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1 Abstract—Interactive 3D animation of human figures is
very common in video games, animation studios and virtual
environments. However, it is difficult to produce full body
animation that looks realistic enough to be comparable to studio
quality human motion data. The commercial motion capture
systems are expensive and not suitable for capture in everyday
environments. Real-time requirements tend to reduce quality
of animation. We present a motion graph based framework to
produce high quality motion sequences in real-time using a set
of inertial sensor based controllers. The user’s action generates
signals from the controllers that provide constraints to select
appropriate sequence of motions from a structured databaseof
human motions, namelymotion graph. Our local search algorithm
utilizes noise prone and rapidly varying input sensor signals for
querying a large database in real-time. The ability to waive
the controllers for producing high quality animation provi des
a simple 3D user interface that is intuitive to use. The proposed
framework is low cost and easy to setup.

Index Terms—Motion Capture, 3D Animation, Accelerometer,
Motion Graph.

I. I NTRODUCTION

In the past decade, motion capture technologies are reju-
venating animation industry, where high quality motion data
can be captured and later edited, transformed, interpolated
and stored in large motion databases (e.g., House of moves:
http://www.moves.com). However, unlike video cameras, mo-
tion capture systems are still rarely used outside movie and
entertainment industry. Producing high quality 3D animation
requires proper planning and right tools. Therefore, it’s very
difficult for a regular user to generate virtual movie characters
that can be shared with a large audience. There are two main
reasons - high cost and the technology itself. The cost of a
reasonable quality motion capture system is beyond the reach
of an ordinary user. Most of the motion acquisition technology
in such systems suffers from the disadvantages such as long
setup time, restrict and limited capture space and occlusion
(for vision-based system).

In this paper, we propose a low cost, real-time, motion
estimation framework based on a small number of Nintendoc©

WiiTMControllers [?] that are easy to attach to body and
impose little or no restriction on a motion capture environment.

1Yong Cao is the contact author. The conference name isCGVR’10.

The controllers provide an accelerometer sensor based intuitive
user interface for generating high quality 3D animation in real-
time.

Our approach to produce the full body animation consists
of three phases. During the first data collection phase, we
capture the motions of a professionalperformer using a optical
motion capture system. Simultaneously, we also capture 3D
acceleration data from sensors attached to the performer’s
body. In the second phase, we build a motion graph using
the approach of Kovar et al. [?]. The third and final phase is
the motion graph search phase. We use the signals from the
sensors as input signals to search through the motion graph for
an appropriate sequences of clips that together resemble the
action being performed by the user. Our approach performs at
real-time speeds and provides interactive character control.

We evaluate our system by computing the accuracy of graph
search algorithm when a user performs. We present data for
motions of various actions like arm exercise, tennis strokes,
golf swing and basketball. Our results indicate that high quality
full body motion can be produced with good accuracy using
a small number of low cost 3D acceleration sensors.

The rest of the paper is organized as follows. Section??
presents the background, describes the related work in thisarea
and shows the novelty of our approach. Section??explains the
system architecture and software design that enables scalable
performance. Sections??, ?? and ?? provide the detailed
description of our approach. Section?? shows the results and
demonstrate the accuracy of our approach. We conclude the
paper with a discussion of the lessons learnt and limitations.
Section?? summarizes the paper and discusses future work.

II. RELATED WORK

A. Interactive Animation Control

To avoid high system cost and long suit-up time of marker-
based motion capture system, researchers seek help from other
low-cost sensors for interactive animation control. Badler et
al. [?] proposed a system that reconstructs full-body motions
using four magnetic sensors and a real-time inverse-kinematic
algorithm to control a standing character in some virtual
environment. Another system developed by Yin and Pai [?]
synthesizes full-body motion within one second by using a foot



pressure sensor. However, it can only generate a small range
of behaviors and cannot produce motion for complex upper
body movement. Chai et al. [?] implemented a vision based
system that only requires two inexpensive video cameras.
Similarly Liu et al. [?] use a reduced marker set for estimating
human poses that is based on linear regression. However,
these systems require a restrictive motion capture environment
and suffer from occlusion problem of a vision based tracking
system.

