with high cell fault rate [28], [29], [31].

Unlike bit errors in NVRAMs, which are random, bit errors

in DRAMs are dominated by permanent cell faults, such as

stuck-at-faults [28], [29], [31]. Weak ECCs can tolerate very

high rates of permanent cell faults (e.g., even when 0.01%

of all cells are permanently faulty) [28], [29], [31]; because

permanently faulty cells can be identified at manufacturing

time, memory chip or module manufactures can simply discard

chips or even memory modules with patterns of permanent

faulty cells that are uncorrectable by the weak ECCs at a small

yield loss [28], [29], [31]. However, when the large set (e.g.,

millions) of erroneous bits keep changing over time, which is

the case when bit errors are random, weak ECCs can no longer

provide adequate protection. For example, DUO [31], the most

recent work on chipkill-correct for DRAMs with high cell fault

rates, only tolerates up to 10−10 random bit error rate2.

2Random RBER of 10−10 is calculated from the worst-case random error
modeling assumption in [31] where 10−5 of DRAM cells are intermittently
faulty cells and each such cell has a 10−5 error activation probability.

Fig. 2. Total storage cost when adapting DRAM chipkill-correct to implement
chipkill-correct for dense NVRAM-based persistent memory.

A simple approach to extend prior works on DRAM

chipkill-correct to protect dense NVRAM-based persistent

memory is to add more code bits to each codeword to

correct more bit errors. XED [28] and a Samsung study

[29] protect every group of 8B and 16B of data within each

chip, respectively, with a BCH ECC to correct bit errors in

individual data chips and then use a parity chip to correct a

faulty chip in the rank. One simple way to adapt these works to

NVRAM-based persistent memory is to increase the number

of code bits in each BCH ECC word. DUO [31] uses a Reed-

Solomon (RS) code to protect each 64B block against both bit

errors and chip failures. RS ECC corrects errors at the byte

granularity, at the storage cost of two check bytes to correct

each erroneous data byte; when the locations of the bad bytes

are known, however, as is the case for errors due to a chip

failure, RS ECC can correct each bad byte using just one

check byte via erasure correction. A bad byte whose location

is known is called an erasure. DUO uses one RS check byte

to correct each chip-failure-induced erasure and uses two RS

check bytes to correct each random bit error. DUO can be

extended to NVRAMs again by simply increasing the strength

of RS ECC to tolerate the higher RBER. However, the above

simple extensions incur high storage overheads, as shown in

Figure 2; the lowest storage cost for 10−3 RBER is 69%.

IV. MOTIVATION AND CHALLENGES

We observe storage systems also need to tolerate both

chip failures and high RBER. Storage systems commonly use

strong ECC (e.g., 12 to 41 error correction [69], see Figure

3) to tolerate high RBER and use a parity disk/chip to correct

chip/disk failures. Storage systems require very low redun-

dancy, however; assuming eight data chips and one parity chip,

the total storage overhead is only 13%+1/8∗(1+13%)=27%

when protecting MLC Flash chips against bit errors using 41-

bit-EC. Storage systems enjoy such low redundancy despite

using strong (e.g., 41-bit-EC) codes by exploiting a well-

known fact in coding theory that longer ECC words require

less storage cost than shorter ECC words to ensure same

reliability for the same RBER [39]. Storage systems have very

large access granularity (i.e., 4KB) and, therefore, naturally

benefit from VLEWs. Figure 3 shows BCH ECC words

commonly used in commercial Flash chips; all ECC words

in Figure 3 contain 512B of data.
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Fig. 3. Bit error correcting ECC in Flash [69]. Flash uses very strong ECCs
(e.g., 41-bit-EC) and reduce storage cost of strong ECCs by using VLEWs
each containing 512B of data.

Figure 4 shows the total storage cost when extending

storage-inspired protection to NVRAMs by using VLEWs to

correct bit errors and by using one parity chip for every data

chips to correct a chip failure; Figure 4 shows BCH words

of different lengths for comparison. When using VLEWs with

256B of data, total storage cost to tolerate both NVRAM bit

errors and chip failure reduces to 27%, which matches the 28%

storage cost of bit error protection alone (see Section III-A).

A. Read Challenges when Using VLEWs

While protecting persistent memory with VLEWs enables

storage-optimized chipkill-correct, it comes at high memory

bandwidth overhead. Because the access granularity of main

memory is much smaller than that of storage systems, each

VLEW spans many blocks when used in main memory. This

is worsened by the fact that each VLEW only protects data

within a single3 chip; the 256B of data in a VLEW spans

256B/8B = 32 memory blocks. For 10−3 RBER, each

VLEW must correct up to 22 bad bits, which requires 33B

of BCH code bits; as such, the code bits in each VLEW span

33B/8B ≈ 4 blocks. Using VLEWs to correct bit errors in

one block requires fetching 32+4−1 = 35 additional blocks;

this translates to high bandwidth overheads, especially when

RBER is high, which causes frequent error correction. While

RBER is relatively lower at runtime when memory can be

refreshed, it is still very high in absolute terms. For example,

the RBER of ReRAM is ∼7 · 10−5 [63] at runtime.

