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Abstract—Rendering massive 3D models has been recognized
as a challenging task. Due to the limited size of GPU memory,
a massive model containing hundreds of millions of primitives
cannot fit into most of modern GPUs. By applying parallel level-
of-detail (LOD), as proposed in [1], only a portion of primitives
instead of the whole are necessary to be streamed to the GPU.
However, the low bandwidth in CPU-GPU communication is still
the major bottleneck that prevents users from achieving high-
performance rendering of massive 3D models on a single-GPU
system. This paper explores a device-level parallel design that
distributes the workloads for both GPU out-of-core and LOD
processing in a multi-GPU multi-display system. Our multi-GPU
out-of-core takes advantages of a load-balancing method and
seamlessly integrates with the parallel LOD algorithm. By using
frame-to-frame coherence, the overhead of data transferring
is significantly reduced on each GPU. Our experiments show
a highly interactive visualization of the “Boeing 777” airplane
model that consists of over 332 million triangles and over 223
million vertices.

I. INTRODUCTION

Recently, GPU hardwares have been praised not only be-
cause of their dramatically increased computational power but
also due to their programability for general-purpose compu-
tation. GPU architectures allow a large number of threads
launched simultaneously to support high-performance applica-
tions. However, because of the enormous amount of renderable
primitives in a massive model, the power and memory of a
single GPU may not be sufficient to visualize them at a decent
rendering rate. In the research domains, such as Computer-
Aided Design (CAD) products, mechanical visualization and
virtual reality applications, researchers develop very complex
3D models that may consist of millions, or even hundreds of
millions of polygon primitives and consume several gigabytes
on storage. Since these gigabyte-sized models cannot fit into
most of commodity GPUs, the polygon primitives have to be
transferred from a CPU host before rendering each frame.
Although parallel LOD algorithms [1], [2], [3] have been
proposed to reduce the amount of GPU resident primitives,
the bandwidth in CPU-GPU communication is still too low
to transfer the data efficiently, which usually is the major
performance bottleneck in massive model rendering.

To address this issue, multi-GPU systems have caught at-
tention of researchers since it can provide more computational
power and memory. With the rapid hardware development, a

motherboard is commonly configured with multiple PCIe slots
that enable installations of two or more graphics cards. This
configuration would have high potentials to increase the per-
formance by distributing workloads across GPUs. Meanwhile,
with additional GPU display ports, multiple display monitors
can be connected, so that the rich information embedded in
massive data can be visualized at much higher resolutions
as what they should deserve. However, it is not trivial to
transplant a parallel approach from a single-GPU to a multi-
GPU system. One major reason is the lacks of both program-
ming models and well-established inter-GPU communication
for a multi-GPU system. Although major GPU suppliers, such
as NVIDIA and AMD, support multi-GPUs by establishing
Scalable Link Interface (SLI) and Crossfire, respectively, their
technologies are primarily designed for gaming and short of
the functionalities for both general programming and software
implementations. Also, when enabling SLI or Crossfire, the
GPUs behave as one hardware entity and per GPU execution
is not allowed. Another reason is the workload-balancing issue
between GPUs. Imbalanced workload distribution will hurt the
performance.

Main contributions. In this paper, we present a device-level
parallel approach for real-time massive model rendering in a
multi-GPU multi-display system. Our contributions include the
following two features:

1) Parallel GPU out-of-core. We employ a device-level
parallelism for efficient data fetching from CPU main
memory to multiple GPU devices. Our parallel out-of-
core is seamlessly integrated with LOD processing and
frame-to-frame coherence schemes.

2) Balanced data distribution for parallel rendering.
We propose a load balancing algorithm to dynamically
and evenly distribute workloads to each GPU, so that
both performance and memory usage achieve an optimal
standard.

System configuration. While the performance of multicore
CPUs and GPUs are scaling along Moore’s law, it has been
becoming feasible to build clusters of heterogeneous multi-
GPU architectures for high-performance graphics. However,
before carrying on an efficient algorithm on a cluster system, it
is essential to make a single node perform optimally. Upon this



demand, we use a single node machine, which is a standard
PC platform configured with two GPU devices. Each GPU is
connected with a dedicated PCI-Express and able to execute
their local instructions and perform rendering tasks.

