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1 Abstract—Interactive 3D animation of human figures is
very common in video games, animation studios and virtual
environments. However, it is difficult to produce full body
animation that looks realistic enough to be comparable to stdio
quality human motion data. The commercial motion capture
systems are expensive and not suitable for capture in evergg
environments. Real-time requirements tend to reduce quaty
of animation. We present a motion graph based framework to
produce high quality motion sequences in real-time using aet
of inertial sensor based controllers. The user’s action gesrates
signals from the controllers that provide constraints to séect
appropriate sequence of motions from a structured databasef
human motions, namelymotion graph. Our local search algorithm
utilizes noise prone and rapidly varying input sensor sign& for
querying a large database in real-time. The ability to waive
the controllers for producing high quality animation provi des
a simple 3D user interface that is intuitive to use. The propseed
framework is low cost and easy to setup.

Index Terms—Motion Capture, 3D Animation, Accelerometer,
Motion Graph.
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The controllers provide an accelerometer sensor baseithiatu
user interface for generating high quality 3D animationgal¥
time.

Our approach to produce the full body animation consists
of three phases. During the first data collection phase, we
capture the motions of a professiopatformer using a optical
motion capture system. Simultaneously, we also capture 3D
acceleration data from sensors attached to the performer’s
body. In the second phase, we build a motion graph using
the approach of Kovar et al?]. The third and final phase is
the motion graph search phase. We use the signals from the
sensors as input signals to search through the motion goaiph f
an appropriate sequences of clips that together reseméle th
action being performed by the user. Our approach performs at
real-time speeds and provides interactive character @ontr

We evaluate our system by computing the accuracy of graph
search algorithm when a user performs. We present data for
motions of various actions like arm exercise, tennis sspke
golf swing and basketball. Our results indicate that higaligqy

In the past decade, motion capture technologies are refl body motion can be produced with good accuracy using
venating animation industry, where high quality motionada@ Small number of low cost 3D acceleration sensors.

can be captured and later edited, transformed, intermblate The rest of the paper is organized as follows. Sec@n
and stored in large motion databases (e.g., House of movigsents the background, describes the related work iartbés
http:/Avww.moves.com). However, unlike video cameras; m@nd shows the novelty of our approach. Sec@@explains the

tion capture systems are still rarely used outside movie afystem architecture and software design that enablesbéeala
entertainment industry. Producing high quality 3D animati Performance. Section8?, ?? and ?? provide the detailed
requires proper planning and right tools. Therefore, igsyv description of our approach. Secti@f? shows the results and
difficult for a regular user to generate virtual movie chéges demonstrate the accuracy of our approach. We conclude the
that can be shared with a large audience. There are two mBAPer with a discussion of the lessons learnt and limitation
reasons - high cost and the technology itself. The cost ofSgction?? summarizes the paper and discusses future work.
reasonab_le quality motion capture s_ystem is_ l_)_eyond thénreac Il. RELATED WORK
of an ordinary user. Most of the motion acquisition techgglo . N

in such systems suffers from the disadvantages such as @,]dnteracuve Animation Control

setup time, restrict and limited capture space and ocaiusio T0 avoid high system cost and long suit-up time of marker-
(for vision-based system). based motion capture system, researchers seek help frem oth

In this paper, we propose a low cost, real-time, motio@W-Cost sensors for interactive animation control. Badie

estimation framework based on a small number of Nintéhdo@l- [?] proposed a system that reconstructs full-body motions
Wii™Controllers P] that are easy to attach to body andiSing four magnetic sensors and a real-time inverse-kitiema

impose little or no restriction on a motion capture enviremt algorithm to control a standing character in some virtual
environment. Another system developed by Yin and Phi [

LYong Caois the contact author. The conference nam€@VR'10. synthesizes full-body motion within one second by usinga fo



pressure sensor. However, it can only generate a small range
of behaviors and cannot produce motion for complex upper
body movement. Chai et al?] implemented a vision based
system that only requires two inexpensive video cameras.
Similarly Liu et al. [?] use a reduced marker set for estimating
human poses that is based on linear regression. However,

motion

these systems require a restrictive motion capture envieor capture data
and suffer from occlusion problem of a vision based tracking
Syste m. reduction

sensor data

A4

noise

To combine the benefit of different motion tracking sensors,
several hybrid systems were built. Their goal is to improve
the quality and performance, rather than cut the system cost
and suit-up time. Foxlin et. al?] developed an indoor sys-
tem that uses both acoustic and inertial sensors. Simjilarly
Bachmann P] introduced an inertial-magnetic system that
accounts for drifting by applying magnetic signal as refese
Most recently, Vlasic et al.q combine accelerometer sensors,
inertial sensors and acoustic sensors together to capigine h
fidelity motions that are comparable to the motions captured
from marker based vision systems. However, the cost of the

system is still high and it is not a real-time system becaiise o
the necessary post—processing time. Fig. 1. Data collection using Vicon motion capture systerd Bimtendo Wii
Controllers. Ultimately, all collected data is represenées aMotion Graph