Under 7 · 10−5 RBER, 4% of accesses still contain bit

error(s); correcting bit errors for 4% of accesses incurs

4%·35 = 140% bandwidth overheads for read requests. For 3-

bit PCM, RBER is also 7·10−5 if refreshed once every second

[60]. Unfortunately, refreshing NVRAMs requires correcting

errors that have accumulated in NVRAMs; fetching all blocks

to correct their errors once every second causes high (e.g.,
∼1000%) memory bus bandwidth overhead even for small

memory channels with small amount of NVRAMs (e.g.,

3If each VLEW protects data across all chips in a rank, a chip failure can
cause hundreds of bit errors in up to all VLEWs in the affected rank, rendering
all VLEWs uncorrectable; correcting a faulty chip via the parity chip requires
first correcting bit errors in working chips via the VLEWs.

Fig. 4. Storage cost vs. codeword length.

160GB). For a more realistic refresh rate of once per hour, the

RBER of 3-bit PCM increases to 2 · 10−4 [60], which causes

10.3% of memory accesses to contain bit errors. Correcting

bit errors for 10.3% of accesses incurs 10.3% · 35 = 360%
overall bandwidth overheads for reads.

One possible solution to mitigate the high bandwidth over-

heads is to perform VLEW error correction within NVRAM

chips themselves. However, this is expensive because VLEWs

are very long and strong (e.g., 22-bit-EC over 2048 bits

of data). For example, Flash chips with embedded error

correction suffer from either lower performance (e.g., 3X

[70], [71]) or lower (e.g., 16X [72]) density compared to raw

Flash chips, which rely on processor-side error correction.

Flash chips with embedded correction logic also pay high

(e.g., 66%) energy overheads [70] and increases cost per bit

[73]. The high cost is because the memory manufacturing

process is sub-optimal for implementing complex logic due

to low transistor speed and low (e.g., three [74]) metal layer

count while VLEW correction requires solving complex large

systems of simultaneous equations [75].

B. Write Challenges when Using VLEWs

Protecting persistent memory with VLEWs also incurs high

bandwidth overheads for writes because writing to memory

requires updating the code bits protecting the modified data

block. Because the amount of code bits in each VLEW is

33B/8B ≈ 4X the access granularity of each chip, writing

the new VLEW code bits of a written data block to memory

requires four overhead write requests; this translates to 400%

overheads for writes. The common approach of mitigating

write bandwidth overhead via caching code bits can signif-

icantly complicate persistent memory design. If the system

crashes between the write of persistent memory data or log

and the write of their cached VLEW code bits, the written

data and their stale VLEW code bits in persistent memory

will be inconsistent with each other during system recovery

and cause uncorrectable errors; these uncorrectable errors can

cause irrecoverable persistent memory data corruption if they

affect committed data that are beyond rollback. While co-

designing persistent memory programming and VLEW code

bits caching to ensure reliable survival after system crash may
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Fig. 5. Read (TOP) and write (BOTTOM) memory bandwidth overheads
(shown in RED) when deploying VLEWs in persistent memory (PM).

be possible, it is complex because many memory blocks share

the same VLEW code bits.

One possible solution to the write bandwidth overhead is

to embed the encoder of VLEW code bits into NVRAM

chips; when the new code bits are encoded in-memory, the

processor no longer needs to perform any overhead write

requests to VLEW code bits to update them after regular data

write requests. Unlike error correction circuits, ECC encoding

circuits incur very small overheads even for VLEWs. Because

BCH ECC is a linear code, encoding simply calculates the

right hand side values for a system of linear equations where

all left hand side values are known [76]; this is far simpler than

correction, which solves this very large system of equations

with many unknown variables.

While the simple solution above eliminates overhead write

requests to VLEW code bits, there still remains the high

bandwidth overhead of accessing old data bits to compute

the new VLEW code bits. Because a VLEW is bigger than

a memory block, calculating the new VLEW code bits for

a write request requires both old data bits and code bits

as inputs. Specifically, ECCnew = ECCold ⊕ ECCUpdate;

ECCUpdate = f(x) ⊕ f(x′), where f is the ECC encoding

function, x is the new data to be written, and x′ is the old data

to be overwritten, and ⊕ is bitwise XOR [76]. While x′ and

ECCold reside in memory and thus can be fetched in memory

without incurring traffic over the memory bus, x′ and ECCold

can contain bit errors due to the high NVRAM RBER. Fortu-

nately, bit errors in ECCold are tolerable because they simply

propagate one-to-one (i.e., without spreading) to ECCnew

during bitwise XOR with ECCUpdate; unfortunately, using

a wrong x′ to calculate f(x′) to obtain ECCnew can directly

cause SDC. As such, the processor must fetch x′ from memory

for error detection/correction and send the corrected x′ back4

4I/O transmission errors can still occur when writing the old data back to
memory; however, modern memory chips use Write-CRC [77] to effectively
detect these I/O errors and dynamically alert the processor to retransmit.

to NVRAM chips; this incurs an expensive 200% bandwidth

overheads for write requests.