Input 3D model. CAD datasets are one of major digital rep-
resentations for many of man-made designs. In our approach,
we target on the visualization of “Boeing 777” CAD model,
which organizes rich geometric information in a huge number
of loosely connected objects. This airplane model contains
over 332 million triangles and over 223 million vertices that
consume more than 6 gigabyte memory.

Organization. Section II briefly reviews some related
works. In Section III, we describe the current state-of-art
technologies in massive model rendering. In Section IV, we
state the problems in high-performance rendering and give
an overview of our approach. In Section V, we discuss the
methods of CUDA-OpenGL interoperability for a multi-GPU
architecture. In Section VI, we present our load balancing
algorithm for GPU data distribution. Section VII discusses
the methods of GPU-GPU communication and synchroniza-
tion. We evaluate our approach in Section VIII. Finally, we
conclude our work in Section IX.

II. RELATED WORK

In the past, researchers have dedicated their efforts in
massive model rendering by using many different acceleration
data structures. We review some of them in Section II-A.
Since multi-GPU systems have become a new trend for
High-Performance Computing (HPC). We provide some of
the previous works that concentrated on device/cluster-level
parallel designs in Section II-B.

A. Massive Model Visualization

Interactively rendering of massive 3D models has been
an active research domain. To address performance issues,
mesh simplification is commonly used to reduce the workload
of rendering. The basic idea of mesh simplification is to
simplify a complex model until it becomes manageable by
renderers. Some previous approaches, such as Progressive
Meshes ([4], [5]), Quadric Error Metrics ([6], [7]) and adaptive
LOD [8], where meshes are simplified based on a sequence of
edge-collapsing modifications. In order to handle large-scale
models, out-of-core methods have been proposed. Cignoni
et.al [9] presented a geometry-based multi-resolution structure,
known as the tetrahedra hierarchy, to pre-compute static LODs.
Yoon et.al [10] presented a clustered vertex hierarchy (CHPM)
as their out-of-core structure for view-dependent simplification
and rendering.

More recently, GPUs have been used to simplify complex
models. Hu et.al [3] implemented a view-dependent LOD
algorithm on GPU without fully considering the vertex depen-
dencies. Derzapf et.al [11] used a compact data structure for
Progressive Meshes that requires less GPU memory, so that the
run-time parallel processing can be optimized, later, their work
was extended for parallel out-of-core LOD in [12]. In order
to render gigabyte-scale 3D models in parallel, Peng et.al [1]

presented an parallel approach that successfully removed the
data dependencies for efficient run-time processing. By utiliz-
ing temporal coherence between frames, the large amount of
data can be streamed and defragmented efficiently.

B. Multi-GPU Approaches

As the rapid development of hardwares, many computing
systems are built with GPU clusters for high-performance
computations. Eilemann [13] summarized and analyzed ex-
isting approaches targeting on parallel rendering designs with
multiple or clustered GPUs. One popular software package,
Equalizer, has been commonly used in multi-GPU render-
ing society. As introduced in paper [14], Equalizer is a
scalable parallel rendering framework suitable for large data
visualization and OpenGL-based applications. It utilizes a
flexible compound tree structure to support its rendering and
image compositing strategy; however, there are some issues
remaining unsolved and affecting the parallel performance, for
example, the load balancing issue between GPUs or clusters
for data distribution and replication.

Because of the importance of load-balancing issues, Fo-
gal et.al [15] discussed it by considering data-transferring
overhead and the balance among the rendering, the com-
positing and the viability of GPU cluster in a distributed
memory environment. Erol et.al [16] concentrated on the
cross-segment load balancing within Equalizer framework.
Their work proposed a dynamic task partition strategy for the
best usage of the available shared graphics resources. Another
approach, presented in [17], was for dynamic load balanc-
ing. By utilizing frame-to-frame coherence, this approach re-
distributed data based on the historical frame rates; If one
GPU has a higher frame rate in pervious frames, it would
be allocated larger workloads; otherwise, its workloads would
be reduced accordingly. To achieve higher resolutions in a
visualization, the tiled display systems have been widely used
in many visualization researches. As discussed in [18], the
whole picture is projected onto multiple display nodes with
proportional viewports. Besides the descriptions of system
setting, the authors also provided their solutions for the multi-
display synchronization.

