
GPU Accelerated Voxel Traversal using the Prediction Buffer

Colin Braley ∗

Virginia Tech
Robert Hagan ∗

Virginia Tech
Yong Cao ∗

Virginia Tech
Denis Gracanin ∗

Virginia Tech

Figure 1: The rendered iso-surfaces and the corresponding prediction buffers for two datasets: Bonsai and Visible Human R© male.

Abstract

The ever increasing size of data sets for scientific and medical vi-
sualization demands new isosurface volume rendering techniques
to provide interactivity for the large datasets. The main obstacle
to achieving interactivity is the computational bottleneck due to
the dataset traversal and the corresponding amount of data trans-
fer. We propose a novel GPU based dataset traversal technique
that uses a prediction buffer to reduce the traversal time during
dataset rotation. The reduction in the traversal time improves in-
teractivity and consequently provides better insight into the dataset
characteristics. We use a highly parallelized ray-casting algorithm
and the proposed traversal technique to double the rendering speed.
The factors which influence the rendering speed include block size,
shared memory usage, and texture versus global memory. These
factors were carefully considered to efficiently map the ray-casting
volume rendering algorithm and the traversal technique to the GPU
providing a high performance implementation.

CR Categories: I.3.1 [Computing Methodologies]: Com-
puter Graphics—Hardware ArchitectureI.3.7 [Computing Method-
ologies]: Computer Graphics—Three-Dimensional Graphics and
Realism

Keywords: GPGPU, Isosurface, Volume Render, Depth Buffer,
Rotation, Coherence, Frame-To-Frame Coherence , Variance, Pre-
diction Buffer

1 Introduction

Volume rendering applications must be interactive for a user to ef-
fectively navigate and study a three-dimensional dataset. However,
rendering the dataset in real-time presents a challenge since the
datasets can be very large and complex and do not fit in the avail-
able texture memory. Consequently, the memory bandwidth limits
the data transfer speed and reduces interactivity. We need novel
methods to speed up the rendering process, improve interactivity
and thus aid the user’s ability to gain insight from analyzing the
dataset.

Multi-resolution and downsampling based approaches can be used
to address memory limitations. However, the resulting rendering,
even at the highest resolution, has limited accuracy and smoothness.

∗{ cbraley , rdhagan , yongcao , gracanin } @vt.edu

Another way to address this problem is to look at the problem from
the user perspective and identify typical ways the user interact with
the dataset. The basic operations such as rotation, translation and
scaling constitute majority of manipulations applied to the dataset
and the corresponding visualization. Exploring characteristics of
these basic operations may provide a way to address the problem.

Rotating a three-dimensional dataset is one of the main interactions
used by the user to investigate all dataset segments. In a typical in-
vestigation, the user periodically rotates the dataset and then inspect
various view angles until the dataset is fully examined. The lack of
a response or a noticeable choppiness during rotation is likely to
frustrate the user.

We propose a novel dataset traversal technique that enhances inter-
activity during the rotation stage of the viewing process. Due to the
nature of rotation, the consecutive frames tend to be very similar.
A prediction buffer storing the depth of each pixel in the previ-
ous frame is used together with the two new types of voxel traver-
sals, sparse traversal and local traversal, to construct the next frame.
However, the accuracy depends on the selected step size used dur-
ing the traversal. The step size should be adaptive and based on the
localized characteristics oh the dataset.

A novel variance bricking approach determines the variance of the
dataset within a single brick. The brick variance value provides an
estimate for the step size used during the dataset traversal for the
points in that brick.

Although the technique introduces a slight decrease in image cor-
rectness during rotation, this decrease is negligible, especially given
the following benefits of the technique:

• Enhances interactivity while rotating a datasets with novel
predictive acceleration techniques.

• Effectively utilizes NVIDIA’s CUDA memory hierarchy on
the GPU.

• Utilizes variance preprocessing for adaptive step size selec-
tion.

2 Background

The two predominant methods for displaying isosurfaces are
marching cubes, first described in [Lorensen and Cline 1987], and



isosurface ray-casting, first described in [Levoy 1988]. Our re-
search will focus on ray-casting, a type of direct volume render-
ing, since it does not require the large overhead of an intermediate
surface representation. Furthermore, our method concentrates on
accelerating the execution of the ray-casting approach to improve
interactivity of the visualization.

Due to the highly parallelizable nature of the ray-casting algorithm,
the implementation is highly suitable to the massively parallel na-
ture of NVIDIA’s CUDA framework on the GPU. The follow-
ing sections outline background in the CUDA memory hierarchy,
dataset traversal, and coherence-based techniques.