Figure 5 summarizes the error correction and write band-

width overheads when protecting persistent memory with

VLEWs. For clarity, Figure 5 shows only one NVRAM chip,

since all chips in a rank are identical, and assumes the case

where old data block happens to be error-free.

V. EFFICIENT CHIPKILL-CORRECT FOR DENSE

NVRAM-BASED PERSISTENT MEMORY

NVRAM RBER is lower at runtime, when memory can be

periodically refreshed, than at boot time when the NVRAM

has potentially gone a long time without refresh. As such,

a strong ECC is needed for boot time, but a weaker but

faster per-block ECC suffices to correct bit errors that occur

at runtime.

Therefore, to provide efficient chipkill-correct for dense

NVRAM-based persistent memory, we decouple correction of

NVRAM bit errors at boot time, when bit errors may have

accumulated due to a long power outage, from correction of

NVRAM bit errors at runtime. We propose using storage-

optimized VLEWs to ensure reliable data survival at low stor-

age cost and using performance-optimized short ECC words to

correct bit errors at runtime. We also explore optimizations for

both ECCs to address their respective drawbacks and achieve

low storage and performance cost.

A. Data and ECC Layout

Figure 6 shows the layout of data bits and ECC bits under

the proposed scheme. Within each chip, each group of 256B

data in the same row is part of the same VLEW; because the

access size of each chip is 8B, each VLEW spans 256/8 = 32
blocks. Each VLEW’s code bits are located in the same row as

the VLEW’s data bits by increasing the number of bits per row

in each chip, similar to Flash chips [78], [79]. Each VLEW

contains sufficient code bits to provide 22-bit error correction

to ensure data can reliably survive the high RBER after a long

time without refresh.

Each rank also contains a parity chip to tolerate a complete

chip failure. Each 8B from the parity chip protects 64B of

data from eight data chips. Data in the parity chip is encoded

using a Reed-Solomon code instead of a parity code [76].

The total storage cost due to the VLEW code bits in each

chip and the parity chip is 33/256+1/8∗(1+33/256) = 27%.

Fig. 6. Proposed rank-level data layout.
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B. Error Correction at Boot Time

At boot, the memory controller fetches all VLEWs to scrub

all bit errors that have accumulated in persistent memory.

Assuming 3GHz memory bus frequency, scrubbing a large

persistent memory system with a terabyte of memory per

channel takes less than 1.5 minutes. If a VLEW in a data chip

reports an uncorrectable error, a chip-level fault has occurred.

The memory controller uses the parity chip to correct the

faulty data chip. Through erasure correction, the eight Reed

Solomon check bytes can correct up to eight bad bytes in

the block to help correct a complete chip failure [76]. If the

chip with an uncorrectable error is the parity chip, the memory

controller recalculates the parity values in the parity chip using

the contents of the data chips.

C. Error Correction at Runtime

During normal operation, the memory controller fetches

64B of data and the associated eight RS check bytes from

the parity chip. The memory controller uses the RS check

bytes to opportunistically correct bit errors in the data without

needing to fetch the VLEW code bits from the parity chip.

The eight RS check bytes can correct up to four random

bytes of errors. When a memory access contains five or more

errors, the number of errors exceeds the ECC’s correction

capability and the ECC can miscorrect the errors, resulting in

silent data corruption (SDC). 1.5 · 10−7 of memory accesses

contain five or more errors assuming an RBER of 2 ·10−4 (see

Figure 7); under 2 · 10−4 RBER, using each block’s RS ECC

to correct all bit errors yields an SDC rate of 3.2 · 10−11 (see

Appendix), which is 3, 000, 000X higher than the SDC target

rate of 1 · 10−17. Assuming a lower RBER of 7 · 10−5 still

results in an SDC rate that is 18, 000X higher than the SDC

rate target.