To combine the benefit of different motion tracking sensors,
several hybrid systems were built. Their goal is to improve
the quality and performance, rather than cut the system cost
and suit-up time. Foxlin et. al [?] developed an indoor sys-
tem that uses both acoustic and inertial sensors. Similarly,
Bachmann [?] introduced an inertial-magnetic system that
accounts for drifting by applying magnetic signal as reference.
Most recently, Vlasic et al. [?] combine accelerometer sensors,
inertial sensors and acoustic sensors together to capture high-
fidelity motions that are comparable to the motions captured
from marker based vision systems. However, the cost of the
system is still high and it is not a real-time system because of
the necessary post-processing time.

B. Motion Synthesis with Motion Graph

Motion synthesis by concatenation involves motion re-
ordering and re-sequencing to produce another longer motion
sequence. Motion capture data can be organized into clips,
then cut and combined together again to synthesize novel
motions. Kovar et al. [?] introduced a graph structure called
motion graph, to model the transition points and transition
edges between different motion clips. Arikan et al. [?], [?]
presented a similar graph structure with motion constraints.
Like with Video Textures [?], such re-ordering approach
cannot be used for performance-driven applications, because
the subtle detail from the input signal can not be represented
in the result synthesized motion by re-ordering motions from
the motion capture database. However, these approaches are
automated techniques and very suitable for motion estimation
instead of motion capture.

Lee et al. [?] introduce a framework for representing,
searching and producing 3D animation in real-time. The graph
is a hierarchical representation for enable quick search. There
are 3 interfaces for generating animations - choice based,
sketch based, and a performance-driven vision based interface.
Except for the vision based interface, the other two are not
intuitive enough for a simple user and are not very interactive.
Our search algorithm shares some of the goals of this vision
based interface.

In a recent work, Safonova and Hodgins [?] improved
motion graphs but retained the key advantages - long motion
sequences, a variety of behaviors and natural transitions.They
synthesize motion as a linear interpolation of two time-scaled
paths through a motion graph. Interpolation provides ability
to synthesize more accurate and natural motion as physically
realistic variations. However, their approach is computation
intensive and is therefore not suitable for real-time synthesis.
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Fig. 1. Data collection using Vicon motion capture system and Nintendo Wii
Controllers. Ultimately, all collected data is represented as aMotion Graph

Xie et al. [?] use low-cost sensors, similar to ours, to
develop a lo-cost, data-driven framework for motion estima-
tion. This work provides the foundation for our work, since
they succeed in generating high-quality data based on a local
linear model learned from a high quality motion database. The
linear model is an interpolation model based on RBF. Using
this model and the control signals from the sensors, it is now
possible to synthesize new poses. One limitation of this work
is that it is an offline strategy and the synthesized result isnot
smooth.

III. SYSTEM OVERVIEW

We present a real-time motion estimation framework that
tracks the user’s body movement and produces a motion
that closely resembles the users action. In contrast to motion
capture systems, we do not attempt to capture the subtle details
of the user’s action. Our data-driven approach relies on a
structured database of motion capture data and a set of sensors
that are used to track body movement. Our approach consists
of three phases - Data collection, data representation and real-
time motion generation.

A. Data Collection and Representation

Figure?? illustrates these two steps. We perform a series of
off-line motion capture sessions in the studio using an optical
motion capture system for animation data and a set of inertial
sensors for acceleration data. The sensor data is pre-processed
to reduce noise. Following this, we synchronize the motion
data with the sensor data in order to get precise frame-to-
frame mapping. All the data is then stored in a database and
then converted into a structured database calledmotion graph.
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Fig. 2. System architecture for real-time motion generation

A motion graph is a directed graph that connects a motion
capture frame to all other similar frames such that a transition
is possible while maintaining the continuity of motion. The
motion graph is structured and efficient representation and
allows real-time search for motion clips that satisfy a set of
user supplied constraints.

B. Motion Generation

The data collection and representation are carried out only
once with the final result being a motion graph. The motion
graph then is used multiple times to conveniently produce
different kinds of animation in everyday surroundings. Our
wearable motion estimation system consists of two ordinary
WiiTMcontrollers that transmit signals to a bluetooth capable
terminal. During motion generation, these input sensor signals
coming from different sensors are synchronized in time to each
other and any noise is removed. We then use the input signals
to query the motion graph for walks in the graph that match
to the input signals. The walk consists of motion clips that are
stitched together and blended at the transition points to create
a continuos motion sequence. The motion estimation system
architecture is shown in Figure??.

IV. DATA COLLECTION

During the studio motion capture session, we capture 2
types of data. The first is a high quality motion capture data,
captured using Vicon optical motion capture system. Syn-
chronously, we capture acceleration data using accelerometer
sensors attached to the limbs of the performer. Only one
motion capture session was required in which we captured
a total of 86 seconds of data, including arm exercising, tennis,
basketball and golf motions. For building the database usedfor
the examples presented in this paper, we had only one subject
perform all the actions.