2.1 CUDA Architecture

We provide a brief background knowledge of Graphics Processing
Units (GPU) here, so that we will have a better understanding of the
implementation issues of our approach.

GPU is initially developed for accelerating 3D graphics applica-
tions. In the recently years, the computational power of GPU has
grown quickly by introducing a massive number of parallel pro-
cessing cores. The state-of-art GPUs exhibit more than 10 times of
FLOPS in computation than multi-core CPUs. The GPU vendors
also transform the GPU from a specialized processor to a general-
purpose graphics processing unit (GPGPU), such as the NVIDIA
GTX 280, which is also the GPU used in this paper. GTX 280
contains 30 streaming multiprocessors, each with eight cores per
multiprocessor, totaling 240 cores, as shown in Figure 2. This GPU
comes with one GB of global memory and supports a theoretical
memory bandwidth of 141.7GB

sec
.

To lessen the steep learning curve, NVIDIA also releases a pro-
gramming environment, the Compute Unified Device Architecture
(CUDA), which can manage tens of thousands of threads that are
executed in parallel. In CUDA, threads are grouped into blocks
in either a 1D, 2D, or 3D configuration. Blocks are grouped into
a grid in either a 1D or 2D configuration. In CUDA, up to eight
blocks can be assigned to each streaming multiprocessor, provided
that the multiprocessor has enough resources, including registers,
shared memory, etc. Furthermore, each block is subdivided into
32-thread units called warps. Warps are the fundamental unit of
scheduling, and divergent branching within a warp carries a high
performance penalty. All threads in a warp are executed in parallel,
until a divergent branch is encountered. Once a divergent branch
is encountered, each separate path is executed sequentially. This is
where the high branching penalty mentioned in Section 4.6.

Figure 2: The NVIDIA GTX280 GPU architecture.

2.2 Ray-cast Based Volume Rendering

In the early stages of development of our GPU-based isosurface vol-
ume renderer, we benchmarked our application to evaluate runtime

performance. Similar to other previous research, our analysis iden-
tified voxel grid traversal as the computational bottleneck. Other
previous work has proposed various techniques for voxel traversal.
The classic voxel traversal algorithm, presented in [Amanatides and
Woo 1987], is very efficient in terms of using few floating point op-
erations. However, this algorithm is branch intensive, and therefore
it does not perform as well on modern GPU architectures, which
have a heavy performance penalty for divergent branching.

Many techniques have been proposed to accelerate voxel traversal
due to its large computational expense. Broadly, these techniques
fall into two areas: spatial subdivision and coherence approaches.
Spatial subdivision techniques perform space leaping using a spe-
cial data structure. Space leaping avoids traversing areas of the vol-
ume data deemed unimportant. The definition of unimportant varies
depending on what type of volume rendering is being performed.
In isosurface volume rendering, unimportant areas are sections of
the voxel data that do not include the specified iso-value. Space
leaping based on min-max octrees was first proposed by [Wilhelms
and Van Gelder 1992] with their Branch-On-Need Octree (BONO).
This approach was later extended to kd-trees by [Wald et al. 2005].

Coherence-based approaches accelerate volume rendering by ex-
ploiting the strong temporal (frame-to-frame) or spatial (ray-to-ray)
coherence found in volume rendering. We focus on temporal coher-
ence due to its ability to accelerate navigation and rendering of ani-
mated datasets. [Yagel and Shi 1993] first used temporal coherence
to speed up rendering with the C-buffer (coordinate buffer) tech-
nique. This C-buffer stores the coordinates of the nearest opaque
voxel for use with semi-transparent rendering. After the viewpoint
is moved, these C-buffer values are transformed in order to create
the new starting point for voxel traversal. However, this can lead
to propagation of frame-to-frame aliasing [Yoon et al. 1997]. Later,
[Yoon et al. 1997] introduced the image cache data structure for
optimizing rendering of isosurfaces. They utilize an iso-map as a
modified depth buffer for acceleration of volume rendering. When
the view is rotated, the iso-map is scanned along the axis of ro-
tation in order to locate a new depth at which to begin traversal.
While this approach is novel, and performs well on CPU architec-
tures, it is not suited to GPU architectures due to its lack of data
parallelism. More recently, [Klein et al. 2005] introduced a GPU-
based approach to accelerate rendering using temporal (frame-to-
frame) coherence. In this work, the authors stored a buffer of three-
dimensional points representing the location of the first voxel along
each ray that contributes to the rendered image. After some rotation
or translation of the view has occurred, these points are then repro-
jected into the image plane and used as starting positions for voxel
traversal.