To reliably correct random bit errors using per-block RS

ECC, we observe that a miscorrection is more likely to appear

as a large number of corrections (e.g., three or four bytes

in error) than as a small number of corrections (e.g., one or

two bytes in error). That is, a larger number of corrections

indicates a higher probability of a miscorrection. As such, we

set a threshold on the number of corrections. The threshold

is less than the number of errors the per-block RS ECC can

correct (i.e., four). We conservatively assume that accesses

with a larger number of corrections than the threshold may

Fig. 7. Distribution of number of bit errors in 64B memory requests assuming
2 · 10−4 RBER.

 
 

 
 

Fig. 8. When to accept (TOP) and when to reject (BOTTOM) the oppor-
tunistic bit error correction of per-block ECC.

Fig. 9. Correction at runtime.

be miscorrected, and fall back on VLEW correction in those

cases, as shown in Figure 8. Based on Figure 7, we set the

threshold to two errors because > 99.98% of accesses have

two or fewer errors. When using RS ECC to correct up to

two bits of errors, the SDC rate is 3.3 ·10−22 (see Appendix),

which is several orders of magnitude lower than the target rate.

Figure 9 shows the complete error correction procedure

at runtime. After receiving a memory block from off-chip

persistent memory, the memory controller uses the block’s RS

ECC to correct errors; if RS ECC makes no more than two

corrections, the memory controller accepts the RS correction

results and sends the corrected memory block to the last

level cache (LLC). If RS ECC either makes more than two

corrections or recognizes the errors as uncorrectable, the

memory controller fetches VLEWs to correct bit errors. Using

VLEWs to correct bit errors frees up per-block RS ECC to

correct errors from chip failures; as such, normal operation

continues to benefit from chip failure protection.

On average, 0.018% of reads require fetching VLEWs to

correct errors. This translates to a bandwidth overhead of

0.018% · 36 = 0.6%, which is much lower compared to 140%

to 360% overhead when using VLEWs alone (Figure 5).

D. VLEW Updates at Runtime

VLEW code bits must be updated for every write request.

Calculating new VLEW code bits for every write requires

a read-modify-write operation, incurring a 200% bandwidth

overhead (see bottom of Figure 5). However, persistent mem-

ory applications frequently write dirty persistent memory
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Fig. 10. Fraction of cachelines in the cache hierarchy (one 4MB LLC and
four 64KB L1) that are occupied by dirty persistent memory blocks.

blocks to memory proactively through cacheline cleaning

instructions such as clwb and clflush [1]–[6]. As such, dirty

persistent memory blocks occupy only a small amount of

on-chip cache capacity. Figure 10 shows that dirty persistent

memory blocks occupy 4% of the total number of cachelines

in the on-chip cache hierarchy, on average across our evalu-

ated persistent memory applications (see Section VI). Based

on the observation, we propose preserving the old memory

values (OMVs) of dirty persistent memory blocks in the last

level cache (LLC) at only a small dynamic cost to usable

LLC capacity; preserving the old memory values (OMVs) of

dirty persistent memory blocks helps to avoid the bandwidth

overhead of fetching OMVs from off-chip before writing to

persistent memory.

To preserve OMVs of dirty persistent memory blocks in

LLC, we add two bits to each LLC cacheline’s tag. One is the

“SameAsMem” (SAM) bit, which records whether the cache-

line currently has same value as off-chip persistent memory.

The other is the OMV bit, which records whether the cacheline

holds the OMV of a dirty persistent memory block. While

both bits record whether a cacheline has same value as off-

chip persistent memory, the difference is that cachelines with

SAM bits set are visible to/accessible by memory instructions,

but cachelines with their OMV bits set are not.

LLC cachelines update their SAM and OMV bits as follows.

After being filled with data arriving from persistent memory

or being cleaned by a cacheline cleaning instruction, an LLC

cacheline sets its SAM bit; a cacheline resets its SAM bit after

being filled with data from a dirty writeback from an upper-

level cache. When receiving a dirty writeback to a cacheline

with its SAM bit set, LLC preserves the cacheline’s OMV by

setting the cacheline’s OMV bit and allocating a different way

in the same cacheset to handle the dirty writeback.

The LLC uses the SAM and OMV bits as follows. Before

writing back or cleaning a dirty block, LLC searches within the

dirty block’s set for a block with its OMV bit set and has the

same address as the dirty block. When finding such a matching

block, LLC computes the bitwise XOR of the block’s value

(which is an OMV) and the dirty block’s value and sends the

result to the memory controller to save the memory controller

from explicitly fetching OMV from persistent memory for

the memory write request; LLC also removes the matching

block since its value will no longer equal off-chip persistent

memory value after the memory write request. A cacheline

cleaning instruction can also clean a dirty persistent memory

block currently residing in an upper-level cache to off-chip

memory; when such a dirty block passes through LLC, LLC

looks for a matching LLC block with a set SAM or OMV bit,

uses the LLC block’s value to compute the bitwise XOR to

send to the memory controller, and removes the LLC block if

its OMV bit is set.