III. DESCRIPTION OF THE CURRENT STATE-OF-ART

Among standard real-time visualizations, mesh simplifi-
cation is one of acceleration techniques that reduces the
complexity of 3D models for fast rendering. Traditional algo-
rithms represent data in hierarchical structures, such as multi-
resolution of the static LODs [9] and the clustered vertex
hierarchy [10]. To build them, a bottom-up node-merging
process is used, and inter-dependency is introduced between
levels of the hierarchies.

Peng and Cao [1] proposed a dependency-free approach that
makes simplification of massive models suitable on GPU. Our
parallel LOD implementation is extended from Peng and Cao’s
work. We give more details in this section. In that work, edge-
collapsing information is encoded in an array structure that is
generated by collapsing edges iteratively. At each iteration,



two vertices of an edge are merged, and the corresponding
triangles are eliminated. To assure a faithful look of low-poly
object, the edge can be chosen based on the rule that, when
collapsed, visual changes are minimal (e.g., the rule introduced
in [19]). Each element in the array corresponds to a vertex,
and its value is the index of the target vertex that it merges
to.

According to the order of edge-collapsing operations, Stor-
age of vertices and triangles are re-arranged. Basically, the first
removed vertex during iterative edge-collapsing is re-stored to
the last position in the set of vertex data; and the last removed
vertex is re-stored to the first position. The same re-arranging
strategy is applied to the triangle data as well. As a result, the
order of storing re-arranged data reflects the levels of details
of the model. Consequently, if needing a coarse version of the
model, a small number of continuous vertices and triangles
are sufficient and selected by starting from the first element
in their sets.

At run-time, based on LOD selection criteria, such as those
used in [20], [21], [22], [23], only a portion of data is active
to generate the simplified version of original model as the
alternative for rendering. By using GPU parallel architectures,
each selected triangle is assigned to a GPU thread and is
reformed to a new shape, where all three vertex indices
of the triangle is replaced with an appropriate target vertex
by walking backward through the array of edge-collapsing
information.

The increase of GPU memory does not catch up the capa-
bility on CPU main memory. Most of todays GPUs cannot
hold the data requiring several gigabytes on storage. Thus,
at each rendering frame, the selected portion of data have
to be streamed to GPU to perform parallel computation and
rasterization.

IV. PROBLEM STATEMENTS AND OVERVIEW

In this section, we describe our research problems by
identifying performance bottlenecks and load balancing issues.
We also give the overview of our parallel design.

A. Performance Bottlenecks

CPU-GPU data streaming is unavoidable in large-scale data
visualization. Although the size of renderable data can be
reduced using simplification algorithms, to preserve a decent
level of visual fidelity, the simplified data is usually still
too large to be streamed efficiently. Thus, the size of to-
be-streamed data becomes the major issue that prevents the
achievement of high interactive rates.

Brute-force streaming those selected data to GPU is very
time-consuming. In many situations, a common effort to
reduce the time spent on data streaming is utilizing frame-to-
frame coherence, so that only frame-different data is identified
and needs to be streamed. By combining this streamed data
with the GPU existing data from the previous frame, we can
assemble the new data coinciding with the currently rendering
frame. As we know, standard mechanisms of graphics pro-
gramming, such as OpenGL’s Vertex Buffer Objects (VBO),

take the graphics driver’s hints about primitive usage patterns
to increase the rasterization performance of graphics API. To
enable VBO, the data have to be organized in the same order
as they are originally stored. However, in general cases, the
frame-different data will be stored in a memory block that
is separate from those already existing data. For combining
them with respect to the original data appearance in storage,
the data in both blocks have to be shuffled around to the
correct positions in the memory reserved by the current
frame. This process is generally know as “Defragmentation”.
Unfortunately, Defragmentation on GPU is slow, because it
involves many operations of non-coalesced global memory
accesses. Defragmentation time scales with the size of the
data residing on GPU, so that it will be a significant factor that
influences the overall rendering performance, especially when
the data size is massively large. Using multi-GPU systems,
the data is able to be distributed. Each GPU will perform a
less amount of data, which can reduce the Defragmentation
overhead.