3 Overview

In this work we are concerned with creating an isosurface volume
renderer capable of rapidly producing high quality visualizations.
Specifically, the user should be able to examine the data in real-
time. Our volume renderer is based on a ray-cast approach, where
a ray is cast at the volume data for each pixel in the final render-
ing image. The costliest computation step in ray-cast algorithms is
voxel traversal. By focusing on this performance bottleneck in ray-
cast based volume renderer, our primary contribution is the novel
usage of a prediction buffer, a modified depth buffer, to accelerate
voxel traversal.

For each ray cast, the prediction buffer stores the distance along
the ray at which it intersects the isosurface. The prediction buffer
also stores special values to indicate situations such as when a ray
misses the bounding box containing the volume data, or when a ray
intersects the bounding box but misses the isosurface.



During an interaction between the user and volume renderers, there
are usually a small transformation changes between the consecu-
tive frames. Among all transformation-based manipulations, we
focus on rotation, which is the most commonly used transforma-
tion for user interaction. When the user rotates camera from point
A to point B by a small angle, dθ, only small changes in predic-
tion buffer values usually occur. Utilizing this frame-to-frame co-
herence in the prediction buffer, we introduce two new versions of
voxel traversals, sparse traversal and local traversal, in order to
accelerate the rendering process. The idea is to use the prediction
buffer calculated from the previous rendered frame to accelerate the
process of voxel traversal.

In addition to presenting the prediction buffer, we also outline how
to map our proposed iso-surface volume rendering algorithm, in-
cluding prediction buffer calculation, onto current GPU architec-
tures. We conduct an exhaustive performance analysis, and discuss
which factors affect the performance of a volume rendering appli-
cation built with NVIDIA’s CUDA toolkit.

4 Prediction Buffer

In this section we first provide a description of our overall render-
ing algorithm with respect to prediction buffer. We then illustrate
sparse traversal and local traversal algorithms in detail. In the end,
we describe how to map the computation of our prediction-buffer
algorithm onto NVIDIA’s GPU architecture.

4.1 Prediction Buffer Algorithm Overview

In our volume rendering algorithm, we cast one ray for each pixel
in the final rendered image. In a standard voxel traversal process,
the voxels are tested one by one, starting from the first voxel hit by a
ray until the last voxel intersected with the same ray. Our prediction
buffer is designed to record the ray-cast results from the previous
frame: 1) hit the iso-surface; 2) miss the iso-surface but hit the vol-
ume bounding box; 3) miss the volume bounding box, and; 4) no
information (e.g. the first frame). For a specific pixel pij in the
final image, we record its depth value, the distance dij from the eye
to the interaction point along the ray, as its prediction buffer value.
If the ray does hit the iso-surface (case #1), the prediction buffer
value dij is a positive number. When the ray misses the isosurface
but hits the bounding box containing the volume data (case #2),
we store a negative flag value, dhitBoxMissSurf in pij . However,
when ~Rij misses the voxel bounding box completely (case #3), we
store a different negative flag value, dmissBox. Lastly, a value in
the prediction buffer can take on the value dnoInfo. This value in-
dicates that the prediction buffer has no information about the pixel
in question (case #4). This might arise when rendering immediately
after the user has rotated the dataset by a very large amount, thus
eliminating the ability to use coherence to speed up traversal. Ad-
ditionally, operations such as changing the iso-value and changing
the dataset invalidates the prediction buffer.

After the user rotate the camera for a small amount, dθ, our
prediction-buffer algorithm generates a color value for each pixel
pij , and uses different traversal algorithms for the four different
cases according to its prediction buffer value from last frame. In
case #1, since the ray intersects with the iso-surface for the previ-
ous frame, we start voxel traversal from the ray distance indicated
by the prediction buffer, assuming that the iso-surface is close to the
intersection point from the last frame. The traversal algorithm that
handles this case is called Local Traversal. In case #2, where we
miss the iso-surface but hit the bounding box, it is reasonable to as-
sume there is higher possibility that the ray will miss the iso-surface
again. Therefore, we only sparsely step along the ray searching

for intersection with iso-surface. This traversal algorithm is called
Sparse Traversal. In case #4, since we have no information about
iso-surface intersection of the ray from last frame, we simply con-
duct a standard ray traversal, which is called Full Traversal in our
algorithm. Of course, we don’t need to handle case #3.

The overview of the our prediction-buffer algorithm is shown in
Algorithm 1. We give the detailed description of Sparse Traversal
and Local Traversal in Section 4.3 and Section 4.4, respectively.