Motion Graph

B. Motion Synthesis with Motion Graph

Motion synthesis by concatenation involves motion re-

: . . Xie et al. [?] use low-cost sensors, similar to ours, to
ordering and re-sequencing to produce another longer mOtIé) . ) !
.develop a lo-cost, data-driven framework for motion estima

sequence. Motion capture data can be organized into clips . : . .
. : . i1oh. This work provides the foundation for our work, since
then cut and combined together again to synthesize noyge . . . .
. ) hey succeed in generating high-quality data based on & loca
motions. Kovar et al. 9] introduced a graph structure called. : . .
. . : ... linear model learned from a high quality motion database Th
motion graph, to model the transition points and transition. . . : .
. . : . inear model is an interpolation model based on RBF. Using
edges between different motion clips. Arikan et &, [[?] . . .
. . : . this model and the control signals from the sensors, it is now
presented a similar graph structure with motion constsain , ; L .
. . . . possible to synthesize new poses. One limitation of thiskwor
Like with Video Textures 7P|, such re-ordering approach. L . )
. .2 is that it is an offline strategy and the synthesized resuibis
cannot be used for performance-driven applications, tmalémooth
the subtle detail from the input signal can not be represente '
in the result synthesized motion by re-ordering motionsnfro
the motion capture database. However, these approaches are

automated techniques and very suitable for motion estimati Ve present a real-time motion estimation framework that
instead of motion capture. tracks the user’s body movement and produces a motion

Lee et al. P] introduce a framework for representingthat closely resembles the users action. In contrast toomoti

searching and producing 3D animation in real-time. The lyrag@pture systems, we do not attempt to capture the subtlésdeta
is a hierarchical representation for enable quick searberg@ ©f the user's action. Our data-driven approach relies on a
are 3 interfaces for generating animations - choice baséa”uctured database of motion Capture data and a set ofrsenso
sketch based, and a performance-driven vision basedanterf that are used to track body movement. Our approach consists
Except for the vision based interface, the other two are nkthree phases - Data collection, data representationesld r
intuitive enough for a simple user and are not very intevacti ime motion generation.
Our search algorithm shares some of the goals of this vision _ )
based interface. A. Data Collection and Representation

In a recent work, Safonova and Hodging] improved Figure??illustrates these two steps. We perform a series of
motion graphs but retained the key advantages - long motioff-line motion capture sessions in the studio using ancapti
sequences, a variety of behaviors and natural transitidmnsy motion capture system for animation data and a set of iertia
synthesize motion as a linear interpolation of two timelestta sensors for acceleration data. The sensor data is pregsete
paths through a motion graph. Interpolation provides @bilito reduce noise. Following this, we synchronize the motion
to synthesize more accurate and natural motion as physicalata with the sensor data in order to get precise frame-to-
realistic variations. However, their approach is compatat frame mapping. All the data is then stored in a database and
intensive and is therefore not suitable for real-time sgaih. then converted into a structured database catletiion graph.

Ill. SYSTEM OVERVIEW



and therefore the 2 sensors provided sufficient constréonts

O oo i the search algorithm. For complex actions involving legs, w
ST v 1 \ would be required to use more sensors. Each sensor transmits
Sensor sgnas its 3D acceleration data to the data collection computerahe

Synchroni- Noise g

Network
Client
Motion Graph

T the data is passed through a noise reduction filter. Nexs, it i
e converted into sensor frames, synchronized with motiom dat
Fig. 2. System architecture for real-time motion genenatio frames and stored into the database.
The created database wiffi frames of data is a collection
of values of the form(c;,m;)|t = 1,...,N. ¢; is a frame

A motion graph is a directed graph that connects a moti@f sensor data with 6 dimensions and it represents the 3D
capture frame to all other similar frames such that a tramsit acceleration measures of four or eight sensors on the body
is possible while maintaining the continuity of motion. Theat time¢. m, is a frame of optical motion capture data and
motion graph is structured and efficient representation andepresents a pose at tinte The pose is represented in the
allows real-time search for motion clips that satisfy a set ¢orm of local joint rotation in the quaternion format.
user supplied constraints.