While fetching OMV from LLC eliminates the bandwidth

overhead of reading old block, the processor still needs to

send OMV to NVRAM chips to compute the ECC update

(see Figure 5); this still incurs 100% bandwidth overheads for

writes to persistent memory. To address this final challenge,

we propose piggybacking the old block in the new block by

modifying each write request to persistent memory to send the

bitwise sum of the two blocks to memory, instead of just the

new block as do conventional write requests. Upon receiving

a bitwise sum from a write request, each NVRAM chips can

internally recover the new data by simply bitwise subtracting

the old data stored in the NVRAM chip from the received

bitwise sum of old and new data. Each NVRAM chip can also

use the received bitwise sum to directly encode the update to

the VLEW code bits because the BCH code is linear [76] like

most ECCs used in memory and storage systems. Recall from

Section IV-B that ECC update is f(x) ⊕ f(x′); because f is

linear, f(x) ⊕ f(x′) = f(x ⊕ x′). x ⊕ x′ is the bitwise sum

sent by a memory write.

Figure 11 shows the support needed within an NVRAM

chip. On receiving a bitwise sum, each NVRAM chip fetches

x′ (old data) from the open row, bitwise subtracts x′ from

the received bitwise sum, and writes back the result (i.e.,

x or new data) to the open row; the ability to internally

read-modify-write data is supported in current and emerging

memory chips [29], [80]. To update the VLEW code bits, we

Fig. 11. Hardware support for NVRAM chips to internally update data and
VLEW code bits from the bitwise sum received from the proposed method
of writing to memory.
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Fig. 12. Summary of how to efficiently update VLEWs at runtime when
writing to persistent memory.

note that since each VLEW contains 256B of data, the same

VLEW in an open row may be written many times due to

row buffer locality; as such, an NVRAM chip may coalesce

all updates for the same VLEW code bits into a single ECC

update and only use the coalesced ECC update to modify

the row’s content when closing the row. The coalesced ECC

updates can be temporarily stored in a small ECC Update

Registerfile (EUR). Each EUR register stores the bitwise sum

of all the ECC updates from writes to the same VLEW in

an open row; as such, an EUR only requires B ·R/256 total

registers, where B is the number of memory banks and R
is row size in bytes. When receiving a row close request, an

NVRAM chip must first drain the coalesced ECC updates to

the row before closing the row; for each nonempty register in

the EUR that corresponds to the closing row, the NVRAM chip

internally fetches the corresponding VLEW code bits from the

row, bitwise XORs them with the register value, and writes

back the result to the row. The latency overhead to a row close

request is deterministic for the processor; as such, the EUR

is compatible with future NVRAM chips with deterministic

latency interfaces.

Figure 12 summarizes how to write to persistent memory. It

eliminates the 200% write bandwidth overhead of protecting

persistent memory with VLEWs (see Figure 5).

E. Discussions: Handling Permanent Faults, Compatibility
with Write Leveling, Area/Latency Overheads

A permanently faulty chip in a rank may cause repeated er-

rors in many blocks and, therefore, frequent VLEW correction,

which in turn incurs high performance overheads. One solution

to mitigate this problem is to retire memory affected by

permanent chip failure after correcting its data and migrating

them elsewhere. After correcting a faulty chip, many systems

today retire the affected memory to avoid uncorrectable errors

occurring due to another chip failing in the same rank later

[81]–[85]; memory retirement will likely be common place

for persistent memory where uncorrectable errors can cause

permanent data corruption. Another solution is to remap the

contents of the faulty chip to an ECC chip in the faulty

rank, at the cost of replacing the per-block RS ECC bits. To

efficiently correct bit errors without per-block RS ECC bits,

the memory controller dynamically re-encodes each VLEW in

the faulty rank from 256B of data across all surviving chips

in the rank; recall in healthy ranks without chip failures, the

memory controller encodes each VLEW from 256B of data in

a single chip (see Figure 6). Because each reconfigured VLEW

contains 256B/64B = 4 64B blocks, each striped across

the rank, using it to correct bit errors only requires fetching

four data blocks via four regular requests. Reconfiguration

maintains the same VLEW length and strength and, therefore,

incurs no additional capacity overheads.

Permanent bit faults can develop in individual memory

blocks due to the limited write endurance of NVRAMs;

NVRAM-based memory systems may need to disable individ-

ual worn-out blocks [86]. While VLEWs protect data at much

coarser granularity than individual blocks, they are compatible

with disabling individual blocks. When disabling a block, the

memory controller can simply update the VLEW code bits as-

suming the physical bits corresponding to the disabled block in

the VLEW hold only zeros. Similarly, when fetching a VLEW

for error correction, the values of the physical bits in the

VLEW corresponding to the disabled block can be logically

replaced by zeros prior to performing error correction. Note

that any underlying block disabling mechanism must already

pay the overhead of tracking which blocks have been disabled;

as such, applying VLEW protection to a memory system with

block disabling does not incur additional storage overheads.