Algorithm 1: High-Level Rendering Algorithm for rendering a
pixel pij
Input : Two integers i, j specifying the pixel coordinates
Output: A color to shade the current pixel with

dij ← predictionBufferGet(pij)
~R← createRay(pij)
tintersect ← dmissBox

if dij ≥ 0.0 then
tintersect ← localTraversal(~R, tintersect)

else if dij = dhitBoxMissSurf then
tintersect ← sparseTraversal(~R, tintersect)

else if dij = dmissBox then
tintersect ← dmissBox

else if dij = dnoInfo then
tintersect ← fullT raversal(~R, tintersect)

end

if tintersect ≥ 0.0 then
pij ← phongShade(getPointOnRay(~R, tintersect))

else
pij ← colorbackground

end

predictionBufferSet(pij , tintersect)

Our algorithm utilizes phongShade(. . .), which requires calcula-
tion of a precise intersection point and surface normal. Since this is
not the focus of our research, we present these details in Appendix
A.

4.2 Full Traversal

Our method uses full traversal, the simplest traversal algorithm,
when the prediction value from the prediction buffer dij has no
information. In order to ensure the highest quality image when the
camera is static, we also use full traversal when the dataset is not
rotating. For some pixel pij , our method performs full traversal
when the associated prediction buffer value is dnoInfo. This algo-
rithm is a straightforward implementation from [Amanatides and
Woo 1987], which presents a fast DDA-based 3D voxel traversal
algorithm. This type of traversal ensures correct results because it
tests every voxel along the ray to see if it includes an isosurface
intersection.

4.3 The Sparse Traversal

Sparse traversal steps along the ray ~R with some predefined step
size dt. At every step the iso-value of the voxel data is sampled at
that point. If the iso-value is contained in the range between the
current sample value and the previous sample value, the interval
contains the iso-value. In this case, our method uses a few iterations
of the bisection method to find the surface location accurately. We
present psuedo-code for sparse traversal in Algorithm 2.



Algorithm 2: Sparse Traversal

Input : A ray ~R, some floating point value dt, and an isovalue
ρiso

Output: A distance along ~R to an isosurface intersection, or −1.0
if the surface was missed.

tmin ← rayBoxIntersectFront(~R, voxelData)

tmax ← rayBoxIntersectBack(~R, voxelData)

tprev ← tmin
tcurr ← tmin + dt

ρprev ← trilinearSample(tprev)
ρcurr ← trilinearSample(tcurr)

while tcurr ≤ tmax do
if ρiso ∈ [ρprev, ρcurr] then

return bisectionF ind(tprev, tcurr, ρiso)
end
tprev ← tcurr
tcurr ← tcurr + dt

ρcurr ← trilinearSample(tcurr)
ρprev ← trilinearSample(tprev)

end

return −1.0

While sparse traversal has a probability of introducing artifacts into
the final image, we minimize these errors and maximize accelera-
tion by using variance in the data. The sparse traversal has a chance
of skipping an isosurface, especially if dt is large. However, a care-
fully chosen dt can minimize the chances of these misses. Section
4.5 outlines a procedure for choosing dt based on the variance in
the data.

Figure 3: The effect of κ on rendering time

However, the most convincing argument for sparse traversal is that
it is much faster than regular traversal (as presented in [Amanatides
and Woo 1987]), on modern GPU architectures. This is true be-
cause of two factors. Firstly, branching can be a very computation-
ally expensive operation on modern GPUs. In NVIDIA’s CUDA
architecture, divergent branching within a warp carries a high per-
formance penalty. For a more detailed discussion of CUDA perfor-
mance, see Section 2.1. The sparse traversal, obviously, contains
no branching, which yields much higher performance. Even with
branching out of the picture, some might argue that, particularly
with a very small dt, this type of traversal will contain many calls

to an expensive trilinearSample(. . .) function. Regular traver-
sal, on the other hand, guarantees that a minimum number of calls
to trilinearSample(. . .) are made. Additionally, regular traversal
would allow you to use a potentially less expensive bilinear sam-
pling. However, on modern GPUs trilinear interpolation is imple-
mented in hardware, so the performance penalty is negligible. Per-
formance results for sparse traversal versus full traversal are pre-
sented in Figure 4.

(a) Sparse Traversal κ = 0.5 (b) Full Traversal

Figure 4: Visual Comparison - Sparse Traversal vs. Full Traversal

Additionally, the loss in visual quality from sparse traversal is al-
most non-noticeable, provided κ is not too small. Figure 4, shows a
dataset rendered fully with sparse traversal (κ = 0.5) and the same
dataset rendered completely with full traversal. They are visually
nearly indistinguishable.