B. Motion Generation V. DATA REPRESENTATION

The data collection and representation are carried out onlyGiven a database of motion capture data, we create a
once with the final result being a motion graph. The motiodirected graph called anction graph. The idea of motion
graph then is used multiple times to conveniently produggaph is not new and the structure of our motion graph that
different kinds of animation in everyday surroundings. Ouwve use is an extension of the data structure used by Kovar
wearable motion estimation system consists of two ordinagy al. [?]. There are two kind of edges in the graph. As seen
Wii ™controllers that transmit signals to a bluetooth capabie Figure ?2(a), the solid edge represents a piece of original
terminal. During motion generation, these input sensara®) motion capture data which we will refer to alsp. The dashed
coming from different sensors are synchronized in time theaedge represents @ansition from one end of a clip to the
other and any noise is removed. We then use the input signiaégjinning of another. Thus the nodes are junctions called
to query the motion graph for walks in the graph that matdhansition points where transitions begin and end. Transition
to the input signals. The walk consists of motion clips tirat apoints are also the place where a clip starts or ends. A local
stitched together and blended at the transition pointseéater loop is a transition to self node. Self loop has been intreduc
a continuos motion sequence. The motion estimation systéon uniformity and is required to transition to the outgoicigp
architecture is shown in Figure?. edge from current node. In Figuf®?, node?7 is a dead-end
node because there is no outgoing edge from this node. The
motion graph is built only once and stored in a text file. In

During the studio motion capture session, we capturee®ery subsequent run, of the application, the motion graph i
types of data. The first is a high quality motion capture datiaded from this file at run time.
captured using Vicon optical motion capture system. SyRtruning the Motion Graph Once transitions are between
chronously, we capture acceleration data using acceléesmelips have been identified, we should remove unwanted nodes
sensors attached to the limbs of the performer. Only oaed edges that do not contribute positively to the search
motion capture session was required in which we capturatfjorithm. Pruning the motion graph for unwanted transgio
a total of 86 seconds of data, including arm exercising,itennis required for the following reasons: (1) remove acyclic
basketball and golf motions. For building the database fed regions in the motion graph; (2) high quality of transitipns
the examples presented in this paper, we had only one subj@jtreduce complexity and compress the motion graph.
perform all the actions. Merging Similar Transitions We apply convolution to obtain

For optical motion capture, we use a Vicon system witthe local minima for selecting transitions. However, theik
8 Vicon MX series cameras for high quality motion capbe transitions that have source frames which are adjacent in
ture at 60 Hz. The motion sensors are 3D accelerometéne motion sequence and very identical to each other while
(Wii ™Nintendo controllers) with a range €f3g and built-in  the destination frames are scattered. We must detect these
Bluetooth®)interface for data transmission at a peak rate obdes and represent them with one single node while keeping
100 Hz. The interface based on these wireless inertial sensall the transitions. Our compression technique retains the
is cheap, easy to set-up and unlike vision based system, dhextionality of the motion graph with the help of a more
not suffer from occlusion. There are 45 retro-reflectivekees compressed and efficient transition.
and eight sensors attached to the performer’s body. Thesens As shown in Section??, this scheme will be beneficial
are attached to the arms and legs since they provide mosirothe search phase of the motion graph. Similar to scenario
the movements for a majority of human actions. We only usekgscribed above, we will have another scenario in which the
data from the 2 sensors attached to each forearm. Actismirce nodes for transitions are not in a neighborhood, but
present in our database mostly employ movement of the arthe destination nodes lie in the same neighborhood. Althoug

IV. DATA COLLECTION



> At any given timet, we maintain a sliding window buffer,

5 6 7 U, of size CSW for the input sensor signals. If the current
0 node isn;, we obtain all the transitions possible from.

N Then we find the minimum of the distancé,,;,, as shown

in Equatior??, between the input signal and each of these

sh 10 o TR transitions as the weighted square of Euclidian distance.

CSW ,
4 dpin = min( ) wil|es; — esj[[) 6y
/ /4 =0
Here cs; is an input sensor signal frame in the buffer
- ({ 7 U, andcs, is a sensor signal frame from the motion graph
PP Tt corresponding to a transition from, with csy being the first
\Q\Q/o frame in the destination clip edge. The weight is a linear
e /I N Tt i i ;= —1
4 \ weight given byw; = 5w .
S 3 Let us assume that the first and the last frame of the current
y N clip edge isA;_; and A; respectively wheré is the length
b of the clip edge. The process for findinly,;,, begins when
(@) (b) - .
A,_; is being rendered and is repeated after every subsequent
Fig. 3. (a) An example motion graph generated from two setmofion  frame until we reach framé, .. The choice for this frame
- . . 2, . .
capture data. (b) The default motion sub-graph. is based on our blending technique. After every iteration we
updated,,;, if a lower value is found. When we reach the
. frame A, ., we stop searching and proceed with next step -
merging these nodes h"%“’e no effegt as f_ar as the S.eatrc():q%elect an appropriate transition based on our searchgesu
algorithm is concerned, it will help in making the motion : . . o
raph more compact. thus reducing memory consumption Atdthls state our search algorithm has yieldég;,,, which is
grapn pact, g y PUON &R transition to the clip which is closest to the query signa
boosting performance. . ;