B. Load Balancing Issues between GPUs

Using multiple GPUs is a trend to increase computational
power and memory capabilities. However, balancing work-
loads and resource utilizations between GPUs has not been
satisfactorily addressed. Load balancing problems in massive
model visualization are centered around how to distribute the
renderable data to GPUs. Imbalanced distribution would cause
underutilization of available GPU resources and waste memory
spaces, so that both performance and visual quality may be
decreased.

Commercial solutions, such as Nvidia SLI technology, have
been introduced to balance geometry workloads between two
GPUs. SLI is a bridge that spans two GPUs to send data
directly within a master-slave configuration. For example, the
master GPU send half of rendering work to the slave GPU.
Then the slave GPU send its output image back to the master
for compositing the images. However, SLI is not suitable for
the problems that we want to solve in this paper. SLI does not
incorporate with out-of-core and Nvidia CUDA development.
It requires all data to fit in GPU memory. Also, its master-
slave configuration is only for single-display applications, not
suitable for multi-display applications, because the latter one
connects each GPU to a display monitor, which breaks the
master-slave concept. Therefore, it is essential to have a better
load balancer for GPU out-of-core and CUDA-programmed
parallel LOD.

C. Overview of Our Approach

In today’s PC systems, multiple GPUs start to become
the standard configuration for all levels of users. The goal
of our work is to design a parallel system that provides
the software supports for multi-GPU rendering. Each GPU
will be driven by one CPU-core. In our implementation,
each CPU-core executes an instance of the program and
feeds the data from CPU main memory to the GPU that
it associates with. The input 3D model and other necessary
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Fig. 1. The overview of our approach.

run-time control parameters are shared among processes by
employing a method of Inter-Process Communication (IPC).
We illustrate the overview of our approach in Figure 1. Each
GPU is connected to a display monitor to show the rendered
geometries. If the data is balanced between GPUs, our load-
balancing algorithm will automatically calculate the optimal
solutions. The direct inter-communication between GPUs is
established in order to perform framebuffer exchanging as
necessary for the final display.

V. PARALLELIZATION OF CUDA-OPENGL
INTEROPERABILITY ON MULTIPLE GPUS

When asking a GPU to perform both general-purpose
and graphics computations, the interoperation between Nvidia
CUDA and OpenGL is desired. Like in our application,
CUDA is suitable for running the calculations of data de-
fragmentation and parallel triangle-level simplifications, while
OpenGL is better to take the task of rendering the simplified
models. Thanks to CUDA-OpenGL interoperability provided
by CUDA SDK, but for multi-GPU implementations, inter-
operation among multiple CUDA and OpenGL contexts will
be an issue. In general, the possible solutions include: (1)
A single CPU thread; (2) Multiple CPU threads (one GPU
controlled by one CPU thread); (3) Multiple processes (one
GPU controlled by one process). We will discuss about the
details in the following paragraphs.

A. A Single CPU Thread

Since the release of CUDA v4.0, multi-GPU program-
ming can be performed in a single CPU thread. By calling
cudaSetDevice(), CUDA kernel executions and contexts are
switched between GPUs. But switching OpenGL contexts
between GPUs in a singe CPU thread is not allowed. For
example, cudaSetGLSetDevice() can be called only once at
the start of the program. This problem will make the single
CPU thread implementation not compatible.

B. Multiple CPU Threads

Creating multiple CPU threads allows one CPU thread
to bind one GPU, so that each GPU has not only its own
contexts but also its own host. A thread is able to maintain
its local storage and control the device that is is assigned
with. The OpenGL context associated to a CPU thread is able
to interoperate with the CUDA context of the same thread.
However, the problem is that OpenGL is not a thread-safe
graphics API since it is actually asynchronous by nature.

The GL calls within different threads cannot be executed in-
order as they are issued. When the driver schedules these
calls, OpenGL contexts would switch frequently, which is
particularly time-consuming and would significantly decrease
the overall performance.