4.4 The Local Traversal

The Local traversal is a variant of the sparse traversal and uses the
frame-to-frame coherence found in the prediction buffer to make
traversal faster. In this traversal, our traversal algorithm starts with
the depth value indicated in prediction buffer, and performs sparse
traversal by advancing on both side of the starting point. We tra-
verse in this manner until we either locate the iso-surface, or both
traversals (forward and back) exit the bounds of the volume data.
We present the detail of Local Traversal in Algorithm 3.

However, it is possible that this type of traversal will produce differ-
ent results compared with Full Traversal. For example, in Figure 5
we see a case in which this local traversal would not find the isosur-
face to the camera when rendering the red ray. However, we have
found that these situations arise rarely in practice.

Figure 5: Situation where local traversal will produce incorrect
results

In order to remedy this situation, our method performs full traversal
every α frames. In practice, we found that an effective choice of α



depends on the dataset. In most of our experiences in this paper,
we empirically choose α = 10 by balancing between image quality
and speed for the datasets we tested.

Algorithm 3: Local Traversal

Input : A ray ~R, some floating point value dt, and an isovalue
ρiso

Output: A distance along ~R to an isosurface intersection, or −1.0
if the surface was missed.

tmin ← rayBoxIntersectFront(~R, voxelData)

tmax ← rayBoxIntersectBack(~R, voxelData)

tpredict ← predictionBufferGet(pij)
tcurr ← tmin + dt
tprev ← tmin

ρcurr ← trilinearSample(tcurr)
ρprev ← trilinearSample(tprev)

while tcurr ≤ tmax do
if ρiso ∈ [ρprev, ρcurr] then

return bisectionF ind(tprev, tcurr, ρiso)
end
tprev ← tcurr
tcurr ← tcurr + dt

ρprev ← trilinearSample(tprev)
ρcurr ← trilinearSample(tcurr)

end

return −1.0

4.5 Choosing dt through Variance Bricking

The stepping distance dt in Sparse Traversal and Local Traversal
has a substantial impact on both the rendering frame-rate and image
quality of our prediction-buffer algorithm. For a specific ray ~Rij ,
a smaller value of dt will make it more likely to find the accurate
intersection point with the iso-surface. A larger value of dt will
provide faster rendering time. We initially chose one global value
of dt for the entire system. However, we found that a constant value
was impractical, since the value depends on location of iso-surface
with respect to each ray. If a ray passes through an area where
the direction (measured by the normal vector) of the iso-surface
changes frequently, a smaller value of dt is required. On the other
hand, if there are less frequent changes in the direction of the iso-
surfaces, a larger dt is enough to find the intersection point.

Calculating iso-surface normal for each surface point during run-
time is a computationally expensive procedure. Instead, we relate
the frequency of surface normal changes to the the variance v of
voxel data with respect to other voxels in a brick.

v =
1

n

n∑
i=1

(xi − x̄)2 (1)

where n is the number of voxels in a brick and x̄ is the mean of the
data.

dtijk =
min(dx, dy, dz)

κijk

where dx, dy, and dz are the length of a single voxel in the x, y,
and z directions, respectively. The coefficient κijk is determined by

function f(vijk), which describes the relation between the variance
of a voxel and the dt value used during traversal through the voxel.
In a preprocessing step on the CPU, we store the variance of the
volume data for each brick. Areas with larger variance require a
larger value of κ. However, our method also requires a function
that maps from variance to κ values. We use the following function
f(x), which takes a variance v, and the maximum and minimum
variances over all bricks, vmax and vmin respectively, as inputs.

f(v, vmax, vmin) = κmin(v − vmin)
κmax − κmin
vmax − vmin

(2)

Where κmax and κmin are experimentally determined constants.
We found that values of κmax = 0.3 and κmin = 0.1 were good
choices for reasonably sized data sets.

4.6 CUDA Implementation

We implemented a massively parallel isosurface volume renderer,
featuring all the techniques described in this paper, using NVIDIA’s
CUDA framework, version 2.2. The majority of the code was writ-
ten in C++, and the user interface was created with GLUT and
GLUI.

In our system stores all volume datasets on disk in a binary for-
mat. The datasets are loaded at runtime and placed in floating point
3D textures. Our system consists of one main kernel function that
performs isosurface volume rendering and writes the results to an
OpenGL pixel buffer object.