If d... 1S below an acceptable distance threshold, we
select the transition corresponding to it and proceed with
_ _ _ _ blending. However, it would be easy to encounter situations

In the previous section we built a motion graph from th@hich d,,,;,, is above the distance threshold and the transition
motion capture Qatabage. In this section, we de;crlbe e P& acceptable. This would typically happen if the user is
cess of generating motion sequences by searching the moj@Rforming an action that does not exist in the database. It
graph for motions corresponding to actions being performeghuld also happen if the user did not perform an action well
by the user. The user wears two sensor controllers in eachepbugh to get recognized. In such cases we select a transitio
his arms. The total setup time is less than 2 minutes. Since @y 5 node in a special sub-graph calléefault motion sub-
system does not suffer from occlusion, the user can positigiaph. However, not all nodes will have a transition to the
himself in any direction, but should be close enough to thfsfault sub-graph. In this case we choose a self-transitimh
terminal to maintain Bluetooth connectivity. For exampiles continue playing frames from the new clip until we encounter
this work, the user performs several actions that mostlyireq 3 transition to the default motion sub-graph.
movement of the upper body. For this reason, it is sufficient o default motion sub-graph is our extension to a pure
to use only 2 controllers. . ~ motion graph based approach. The default motion sub-graph,

At this stage there are 2 tasks to accomplish. First wg shown in Figure??(b), is constructed from a specially
must search in the motion graph for paths that satisfy us@flected motion capture data in which the skeleton pose is
constraints in real-time. Secondly the resulting graphkwajn 3 neutral position in all the frames.

VI. SEARCHING THE MOTION GRAPH

needs to be converted to continuous motion. Once the default poses are decided, we take 0.5 second
! onli h (30 frames) of continuos motion from a clip such that all the
A. Local online searc frames are very similar to each other. This motion sequence,

Given a current node, our novel graph search algorithm useEsled thedefault motion sequence, can be easily found by
the input sensor signals as the query for searching a matchinnning though the entire motion capture database and §indin
transition from the node. Our approach is local because we30 frame sub-sequence of frames, all similar to the given
only search for transitions possible from the current nodéefault pose. Using these frames, we construct a small and
Secondly, our approach is online because search and regdespecial motion graph called thdefault sub-motion graph
is performed at real-time rates. Unlike the graph buildinghich has as many nodes as number of frames in the default
phase, in the search phase we will use only the motion senswtion sequence. The end node is connected to the beginning
frames. However, every motion capture frame of a clip edg®de, forming a circle of continuous motion. There is onlgon
in the motion graph has a corresponding motion sensor frangateway node for all incoming transitions. However, all e®d



: iy . TABLE |
have outgoing transitions. We now connect this sub-graph to  aAccuracy OF THE ONLINE LOCAL SEARCH ALGORITHM

the rest of the motion graph by creating transitions from all

clip edges whose end frame is similar to the default frame. Action SRR TR
Finally, it should be possible for us to transition from any Right arm dumbell| 0.88 | 0.00 | 0.12
de in the default motion sub-graph to the selected nodes of Left arm dumbell | 0.84 1 0.0 | 0.16
no _ _ 0-grap \ : Right arm Tt 096 | 00 | 0.04
the motion graph without waiting for the entire default clip Left arm Titt 096 1 004100
to finish playing. For this we duplicate all the transitiohsit Tennis forehand | 0.82 | 0.0 | 0.18
were created for the first node of the default motion subdgrap Basketball dribble | 0.88 | 0.06 | 0.06
. Basketball shot 0.76 | 0.0 0.24
to the selected nodes of the motion graph. Coff 094100 0.6