C. Multiple Processes

To eliminate the overheads of switching contexts, a multi-
process strategy will be a solution for interoperating CUDA
and OpenGL on multiple GPUs. One process communicates to
one GPU, and maintains its own memory spaces and its private
run-time resources. The GL calls within a process are executed
in-order without the affections of the other processes. Thus,
in our implementation, we use this multi-process strategy
plus the employments of Inter-Process Communication (IPC)
for synchronization of shared properties (such as camera
viewpoints).

VI. DATA DISTRIBUTION AT RUN-TIME

In our system, two GPUs are installed in a single computer
node. Each GPU drives a display monitor and visualizes half
size of the frame, which will contain the data appearing its
window. Unfortunately, this simple strategy usually results in
poor performance if graphical primitives are not uniformly
distributed over all GPUs.

A worse issue caused by imbalanced distribution is in
memory usage. The “Boeing 777 airplane” used in our system
has over 700 thousands of individual objects and contains
more than 6 gigabytes of vertices and triangles. Since most
of GPUs have much less memory than that size, the primitive
count allocated for each object is well budgeted by ensuring
the sum of all primitive counts is constrained within the
given maximal amount. Of course, more GPUs mean more
available memory, and consequently indicate a higher potential
to increase the levels of details by adding more primitives to
objects. However, imbalanced distribution may overburden a
GPU’s memory capability. For example, in an extreme case,
one GPU may obtain the whole of selected data that exceeds
its maximal memory size, while the other one is idling without
any.

Our load balancer uses a dynamic partitioning procedure
that recursively splits space of the view frustum. The balancer
will harmonize its execution time with the partition quality
within an efficient parallel implementation on GPU. In the fol-
lowing paragraphs, we first introduce the fundamental method
of view frustum partitioning, then we propose our dynamic
load balancing algorithm.

A. The fundamental of View Frustum Partitioning for Data
Distribution

From a viewpoint, only the objects inside the view frus-
tum (represented with six planes defined by the camera) are
visible to the renderer. We pre-calculate a tight Axis-Aligned
Bounding Box(AABB) for each object. AABBs are used to
determine the visibilities of objects by testing them against
the view frustum. If an object is outside, it will be assigned
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with the lowest level of details (e.g., zero vertex and triangle),
otherwise, it will be allocated a cut from the budget of the
overall primitive count through the process of LOD selection.

After that, we distribute the primitive data to the GPUs.
As shown in Figure 2, the view-frustum is divided into sub
frustums, each of which is associated to a GPU. For each
visible object, we identify the GPU it belong to by testing its
AABB against the sub frustums. If an object is not in the sub
frustum of a GPU, the detail level of the object will be set to
zero for this GPU. At the stage of rasterization, the calls of
perspective and projection transformations take the full size
of the view frustum, but for displaying the contents on the
screen, the viewport only needs to be set with the half of the
framebuffer that contains rendered objects.

B. Parallel Dynamic Load-Balancing Algorithm

Obviously, the fundamental approach described in Sec-
tion VI-A will lead to load-balancing problems since it always
distributes the data by partitioning the frustum statically and
evenly. The static partitioning method distributes the work-
loads usually according to the dimension proportions of the
windows that are launched by GPUs, rather than by balancing
the computational cost of data processing. To achieve the
optimal rendering performance, we present a parallel dynamic
load-balancing algorithm. Given a specific viewpoint, the
screen is dynamically split by balancing the number of poly-
gon primitives that are operated in each GPU. The rendered
images will be exchanged between GPUs to adjust the image
projection within inter-process communications. For example,
as illustrated in Figure 3, the number of triangles are balanced
between GPU0 and GPU1. GPU0 renders a larger part of
the screen, so that it transfers an image portion to GPU1 to
ensure the viewport correctness.