Data Storage in GPU We test storage of the prediction buffer
for several different methods. Initially, we store a single two-
dimensional array of floats in global memory. At the beginning of
each kernel call, a prediction would be read from global memory.
At the end of each kernel call, a new prediction would be written.
This implementation requires no blocking because two threads will
never read the same prediction. We also implement the prediction
buffer with two two-dimensional textures. Since threads inside of
the same block are likely to access nearby pixels in the prediction
buffer, there should be a large benefit from the spatial caching of the
textures. However, since CUDA textures cannot be written to, this
requires allocation of two identical sized pieces of global memory,
A and B. At first, we bind A to a texture reference. Then, when
we call our rendering kernel, we read from the texture which is
bound to A and then write to B which is not bound to a texture.
After the kernel call, we unbind the texture from A and bind it to
B. On the next kernel call, we read from the texture, now bound
to B and write to A. This process continues indefinitely, and is
often referred to as double buffering. The double buffered texture
implementation of the prediction buffer takes up twice the amount
of memory as the global memory approach. We believe this extra
memory use is tolerable because of the speed increase gained from
textures. This tradeoff is acceptable because most of our memory
is used to store the volume data. For instance, let us consider a vol-
ume rendering with an image plane of 1,024 by 1,024 and volume
data with 512 by 512 by 512 samples. In this case, our volume data
takes up 134, 217, 728 bytes, while our prediction buffer takes up
either 4, 194, 304 bytes or 8, 388, 608 bytes, depending on which
storage approach is used. In the case where the texture approach
is used, the prediction buffer takes up .05882% of the amount of
memory the volume data takes up. In the case where the global
memory approach is used, the prediction buffer takes up .03030%
of the amount of memory the volume data takes up. As you can see,
our memory usage is primarily concerned with storing the volume
data itself.



Block DimensionsBucky (FPS)Engine (FPS)Porsche (FPS)
4 x 4 31 16 12
4 x 8 59 21 18

4 x 16 61 30 21
4 x 32 61 31 21
8 x 8 61 31 21

8 x 16 60 31 21
8 x 32 60 31 21
16 x 16 60 21 20

Table 1: Performance results of three datasets for different thread
block sizes.

Computation to Core Mapping Achieving high performance re-
sults with NVIDIA’s CUDA relies largely on making intelligent
choices for a few runtime variables. These variables comprise what
is referred to as an execution configuration. An execution config-
uration consists of block size, grid size, and shared memory size,
which can be determined when the computation in an algorithm is
mapped onto GPU hardware. Our ray-casting maps a single pixel
onto a single thread, and an optimal choice must be found for block
size and grid size. Achieving high occupancy is one of goals of
determining an execution configuration. Occupancy is defined on
a per-multiprocessor basis as number of warps being executed di-
vided by number of warps allowed. Maximizing occupancy results
in higher utilization of the GPU. We utilized the CUDA occupancy
calculator to determine suitable performance configurations, and
we then carried out benchmarking to select the optimal configu-
ration. Our results are shown in Table 1.

The Bucky dataset has dimensions 32 x 32 x 32, while the Engine
and Porsche datasets are of sizes, 256 x 256 x 256 and 559 x 1024 x
347, respectively. Note that all FPS measurements have prediction
buffer functionality disabled.

5 Performance Results and Discussion

We conduct the performance tests on a machine equipped with
2.33Hz Intel Core 2 Quad processor, 4GB of memory, and NVIDIA
GTX280 GPU. In order to demonstrate the efficiency of our predic-
tion buffer algorithm, we use five different datasets and compare the
rendering performance of our proposed predict-buffer based traver-
sal algorithm against the standard full traversal algorithm. The re-
sult is shown in Figure 6.

In order to perform a fair comparison, we implement both algo-
rithms on GPU and use the exactly the same execution configura-
tion (e.g. the same number of threads per block). During perfor-
mance testing, we rotate the data volume by small angle, dθ = 1o,
for every frame, and record the traversal time for each frame. We
use the average traversal time for all rendered frames as our perfor-
mance data.

6 Conclusion

In this paper we described a novel GPU-based traversal technique
that, when used in conjunction with our prediction buffer, can
greatly increase interactivity of iso-surface visualization for volume
data. We also provided important implementation details for a high
performance system using NVIDIA CUDA that can be used to cre-
ate a high performance, GPU based, iso-surface raycasting system.

We used various datasets to test the developed technique. The
results demonstrate its applicability to a wide variety of time-
dependent or static datasets. Future work will focus on refining

Figure 6: Prediction Buffer Results

the mapping function that determines the step size based on the
variance value.

7 Acknowledgments

The authors would like to thank Chao Peng for his insight during
their weekly discussions. They could also like to acknowledge Dirk
Bartz, Philips Research, Terarecon Inc., Stever Roettger, General
Electric, University of California Santa Barbara, and Siemens Med-
ical Solutions, for providing interesting volume data sets.