The default motion sub-graph is a unique feature required to
play animation whenever the search algorithm returns a poor
transition. It is also used to play a clip that indicates et

system is waiting for user to perform an action. Stability The stability test tells us if our system is intelligent
enough to recognize intervals when the user is not perfarmin
B. Generating motion any action. During such cases, it is expected that an appro-

i ) i . priate default clip is being played giving the impressioatth
A walk through the motion graph results in a motion being,e ayatar is waiting for the next instruction from user. An

generated. After the search phase, we have identified a Paffiyr condition occurs if the system wrongly plays a motion
consisting of clip and transition edges in the motion grapfyqence, instead of remaining in default state. We cal thi
th_at should be co_nve_rted into continuous and smoo_th mOF'OAqupe | error. For measuring the Type | error, we asked the
Since we are stitching clips together, we must first alidfiser 1o stand steadily in each of the three defaults poses.
the clips such that the start frame of new clip matches they, another case, if the user performs arbitrary actions (not
global translation and orientation of the previous clipyeld ,esent in database), then the search algorithm should not
Then., we blend the motion at the junction to produce smooily, anything and a default clip should be played. Theacti
transition. to be performed for this test is chosen carefully so that it is
not similar to any of the actions in the database. Again, an
error condition is produced when the system wrongly plays a
Our system is capable of capturing motions that are sirfftotion sequence, instead of a default pose clip. We call such
ilar to the ones in the motion database. The user has t®&ors asType Il errors. For this test, the user was asked to
Wii ™controllers attached to his arms and connected to tAerform two actions. First we asked the user to move right arm
terminal via Bluetoott®. We asked the user to perform tennién circular fashion, as if drawing a circle on a blackboardeT
forehand, tennis serve, basketball dribble, basketbadk, shsecond action was to move both arms as if the user is running.
arms exercise and golf swing. The actions were performedAll actions were performed continuously for 30 seconds and
in random order. A sequence of skeleton poses along t&ch action was repeated 10 times. The results are presented
corresponding images from video is shown in Figwe Table?? We see that while the user is not moving, there are
The quality and accuracy of our approach is shown in th errors, but when the user is moving arbitrarily, the syste
accompanying video. The examples presented in this pagégasionally confused and selects a wrong transition. Merye
were run on a terminal with using 2.33 GHz Intel Core the low percentage in error for Type Il errors suggests that o
Duo processor and 2GB of memory. The real-time frame reggstem is stable during such conditions.
achieved 60 frames per second.

VIl. RESULTS

TABLE Il

For ev_aluatlng our system, we follow a two-step procedure. STABILITY TEST
In the first step we measure the accuracy of our search
algorithm to correctly match user actions with motions ia th Error Type | Action Error (%)
database. In the second step, we measure the stability of our Type | Default pose 1 0
Type | Default pose 2 0

system. Type | Default pose 3 0
Accuracy The accuracy measure reflects the ability of our Type I Running 0
search algorithm to find best match for user actions. If the Type i Right arm circle 10

f d tiaN times, we measure the number of Type I Dumbbefl, both armsj 0
user periormed an ac ' Type Il Arm lift, both arms 0

times the action wasorrectly recognized (CR), number of
times the action wasncorrectly recognized (I R) and number

of times the action wasot recognized (NR). An action is
considered not recognized if the avatar does not respond to
the user action and instead maintains the default pose.&ach We present a framework for estimating full body motion in
these measurements are summarized in TaBlor N = 50, real-time using a small set of low cost inertial sensors. Our
the number of repetitions of each action. The overall acgurathree step approach involves data collection, building &iano
achieved was 91%. graph and motion generation though local graph search. Data

VIII. CONCLUSIONS



collection is performed in the studio and produces a dagbas
of time synchronized high quality motion capture data and
sensor data. Using this database, we then construct a data
structure for 3D animations called a motion graph. Creading
efficient motion graph is not trivial, since it involves fimdj

the best transition points from a pool of candidate tramisti

We prune the graph to remove redundant transitions and dead-
ends and introduce a new compression technique to improve
search performance.

Using this motion graph, we can generate various new
motion sequences by concatenation of clips obtained from
the motion graph search. In the search phase, we proposed
a local online algorithm that uses the sensor signals as a
query to the motion graph and returns an appropriate tiansit
corresponding to the user’s current action. When the search
algorithm is unable to understand the user’s action we fhay t
default motion clip until the user performs an action that ca
be recognized. We extended the commonly used motion graph
technique to introduce a default motion sub-graph. A walk
through this circular sub-graph produces the default motio
clip.

The results obtained show the effectiveness of of our
framework. We achieved accuracy of 91% while maintaining
a lag of 1.33 seconds. The quality of the generated motion
sequence is same as original motion capture data, since we
follow a cut and paste strategy and synthesize frames only
during transitions between different clips.



Fig. 4. Five different actions (one in each row) generateatnysystem. Each frame shows on the left side the actual puberathe right side the a pose
from the generate motion sequence. For the purpose of c@sopamwe have presented the results after removing the(llagge by author)