For optical motion capture, we use a Vicon system with
8 Vicon MX series cameras for high quality motion cap-
ture at 60 Hz. The motion sensors are 3D accelerometers
(WiiTMNintendo controllers) with a range of±3g and built-in
BluetoothR©interface for data transmission at a peak rate of
100 Hz. The interface based on these wireless inertial sensors
is cheap, easy to set-up and unlike vision based system, does
not suffer from occlusion. There are 45 retro-reflective markers
and eight sensors attached to the performer’s body. The sensors
are attached to the arms and legs since they provide most of
the movements for a majority of human actions. We only used
data from the 2 sensors attached to each forearm. Actions
present in our database mostly employ movement of the arms

and therefore the 2 sensors provided sufficient constraintsfor
the search algorithm. For complex actions involving legs, we
would be required to use more sensors. Each sensor transmits
its 3D acceleration data to the data collection computer where
the data is passed through a noise reduction filter. Next, it is
converted into sensor frames, synchronized with motion data
frames and stored into the database.

The created database withN frames of data is a collection
of values of the form(ct,mt)|t = 1, . . . , N . ct is a frame
of sensor data with 6 dimensions and it represents the 3D
acceleration measures of four or eight sensors on the body
at time t. mt is a frame of optical motion capture data and
it represents a pose at timet. The pose is represented in the
form of local joint rotation in the quaternion format.

V. DATA REPRESENTATION

Given a database of motion capture data, we create a
directed graph called amotion graph. The idea of motion
graph is not new and the structure of our motion graph that
we use is an extension of the data structure used by Kovar
et al. [?]. There are two kind of edges in the graph. As seen
in Figure ??(a), the solid edge represents a piece of original
motion capture data which we will refer to asclip. The dashed
edge represents atransition from one end of a clip to the
beginning of another. Thus the nodes are junctions called
transition points where transitions begin and end. Transition
points are also the place where a clip starts or ends. A local
loop is a transition to self node. Self loop has been introduced
for uniformity and is required to transition to the outgoingclip
edge from current node. In Figure??, node7 is a dead-end
node because there is no outgoing edge from this node. The
motion graph is built only once and stored in a text file. In
every subsequent run, of the application, the motion graph is
loaded from this file at run time.
Pruning the Motion Graph Once transitions are between
clips have been identified, we should remove unwanted nodes
and edges that do not contribute positively to the search
algorithm. Pruning the motion graph for unwanted transitions
is required for the following reasons: (1) remove acyclic
regions in the motion graph; (2) high quality of transitions;
(3) reduce complexity and compress the motion graph.
Merging Similar Transitions We apply convolution to obtain
the local minima for selecting transitions. However, therewill
be transitions that have source frames which are adjacent in
the motion sequence and very identical to each other while
the destination frames are scattered. We must detect these
nodes and represent them with one single node while keeping
all the transitions. Our compression technique retains the
functionality of the motion graph with the help of a more
compressed and efficient transition.

As shown in Section??, this scheme will be beneficial
in the search phase of the motion graph. Similar to scenario
described above, we will have another scenario in which the
source nodes for transitions are not in a neighborhood, but
the destination nodes lie in the same neighborhood. Although
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Fig. 3. (a) An example motion graph generated from two sets ofmotion
capture data. (b) The default motion sub-graph.

merging these nodes have no effect as far as the search
algorithm is concerned, it will help in making the motion
graph more compact, thus reducing memory consumption and
boosting performance.

VI. SEARCHING THE MOTION GRAPH

In the previous section we built a motion graph from the
motion capture database. In this section, we describe the pro-
cess of generating motion sequences by searching the motion
graph for motions corresponding to actions being performed
by the user. The user wears two sensor controllers in each of
his arms. The total setup time is less than 2 minutes. Since our
system does not suffer from occlusion, the user can position
himself in any direction, but should be close enough to the
terminal to maintain Bluetooth connectivity. For examplesin
this work, the user performs several actions that mostly require
movement of the upper body. For this reason, it is sufficient
to use only 2 controllers.

At this stage there are 2 tasks to accomplish. First we
must search in the motion graph for paths that satisfy user
constraints in real-time. Secondly the resulting graph walk
needs to be converted to continuous motion.