References

AMANATIDES, J., AND WOO, A. 1987. A fast voxel traversal
algorithm for ray tracing. In In Eurographics 87, 3–10.

BAVOIL, L., AND SAINZ, M. 2009. Multi-layer dual-resolution
screen-space ambient occlusion. In SIGGRAPH ’09: SIG-
GRAPH 2009: Talks, ACM, New York, NY, USA, 1–1.

BAVOIL, L., SAINZ, M., AND DIMITROV, R. 2008. Image-space
horizon-based ambient occlusion. In SIGGRAPH ’08: ACM
SIGGRAPH 2008 talks, ACM, New York, NY, USA, 1–1.

CHEN, S. E., AND WILLIAMS, L. 1993. View interpolation for
image synthesis. In Proc. SIGGRAPH 93, 1–6.

HADWIGER, M., SIGG, C., SCHARSACH, H., BHLER, K., AND
GROSS, M. 2005. Real-time ray-casting and advanced shading
of discrete isosurfaces. In In Eurographics 05, 303–312.

KLEIN, T., STRENGERT, M., STEGMAIER, S., AND ERTL, T.
2005. Exploiting frame-to-frame coherence for accelerating
high-quality volume raycasting on graphics hardware. In Visual-
ization, 2005. VIS 05. IEEE, 223–230.

KONTKANEN, J., AND LAINE, S. 2005. Ambient occlusion fields.
In I3D ’05: Proceedings of the 2005 symposium on Interactive
3D graphics and games, ACM, New York, NY, USA, 41–48.

LANGER, M., AND BLTHOFF, H. 2000. Depth discrimination from
shading under diffuse lighting. Perception 29, 649–660.

LEVOY, M., 1988. Display of surfaces from volume data.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes:
A high resolution 3d surface construction algorithm. In SIG-
GRAPH ’87: Proceedings of the 14th annual conference on
Computer graphics and interactive techniques, ACM, New York,
NY, USA, 163–169.



MARMITT, G., KLEER, A., WALD, I., FRIEDRICH, H., AND
SLUSALLEK, P. 2004. Fast and Accurate Ray-Voxel Intersec-
tion Techniques for Iso-Surface Ray Tracing. In Proceedings of
Vision, Modeling, and Visualization (VMV), 429–435.

MITTRING, M. 2007. Finding next gen: Cryengine 2. In SIG-
GRAPH ’07: ACM SIGGRAPH 2007 courses, ACM, New York,
NY, USA, 97–121.

PHONG, B. T. 1975. Illumination for computer generated pictures.
Commun. ACM 18, 6, 311–317.

REINBOTHE, C., BOUBEKEUR, T., AND ALEXA, M. 2009. Hy-
brid ambient occlusion. EUROGRAPHICS 2009 Areas Papers.

RITSCHEL, T., GROSCH, T., AND SEIDEL, H.-P. 2009. Approxi-
mating dynamic global illumination in image space. In I3D ’09:
Proceedings of the 2009 symposium on Interactive 3D graphics
and games, ACM, New York, NY, USA, 75–82.

SHANMUGAM, P., AND ARIKAN, O. 2007. Hardware accelerated
ambient occlusion techniques on gpus. In I3D ’07: Proceedings
of the 2007 symposium on Interactive 3D graphics and games,
ACM, New York, NY, USA, 73–80.

WALD, I., FRIEDRICH, H., MARMITT, G., AND SEIDEL, H.-
P. 2005. Faster isosurface ray tracing using implicit kd-trees.
IEEE Transactions on Visualization and Computer Graphics 11,
5, 562–572. Member-Slusallek, Philipp.

WILHELMS, J., AND VAN GELDER, A. 1992. Octrees for faster
isosurface generation. ACM Trans. Graph. 11, 3, 201–227.

WILLIAMS, A., BARRUS, S., MORLEY, R. K., AND SHIRLEY, P.
2005. An efficient and robust ray-box intersection algorithm. In
SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses, ACM, New
York, NY, USA, 9.

YAGEL, R., AND SHI, Z. 1993. Accelerating volume animation by
space-leaping. In Proceedings of Visualization’93, 62–69.

YOON, I., DEMERS, J., KIM, T., AND NEUMANN, U. 1997.
Accelerating volume visualization by exploiting temporal coher-
ence. In Proc. IEEE Visualization 97 LBHT, IEEE Press, 21–24.