To identify worn-out blocks, prior works check whether errors

remain in a block after error correction by re-reading the block

right after writing it to memory [86]. This is also compatible

with our proposal; after performing VLEW correction for a

block, the memory controller may write the corrected block

back to memory in the conventional manner (i.e., send raw

data, instead of bitwise XOR, to directly overwrite data in

memory) and re-read the block to identify worn-out blocks.

Prior works level wear between different data blocks by

dynamically remapping blocks to different memory locations

[87]. To support wear leveling, after remapping a block, the

memory controller can update VLEW code bits assuming

the physical bits that previously held the remapped block

now contains only zeros, similar to handling block disabling

above. Prior works level wear between ECC and data bits by

periodically rotating the physical cells for storing ECC [88]; to

support ECC leveling, while refreshing each row, the memory

controller may instruct NVRAM chips to reserve a different

group of bits in the row for storing VLEW code bits for the

next refresh period.

Updating VLEW code bits for each write request requires

increasing the number of code bits per write request and,

therefore, may reduce NVRAM’s write lifetime. Prior work

report that increasing write latency can effectively improve

NVRAM write lifetime; as such, we make up for loss in

write lifetime by increasing write latency [89]. Our evaluation

accounts for the write latency overheads (see Section VI).

The proposal requires embedding BCH encoders in

NVRAM chips. BCH code bits can be computed in parallel via

one XOR tree per code bit; this allows simple memory-array-

like layout using only two metal layers, as shown in Figure

13. Using CACTI [90], we calculate area to be 0.1mm2 when

assuming only semi-global metal wires and that each logic gate
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Fig. 13. Circuit diagram of an encoder for 22-bit-EC BCH with 256B data.

equals two SRAM cells in size (similar to [91]). We estimate

latency to be 1.6ns using LSTP bulk transistor latency [92].

Under 2 · 10−4 BER, 1/200 and 1.8/10000 of reads need

multi-error RS correction and BCH correction, respectively.

We estimate latency of correcting a multi-byte error using RS

ECC to be 45ns and the area requirement to be 0.002mm2

based on latency and area reported for an 8-byte-EC RS

decoder in [93], after adjusting for process technology and

codeword length. We estimate latency of 22-EC BCH ECC to

be 200ns and area to be 0.05mm2 based on a 32-EC BCH

decoder reported in [94], after adjusting for process technology

and codeword length.

VI. METHODOLOGY

We evaluated WHISPER persistent memory benchmarks [2]

and SPLASH3 [95] benchmarks running in ATLAS [1], a

persistent memory library. To stress the memory system,

we increased the problem size of each benchmark to the

maximum supported by our available software and hardware.

For example, we increased the MemCached capacity setting

from the default of 64MB in WHISPER to 1GB. The total

memory footprint of the workloads range from 2GB to 20GB.

We evaluate the workloads in Gem5 [96] by executing them

in an OS running in a simulated X86 processor; the OS is

Ubuntu Server 16, a recent Linux distribution. The WHISPER

workloads take a long time to initialize because they begin

with an empty in-memory database or data structure and

gradually fill it up transaction by transaction; as such, we

TABLE I
MICROARCHITECTURAL PARAMETERS

4 cores, 3GHz, 4-issue OOO
Core 168 ROB entries, 64B cacheline

L1 d-cache, i-cache 2-way, 64KB, 1 cycle

Shared LLC 32-way, 4 MB, 14 cycles

Memory 128 read buffer, 128 write buffer/channel
Controller closed page policy, FR-FCFS

Memory One 2400Mhz channel, with 1 DRAM rank
System and 1 persistent memory rank; 16 banks/rank

Fig. 14. Workload characterization: off-chip memory access breakdown.

warmup the workloads in native execution speed via Gem5

KVM CPU until the workloads’ resident memory sizes, as

reported by the simulated Ubuntu OS’ TOP utility, have

increased to steady levels. The native execution warmup times

range from 2-10 minutes. After native execution warmup, we

use Gem5’s functional simulation to warmup the simulated

processor’s cache for 500ms of simulated time. Finally, we use

Gem5’s cycle-accurate simulation to measure the workload’s

performance during 20ms of simulated time.