A. Local online search

Given a current node, our novel graph search algorithm uses
the input sensor signals as the query for searching a matching
transition from the node. Our approach is local because we
only search for transitions possible from the current node.
Secondly, our approach is online because search and rendering
is performed at real-time rates. Unlike the graph building
phase, in the search phase we will use only the motion sensor
frames. However, every motion capture frame of a clip edge
in the motion graph has a corresponding motion sensor frame.

At any given timet, we maintain a sliding window buffer,
Ut of size CSW for the input sensor signals. If the current
node is nt, we obtain all the transitions possible fromnt.
Then we find the minimum of the distance,dmin as shown
in Equation??, between the input signal and each of these
transitions as the weighted square of Euclidian distance.

dmin = min(
CSW∑

i=0

wi||csi − cs′i||
2
) (1)

Here csi is an input sensor signal frame in the buffer
Ut and cs′

i
is a sensor signal frame from the motion graph

corresponding to a transition fromnt with cs0 being the first
frame in the destination clip edge. The weightwi is a linear
weight given bywi = 1

CSW
.

Let us assume that the first and the last frame of the current
clip edge isAi−l and Ai respectively wherel is the length
of the clip edge. The process for findingdmin begins when
Ai−l is being rendered and is repeated after every subsequent
frame until we reach frameA

i− k

2

. The choice for this frame
is based on our blending technique. After every iteration we
updatedmin if a lower value is found. When we reach the
frameA

i− k

2

, we stop searching and proceed with next step -
to select an appropriate transition based on our search results.
At this state our search algorithm has yieldeddmin, which is
the transition to the clip which is closest to the query signal.

If dmin is below an acceptable distance threshold, we
select the transition corresponding to it and proceed with
blending. However, it would be easy to encounter situationsin
which dmin is above the distance threshold and the transition
is acceptable. This would typically happen if the user is
performing an action that does not exist in the database. It
would also happen if the user did not perform an action well
enough to get recognized. In such cases we select a transition
to a node in a special sub-graph calleddefault motion sub-
graph. However, not all nodes will have a transition to the
default sub-graph. In this case we choose a self-transitionand
continue playing frames from the new clip until we encounter
a transition to the default motion sub-graph.

A default motion sub-graph is our extension to a pure
motion graph based approach. The default motion sub-graph,
as shown in Figure??(b), is constructed from a specially
selected motion capture data in which the skeleton pose is
in a neutral position in all the frames.

Once the default poses are decided, we take 0.5 second
(30 frames) of continuos motion from a clip such that all the
frames are very similar to each other. This motion sequence,
called thedefault motion sequence, can be easily found by
running though the entire motion capture database and finding
a 30 frame sub-sequence of frames, all similar to the given
default pose. Using these frames, we construct a small and
special motion graph called thedefault sub-motion graph
which has as many nodes as number of frames in the default
motion sequence. The end node is connected to the beginning
node, forming a circle of continuous motion. There is only one
gateway node for all incoming transitions. However, all nodes



have outgoing transitions. We now connect this sub-graph to
the rest of the motion graph by creating transitions from all
clip edges whose end frame is similar to the default frame.
Finally, it should be possible for us to transition from any
node in the default motion sub-graph to the selected nodes of
the motion graph without waiting for the entire default clip
to finish playing. For this we duplicate all the transitions that
were created for the first node of the default motion sub-graph,
to the selected nodes of the motion graph.

The default motion sub-graph is a unique feature required to
play animation whenever the search algorithm returns a poor
transition. It is also used to play a clip that indicates thatthe
system is waiting for user to perform an action.

B. Generating motion

A walk through the motion graph results in a motion being
generated. After the search phase, we have identified a path
consisting of clip and transition edges in the motion graph
that should be converted into continuous and smooth motion.
Since we are stitching clips together, we must first align
the clips such that the start frame of new clip matches the
global translation and orientation of the previous clip played.
Then, we blend the motion at the junction to produce smooth
transition.

VII. R ESULTS

Our system is capable of capturing motions that are sim-
ilar to the ones in the motion database. The user has two
WiiTMcontrollers attached to his arms and connected to the
terminal via BluetoothR©. We asked the user to perform tennis
forehand, tennis serve, basketball dribble, basketball shot,
arms exercise and golf swing. The actions were performed
in random order. A sequence of skeleton poses along the
corresponding images from video is shown in Figure??.
The quality and accuracy of our approach is shown in the
accompanying video. The examples presented in this paper
were run on a terminal with using 2.33 GHz Intel Core 2
Duo processor and 2GB of memory. The real-time frame rate
achieved 60 frames per second.