Our method is illustrated in Algorithm 1. The goal of the
algorithm is to calculate where the view frustum should be
split, so that the amount of data can be balanced. In the

Displayed image on GPU0

Rendered image on GPU1Rendered image on GPU0
Splitting
position

Displayed image on GPU1

Image portion 
transferred from 

GPU0 to GPU1 

Fig. 3. The dynamic load-balancing algorithm. The whole screen is split
by balancing the number of primitives distributed between GPUs. In this
example, GPU0 transfers a potion of the image to GPU1.

algorithm, the returned value, split, ranges between (0,1). It
tells the position of splitting the view frustum on the near
plane. The algorithm is executed in a per-process manner. The
vf represents the view frustum associated to the camera, and
the id is the process index. Here, we use either the vertex
count or the triangle count to represent the complexity (the
level of details) of each object. In the algorithm, the list of
object complexities is represented as compLevel, where the
ith object’s complexity is denoted as compLevel[i].

In the initialization, we set the split to be 0.5 indicating
that the view frustum is divided evenly. Then, we iteratively
find the optimal split value. At each iteration, the sub frustum
of each process is updated. We denoted the left sub frustum
as subFl. The objects’ AABBs are tested against subFl to
re-generate the compLevel for the GPU. In the Algorithm 1,
compLevell represents the list of objects’ complexities for the
GPU rendering the left part of the screen; and compLevelr
is for the GPU rendering the right part (refer to Line 8-16
in Algorithm 1). For efficiency purposes, we can employ an
implementation using CUDA to compute compLevell and
compLevelr in parallel. In Line 19, the ratio is defined to
find out if the value of the split has reached the satisfaction by
comparing to the threshold value. Ideally, setting threshold
to 0.5 will cut the data evenly for distribution. However,
in most of cases, this may need too many iterations, which
would potentially slow down the performance. an appropriate
threshold that weights between the execution time of the load
balancer and the distribution proportion will be better learned
in practice. After that, each GPU renders its own objects
classified by the split value. As shown in Figure 3, the GPU
receiving a larger portion of the view frustum will send the
“unwanted” portion of output frame to the other GPU.

VII. SYNCHRONIZATION AND INTER-PROCESS
COMMUNICATION (IPC)

In CUDA programming environments, GPUs cannot in-
teract with each other directly. The only way of inter-GPU
communication is going through the controls of inter-CPU



Algorithm 1 Computing Screen Splitting Value
LoadBalancing(
in id, vf, threshold, compLevel;
out split, compLevel)

1: split← 0.5;
2: increment← 0.5;
3: subFl ← vf ;
4: while 1 do
5: // updating the left sub frustum
6: UpdateSubFrustum(subFl, split, vf);

7: // balancing the amount of data
8: for ith object’s AABB in parallel do
9: if AABBi inside subFl then

10: compLevell[i]← compLevel[i];
11: compLevelr[i]← 0;
12: else
13: compLevelr[i]← compLevel[i];
14: compLevell[i]← 0;
15: end if
16: end for
17: suml ← the sum of the elements in compLevell in

parallel;
18: sumr ← the sum of the elements in compLevelr in

parallel;
19: ratio← suml/sumr;
20: increment← increment× 0.5;
21: if ratio < 1/threshold then
22: split← split+ increment;
23: else if ratio > threshold then
24: split← split− increment;
25: else
26: compLevel← compLevelid;
27: return;
28: end if
29: end while

communication, where each GPU is controlled by the process
of a CPU core. We use Massage-Passing Interface (MPI)
in our system. MPI is a specification that moves the data
among processes through cooperative operations on each.
MPI are portable, hardware optimized and widely used in
High Performance Computing (HPC). Recently, researchers
and developers have demonstrate the efficiency of multi-GPU
applications using MPI communications to facilitate GPU data
movements, such as [24], [25], [26]. In this section, we discuss
the MPI-based methods of synchronization and IPC used in
our multi-GPU multi-display system.