A Intersection and Surface Normal Calcula-
tion

Our algorithms perform Phong shading [Phong 1975], which re-
quires a point in 3D space to calculate shading and an associated
surface normal at that point. Our traversal algorithms only identify
the voxel that contains the isosurface; they do not identify the pre-
cise sub-voxel depth of the surface. Since this is not the main focus
of our work we will only touch on these topics briefly.

A.1 Ray-Voxel Intersection

In our system, we assume that the volume data varies linearly at the
level of the individual voxel. Since the dataset sizes we target are
large (greater than 256 voxels in each direction), this assumption
does not result in poor image quality. Additionally, this assumption
allows us to use the hardware based trilinear interpolation foud in
graphics cards. More sophisticated methods for isosurface intersec-
tion are fond in [Marmitt et al. 2004].

The problem of ray-voxel intersection is stated as follows. Let
some ray ~R pass through some voxel V . The ray ~R enters V at
a parameter value of tin, and exits V at a parameter value of tout.
The iso-values at these intersections are ρin and ρout, respectively.
Now, assuming we are trying to render a surface of is-value ρiso,

we know that if ρiso ∈ [ρin, ρout] we can guarantee ρiso exists
along ~R between tin and tout. Since we are assuming the value of
ρ varies linearly at a sub-voxel level, this problem is simple.

In order to find tiso, the t value at which the isosurface exists, we
first use trilinear interpolation twice to find ρin and ρout. Note
that this could actually be done with two bilinear interpolations,
but trilinear interpolation is implemented in hardware so we use it
instead. Now, to find tiso we must solve a single linear equation.
We know that as t varies from tin to tout along ~R, the following
equation holds:

ρ(t) =
ρout − ρin
tout − tin

t+ ρin

We want to find the value of t at which this equation equals ρiso.
Trivially, this is:

tiso =
ρiso − ρin
ρout−ρin
tout−tin

+ tin

A.2 Surface Normal Calculation

In addition to finding the intersection point with the isosurface, we
must also find the surface normal n̂ at this point P . Recall from
calculus that the gradient of some scalar field ρ, denoted by ∇ρ, is
a vector which points in the direction of steepest ascent. This vector
expressed component-wise is simply:

∇ρ =

〈
∂ρ

∂x
,
∂ρ

∂y
,
∂ρ

∂z

〉
Since these are just first derivatives, we can approximate them with
a central difference. In our system, we have implemented a simple
O(h2) accurate central difference scheme to calculate n̂. This is
expressed as:

n̂ ≈ ‖〈ρ(Px + dx)− ρ(Px − dx)

2dx

,
ρ(Py + dy)− ρ(Py − dy)

2dy

,
ρ(Pz + dz)− ρ(Pz − dz)

2dz
〉‖

Note that dx, dy, and dz are the width of a single voxel in the x, y,
and z directions respectively. Evaluating this central difference for-
mula thus requires six calls to trilinear interpolation. Note that for
edge cases where the sampling for the central difference requires
non-existent data, we simply assume that the volume data’s edge
values repeat indefinitely (we do not extrapolate). This is made
easier for us by CUDA’s texture addressing modes. The addressing
mode cudaAddressModeClamp performs this operation automati-
cally.

We also implemented a higher order central difference that isO(h4)
accurate. These central differences are of the form:

f ′(x) ≈ −f(x+ 2h) + 8f(x+ h)− 8f(x− h) + f(x− 2h)

12h

We will not write this our in three dimensions simply for brevity’s
sake. This higher-order central difference will require 12 trilinear
interpolations. However, in practice the overhead from these addi-
tional interpolations did not slow our renderer down significantly.
For all of our test data, with dimensions ranging from 32x32x32 all



the way to 1024x768x256, the O(h4) accurate central differences
slowed our renderer down by between 0 and 2 frames per second.

Visually, we noticed very little differences in shading between the
O(h2) and O(h4) central differences. Differences we only notice-
able when zoomed in extremely closely, and when using the correct
Phong shading parameters. These slight differences are illustrated
in Figure 7. Overall, we don’t think the higher order central dif-
ferences are very important in practice because of the very slight
performance hit, the increased programmer time required to imple-
ment them, and the marginal returns in terms of image quality.

Figure 7: Visual Comparison of Central Differences

A.3 Examples: Rendered Images / Prediction Buffers

Figure 8: Bucky ball: the rendered image and prediction buffer.

Figure 9: Engine: the rendered image and prediction buffer.

Figure 10: Skull 1: the rendered image and prediction buffer.

Figure 11: Skull 2: the rendered image and prediction buffer.

Figure 12: Teapot: the rendered image and prediction buffer.