Table I shows the microarchitectural parameters of the

simulated processor. We simulated four cores per processor,

similar to [2]. For each Whisper benchmark, we simulate

multiple processes of the same benchmark, with a single-

thread per process. We use IPC as the performance metric for

these single-thread Whisper workloads. For each SPLASH3

benchmark, we simulate one process with four threads; we use

FLOPS as their performance metric because they are parallel

floating-point-heavy scientific workloads. All Whisper and

ATLAS workloads utilize both persistent memory and volatile

DRAM; as such, we modeled a hybrid memory channel with

one rank of DRAM and one rank of persistent memory. We

map the persistent memory address ranges, as specified in

each WHISPER workload, to the NVRAM ranks, and map

the remainder to DRAM ranks. For SPLASH3 running under

ATLAS, we kept ATLAS’ default setting of allocating all heap

objects in persistent memory. Figure 14 shows the breakdown

Fig. 15. Workload characterization: the ratio between the number of updates
to VLEWs and the number of off-chip write requests to persistent memory.
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of off-chip memory accesses; all benchmarks significantly

exercise persistent memory.

We incorporate Ramulator [97] in Gem5 to simulate mem-

ory performance. We use Ramulator’s default 2400Mhz DDR4

parameters, default FR-FCFS command scheduling policy, and

default row buffer policy, which closes a page after 50ns of

inactivity. Similar to [42], we model NVRAMs by modify-

ing DRAM timing parameters because datasheets for dense

NVRAMs chips are not yet available. We set the NVRAM

rank’s tRCD and tWR parameters to the NVRAM read and

write latencies, respectively. For ReRAM, we model 120ns

read and 300ns write latencies, similar to [89]. For PCM,

we model 250ns read latency by taking the 250ns eM-metric

reported in [60]. We model 600 NVRAM write latency, which

is in the middle of the 100ns - 1000ns write latency range

described in [60].

To model the proposal, we modify LLC to cache OMVs. We

model the read bandwidth overhead due to fetching VLEWs to

correct bit errors for 0.02% of read requests (see Section V-C)

by randomly force-prefetching 37 blocks at 0.02% probability.

Recall from Section V-E we increase write latency to make

up for loss in write lifetime due to updating VLEW code

bits, which increases the number of physical bits written

per write request. The number of physical bits written per

write request increases by 33B/8B · C, where C is the

ratio between the number of writes to VLEW code bits and

the number of write requests to persistent memory; recall

from Section V-D that a dirty row’s VLEW code bits are

written only once when the memory controller closes the

dirty row. When evaluating a workload, we pessimistically

assume the worst-case (i.e., linear) relationship between write

endurance and write latency [89] and, therefore, increase tWR
by 33B/8B ·C; Figure 15 shows the C factor we measured for

each workload and, therefore, used to calculated the increased

tWR when evaluating the proposal. We note that C depends

on a workload’s spatial locality; to stress the proposed memory

system design, we maximize C by setting data item size to a

small 64B for all Whisper benchmarks with adjustable data

item sizes (i.e., echo, memcached, hashmap, btree, and

rbtree). Finally, to account for the 1.6ns BCH encoder latency

(see Section V-E) and internal read of old data (see Figure 11),

we pessimistically increase tWR by yet another 20ns.

VII. EXPERIMENTAL RESULTS

Figure 16 and Figure 17 show the proposal’s performance

normalized to the bit-error correction baseline under ReRAM

latencies and under PCM latencies, respectively. The proposal

incurs a slightly higher average performance overhead (i.e.,

2.3% vs. 1.4%) under PCM latencies than for ReRAM la-

tencies. This is because we modeled a much longer baseline

write latency (i.e., 600ns) for PCM than for ReRAM (i.e.,

300ns), which increases the impact of the proposal’s write

latency overhead on overall performance. On average across

both sets of evaluations, the proposal incurs a performance

overhead of 2%. We believe this is a small cost for providing

chip failure protection for persistent memory. In a large-scale

Fig. 16. Performance normalized to baseline for ReRAM latencies (i.e.,
baseline has 120ns tRCD and 300ns tWR).

Fig. 17. Performance normalized to baseline for PCM latencies (i.e., baseline
has 250ns tRCD and 600ns tWR.)

field study, Vilas et al. [98] report that chipkill-correct provides

40X reliability improvement; we expect similar reliability

improvement compared to protecting persistent memory with

only bit error correction.

In the worst case (i.e,. hashmap), the proposal incurs 14%

performance overhead. According to Whisper description [2],

hashmap performs only write queries, such as item deletion

and modification; as such, hashmap represents the worst-case

workload for the proposal, which requires increasing write

latency to provide iso-write-endurance as the baseline. We note

that ctree, btree, and rbtree also perform only write queries

[2]; however, the proposal’s performance for these workloads

is >= 96.8% normalized to the baseline. We believe these

workloads’ lower sensitivity to write latency is due to the

pointer-chasing memory access pattern of tree data structures,

which reads from few banks (e.g., one) at a time and, therefore,

reduces the probability of reading from a bank with on-going

write.