Synchronization and communication are necessary to unite
GPUs, so that they act as co-processors to coordinate the
rendering tasks. In Figure 4, we show the requirements from
the pipeline of our system, including: (1) only one process is
allowed to control the camera at a time. Values of the camera
need to be shared between processes during run-time; (2)
an inter-GPU communication scheme is needed to exchange
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framebuffers between GPUs.
Camera movement Sync. When updating the camera

viewpoint, only one process is active to response the
mouse/keyboard callback events. To have an efficient way of
passing the camera values, we use the shared memory that
may be accessed by all processes simultaneously without any
redundant copy. We select one process as the root, and others
send their activation status (e.g., if mouse-overing the window)
to the root. The root identifies which process is activated and
broadcasts the index of this process to all others. Then, after
the active process finishes the camera updates in the shared
memory, it will broadcast a finish flag. When other processes
received the flag, they will read the updated values for their
local computations. We use MPI blocking calls to suspend
process executions until the values in the shared memory
are safe to use. This is because non-blocking calls return
immediately after the calls are initiated without waiting for
their finish. In that situation, non-active processes may execute
faster than the active one and read the values that have not
been updated yet. As a disaster, LOD selection and GPU out-
of-core would produce wrong results. Therefore, using the
MPI blocking calls is a safe way to guarantee the camera
synchronized for all processes.

CUDA Inter-Process Communication for Exchanging
Framebuffers. When all processes finish rendering tasks, the
output images are maintained in framebuffer on GPUs. The
GPU assigned with a larger part of the screen gives its “un-
wanted” portion of the output to the other GPU. Traditionally,
if a GPU wants to send data to another GPU, it has to first send
the data to the shared memory on CPU host; then the processes
associated to GPUs are synchronized to make the data safe
to use on the host; and then this host data is sent to the
target GPU. Although CUDA driver supports pinned memory



allocation to main memory (e.g., page-locked buffer on RAM)
to help reduce the CPU-GPU data transfer overhead, the
meander progress of data movements through PCIe buses still
reduces performance and increases the needs of host resources.
Recently, since the release of CUDA 4.1, Nvidia has removed
the limitations of the traditional approach by introducing an
efficient method of inter-process GPU-GPU communication,
so-called as CUDA-IPC. It significantly reduce the overhead of
GPU-GPU communication by transferring data through PCIe
Express directly in a computer node, rather than going through
the host. A process creates the handle that maps its GPU’s
data buffer. Then, the handle is sent to the target process
communication with the help of MPI host-based communi-
cation. The target process will open this handle and tell its
GPU to require a direct transfer of the associated data from the
GPU of the source process. This new CUDA 4.1 feature offers
us an optimal performance of exchanging GPU framebuffers.
Based on the split value defined in Algorithm 1, the roles of
source and target are switched dynamically between GPUs. If
split = 0.5, it indicates that the screen is partitioned evenly
and no need to exchange; if split < 0.5, the GPU associated
with the left display monitor will be the target that receive
the data from the source associated to the right monitor; If
split > 0.5, the roles between GPUs will be switched the
other way round.

VIII. EVALUATION AND EXPERIMENTAL RESULTS

We evaluate our approach by visualizing the massive 3D
model composed of hundreds of millions of triangles. To have
an in-depth understanding of its performance, we analyze each
computational component by comparing our system with other
implementations.

A. Implementation

We have implemented our dual-GPU approach on a work-
station equipped with an AMD Phenom X6 1100T 3.30GHz
CPU (6 cores), 16 GBytes of RAM, and two Nvidia GTX
580 graphics cards, each of which has 3 GBytes of GDDR5
device memory. Our system is developed using C++, Nvidia
CUDA Toolkit v4.2 and OpenGL on a 64-bit Linux system.
In our benchmarks, the resolution of OpenGL framebuffer is
set to 1024 × 1024. We generated camera pathsto test the
performance of our system. These paths are demonstrated in
our complementary video.

B. Performance Evaluation

Our experimental results show that we can interactively
visualize Boeing model at the rates of 9-35 fps. We compare
our implementation, Dual-GPU with load balancing (Dual-
GPU(B)), to the other two implementations: Single-GPU and
Dual-GPU without load balancing(Dual-GPU(NB)). All these
three implementations use the same camera paths and are
constrained with the same amount of vertices and triangles.
Single-GPU assigns all the workloads for one GPU; Dual-
GPU(NB) always split the screen in the middle, so that they
do not have costs on the computation of load balancing. In the

Fr
am

es
Pe

r
Se

co
nd

(F
PS

)

Rendered Frame Numbers

Fig. 6. The frame rates comparison among three different implementa-
tions.

tests, the system performance is bounded by the performance
of the slower GPU. Our Dual-GPU(B) achieves 1.14 and 1.37
times of speedup comparing to Dual-GPU(NB) and Single-
GPU, respectively.