For evaluating our system, we follow a two-step procedure.
In the first step we measure the accuracy of our search
algorithm to correctly match user actions with motions in the
database. In the second step, we measure the stability of our
system.
Accuracy The accuracy measure reflects the ability of our
search algorithm to find best match for user actions. If the
user performed an actionN times, we measure the number of
times the action wascorrectly recognized (CR), number of
times the action wasincorrectly recognized (IR) and number
of times the action wasnot recognized (NR). An action is
considered not recognized if the avatar does not respond to
the user action and instead maintains the default pose. Eachof
these measurements are summarized in Table?? for N = 50,
the number of repetitions of each action. The overall accuracy
achieved was 91%.

TABLE I
ACCURACY OF THE ONLINE, LOCAL SEARCH ALGORITHM

Action CR

N

IR

N

NR

N

Right arm dumbell 0.88 0.00 0.12
Left arm dumbell 0.84 0.0 0.16
Right arm lift 0.96 0.0 0.04
Left arm lift 0.96 0.04 0.0
Tennis forehand 0.82 0.0 0.18
Basketball dribble 0.88 0.06 0.06
Basketball shot 0.76 0.0 0.24
Golf 0.94 0.0 0.06

Stability The stability test tells us if our system is intelligent
enough to recognize intervals when the user is not performing
any action. During such cases, it is expected that an appro-
priate default clip is being played giving the impression that
the avatar is waiting for the next instruction from user. An
error condition occurs if the system wrongly plays a motion
sequence, instead of remaining in default state. We call this
a Type I error. For measuring the Type I error, we asked the
user to stand steadily in each of the three defaults poses.

In another case, if the user performs arbitrary actions (not
present in database), then the search algorithm should not
return anything and a default clip should be played. The action
to be performed for this test is chosen carefully so that it is
not similar to any of the actions in the database. Again, an
error condition is produced when the system wrongly plays a
motion sequence, instead of a default pose clip. We call such
errors asType II errors. For this test, the user was asked to
perform two actions. First we asked the user to move right arm
in circular fashion, as if drawing a circle on a blackboard. The
second action was to move both arms as if the user is running.

All actions were performed continuously for 30 seconds and
each action was repeated 10 times. The results are presentedin
Table??. We see that while the user is not moving, there are
no errors, but when the user is moving arbitrarily, the system is
occasionally confused and selects a wrong transition. However,
the low percentage in error for Type II errors suggests that our
system is stable during such conditions.

TABLE II
STABILITY TEST

Error Type Action Error (%)
Type I Default pose 1 0
Type I Default pose 2 0
Type I Default pose 3 0
Type II Running 0
Type II Right arm circle 10
Type II Dumbbell, both arms 0
Type II Arm lift, both arms 0

VIII. C ONCLUSIONS

We present a framework for estimating full body motion in
real-time using a small set of low cost inertial sensors. Our
three step approach involves data collection, building a motion
graph and motion generation though local graph search. Data



collection is performed in the studio and produces a database
of time synchronized high quality motion capture data and
sensor data. Using this database, we then construct a data
structure for 3D animations called a motion graph. Creatingan
efficient motion graph is not trivial, since it involves finding
the best transition points from a pool of candidate transitions.
We prune the graph to remove redundant transitions and dead-
ends and introduce a new compression technique to improve
search performance.

Using this motion graph, we can generate various new
motion sequences by concatenation of clips obtained from
the motion graph search. In the search phase, we proposed
a local online algorithm that uses the sensor signals as a
query to the motion graph and returns an appropriate transition
corresponding to the user’s current action. When the search
algorithm is unable to understand the user’s action we play the
default motion clip until the user performs an action that can
be recognized. We extended the commonly used motion graph
technique to introduce a default motion sub-graph. A walk
through this circular sub-graph produces the default motion
clip.

The results obtained show the effectiveness of of our
framework. We achieved accuracy of 91% while maintaining
a lag of 1.33 seconds. The quality of the generated motion
sequence is same as original motion capture data, since we
follow a cut and paste strategy and synthesize frames only
during transitions between different clips.



Fig. 4. Five different actions (one in each row) generated byour system. Each frame shows on the left side the actual pose and on the right side the a pose
from the generate motion sequence. For the purpose of comparison, we have presented the results after removing the lag.(Image by author)