While other Whisper workloads such as memcached, echo,

redis, and vacation also have a high ratio of write to

read memory requests (see Figure 14), they are also not

performance-sensitive to the increased write latency (see Fig-

ures 16, 17). Unlike the previously discussed workloads, this

group of workloads process a network request for each query,

which takes up a significant portion of the query’s execution

time and, therefore, reduces the overall performance impact of
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Fig. 18. Fraction of writes to persistent memory whose OMV is served from
LLC instead of off-chip memory.

increased write latency.

Figure 18 shows the fraction of writes to persistent memory

whose OMV is served from LLC instead of off-chip memory.

On average across all the workloads, the hit rate is 98.6%. As

such, on average only 1.4% of writes to persistent memory

incurs the overhead of fetching from OMV from off-chip

memory. Surprisingly, barnes has the highest OMV miss rate

- 11% -, despite only occupying 0.5% of cache capacity with

dirty persistent memory blocks (see Figure 10). We believe

this is because Gem5 does not enforce cache inclusivity and,

therefore, reduces the probability of finding a matching LLC

block when L1 cleans a dirty persistent memory block to

memory or writes back to LLC.

VIII. CONCLUSION

This paper explores the problems and challenges of pro-

tecting dense NVRAM-based persistent memory with chipkill-

correct (i.e., protection against both bit errors and chip fail-

ures). Chipkill-correct is a standard feature in today’s volatile

server main memory. Because errors in persistent memory can

cause permanent data loss, which is more severe than the

loss of data in volatile memory, persistent memory requires

at least the same level of protection as volatile server memory

(i.e., chipkill-correct). Chipkill-correct for dense NVRAM-

based persistent memory is challenging due to high RBER

after a long time (i.e., a week to a year) without refresh. The

ability to tolerate high RBER enables the reliable survival of

data in NVRAMs after system crashes/power outages, which

is essential for NVRAMs to serve as persistent memory.

Simply extending DRAM chipkill-correct techniques to dense

NVRAM-based persistent memory requires prohibitive storage

overhead of >= 69%.

To efficiently protect dense NVRAM-based persistent mem-

ory with chipkill-correct, we decouple correction of errors at

boot time from correction of errors at runtime to simultane-

ously achieve low storage cost and low performance cost. We

use very long ECC words (VLEWs) to ensure reliable data

survival for a week to a year without refresh by correcting

the maximum number of bit errors at minimum storage

cost; at runtime when RBER is lower, we use each memory

block’s chip failure protection bits to opportunistically correct

bit errors at high performance. The proposal incurs only a

total storage cost of 27%. Compared to protecting persistent

memory with only bit error correction, the proposed chipkill-

correct adds chip failure protection at no additional storage

cost and only 2% average performance overhead.
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APPENDIX: MISCORRECTION PROBABILITY CALCULATION

We calculate miscorrection probability as the product of two

terms. Term A is the probability of having a noncodeword

containing at least the threshold number of errors required

to cause miscorrection (i.e., nth); Term B is the probability

RS ECC will decode such a noncodeword (i.e., an invalid

word under a given code) into a codeword (i.e., a valid word

under a given code). Term A can be obtained using standard

combinatorial probability analysis by taking as inputs nth,

RBER, and the total number of data bytes (i.e., k) and check

bytes (i.e., r) each word contains. To obtain Term B, we denote

as t the maximum number of errors one decides to correct in a

codeword. Because RS ECC decodes any noncodeword within

t Hamming distance5 from a codeword into the codeword [76],

Term B is the probability that an uncorrectable noncodeword is

<= t distance from an unintended codeword; on average, this

probability equals the total number of noncodewords that are

<= t distance away from each codeword (i.e. (k+r)Ct · 28·t)
multiplied by the total number of possible codewords (i.e.,

28·k), and divided by the total number of possible words (i.e.,

28·(k+r)) [76].

For our per-block RS codewords, k = 64, r = 8, and every

pair of codeword has a minimum distance of r+1 = 9; when

using the RS ECC to correct t = 4 errors, miscorrection may

occur for a noncodeword with nth = 5 errors. Using these

values and RBER= 2 · 10−4, Term A and B are 1.3 · 10−7

and 2.4 · 10−4 respectively; this translate to an SDC rate of

3.2 · 10−11. When t = 2, nth = 9 − 2 = 7 because only

noncodewords with 7 errors from their intended codeword can

be within two Hamming distance from an unintended code-

word and thus be mis-corrected into the unintended codeword;

increasing nth from 5 to 7 reduces Term A to 3.6 · 10−11. A

smaller t = 2 value also reduces Term B to 9.1 · 10−12. This

translates to an overall SDC rate of 3.3 · 10−22 when t = 2.

5For RS ECC, Hamming distance between two words is how many bytes
the two words differ from one another.
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