In Table I, we provide the breakdown of the averaged
experimental results based on a total of 300 rendered frames.
The column of ”Diff. Triangle Num.” means the difference of
the number of triangles between two GPUs, which is not appli-
cable in Single-GPU. The column of “Visible Triangle Num.”
means the number of triangles visible to the camera (those
inside the view frustum). The numbers of triangles are the
same, which ensures the same rendering quality in all three
implementations. The last five columns show the timing results
of all computational components in our system. By using
multiple GPUs, since the selected vertices and triangles are
distributed to perform fast computation, the FPSs (frame per
second) from multi-GPU systems are higher than the FPS of
the single GPU system. The Single-GPU and Dual-GPU(NB)
do not include any load balancing-related computation, so
that there is no computing time spent on “Splitting”. But,
the computation time of “GPU Defragmentation” becomes
the significant cost and forces the Single-GPU and the Dual-
GPU(NB) to perform at the lower frame rates than Dual-
GPU(B). Figure 6 plots the FPS comparison of the three
different implementations in the sequence of 300 frames. Our
Dual-GPU(B) achieves the best FPS because of the advantages
of the load balancing algorithm.

C. Analysis

We give more details of the performance analysis between
two dual-GPU implementations. The performance of a GPU
scales with the amount of data that it operates on. The larger
value of “Diff. Triangle Num.” we get in Table I, the bigger
performance difference between two GPUs will be in an imple-
mentation. Although Dual-GPU(B) spends the additional cost
to balance distribution of the workloads, the computational
times spent on GPU defragmentation, triangle reformation and
GL rendering in the lower-performing GPU are smaller than
those in the imbalanced implementation of Dual-GPU(NB).
Figure 7 shows the difference of the number of triangles
between GPUs in the Dual-GPU(B) is much smaller than the



Fig. 5. The rendered Boeing models in our experiments. The red vertical lines split the screen space to balance the GPU workloads.

TABLE I
THE BREAKDOWN OF THE RUN-TIME PERFORMANCE.

Approach FPS Diff. Visible LOD Splitting GPU Triangle GL RenderingTriangle Num. Triangle Num. Selection Out-Of-Core Reformation
Single-GPU 14.94 — 12.29M 3.44ms — 29.62ms 3.62ms 30.24ms

Dual-GPU(NB) 17.84 7.94M 12.29M 3.35ms — 24.54ms 2.85ms 25.31ms
Dual-GPU(B) 20.40 0.37M 12.29M 3.98ms 5.38ms 18.56ms 1.97ms 19.13ms
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Fig. 7. The scattered value pairs of GPU Out-of-Core time and the
number of triangles on GPU from all rendered frames.

Dual-GPU(NB). . Dual-GPU(B) modifies the sub frustums at
each frame, the frame-different data that needs to be streamed
to a GPU may be more than the Dual-GPU(NB). In Figure 8,
we plot the relationship between GPU out-of-core time and
the number of renderable data on GPU. Each dot in the graph
represents a frame. It shows that Dual-GPU(B)’s GPU out-of-
core time increases linearly towards the increase of the triangle
and vertex counts.

IX. CONCLUSION AND FUTURE WORKS

In this work, we present a multi-GPU multi-display system
for high-performance high-resolution rendering of massive-
scale 3D models. By using a load balancing strategy, our
parallel GPU out-of-core evenly distributes the workload for
the GPUs, and each GPU is able to perform its local LOD
computations. our system also demonstrates the capability of
fully utilizing all available GPU memories, which is important
for the improvement of rendering quality. In the future, we
would like to extend our multi-GPU approach to GPU clusters.
Also, given an extreme complex model, only applying LOD
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Fig. 8. The difference of the number of triangles between GPUs
with/without the load balancing algorithm.

algorithms may not be sufficient. We would like to research
on visibility culling algorithms on multi-GPU parallel frame-
works.
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