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Abstract—This paper presents a multi-agent model for large
crowd simulations that addresses the need for socially plausible
coordination behavior. A computational model for multi-agent
coordination informed by well-established common ground
theory is proposed. We introduce the idea of macro- and micro-
coordination strategies that allow agent-based simulations to
adapt to different domains. Our agent model allows the
selection of appropriate behaviors based on the spatiotemporal
conditions of the agent-group’s environment. By showing that
different micro-coordination strategies of individual groups
has an influence on the overall distribution of a crowd, we
demonstrate the importance of incorporating such models into
multi-agent simulations of large crowd behaviors.
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I. INTRODUCTION

This paper presents a multi-agent model for large crowd

simulations that addresses the need for socially plausible

coordination behavior. Given that crowd dynamics emerges

from patterns of social interactions among groups of pedes-

trians [1], [2], employing such a coordination model in

crowd simulations may produce significant differences in

overall crowd circulation patterns. The ‘intelligence’ of

groups differs in a sense from individual intelligence because

it is an emergent phenomena driven by the need of the

groups to maintain cohesive activity.

We employ a model from social-psychology and linguis-

tics due to Herbert Clark in which members of a group must

negotiate and maintain a state of common ground (CG) as

a precondition of joint activity [3], [4]. CG maintenance

is not solely a linguistic activity. Behavior comes into

play whereby agents ‘display their intentions’ visually, and

mutual behavior awareness plays an important role.

Our model includes two kinds of strategies by which

behaviors of groups may be embedded into a larger crowd

simulation in a space rich with interaction possibilities

for the agents. These strategies are macro-coordination

and micro-coordination strategies. Macro strategies relate

to overall action plans to accomplish the groups’ goals,

and is dependent on the domain (e.g., a group of soldiers

may select a particular strategy influenced by training and

doctrine, while a group of friends at a sporting activity may

decide how to meet at a predetermined location). Micro

coordination strategies relate to the dynamics of human

communicative behavior, and is determined to a degree

by the constraints of human perception, the physics of

sound in voice communication, and cultural concerns. Micro

coordination strategies are also influenced by the state of the

immediate environment (e.g., voice communication may be

suppressed in a movie theater, or visual displays and uptake

may be constrained in a very dense crowd).

In our previous work [5], we introduced the CG model and

showed how each agent’s high-level choices on the route and

walking strategies are affected by the group coordination. In

this paper, we extend the CG model and operationalize it

for multi-agent coordination. An agent evaluates the spatial

and temporal conditions with respect to its group mem-

bers and the state of immediate environment, and selects

appropriate micro-coordination strategies. By showing that

different micro-coordination strategies of individual groups

has an influence on the overall distribution of a crowd,

we demonstrate the importance of incorporating the coor-

dination model into multi-agent simulations of large crowd

behaviors.

The remainder of this paper is organized as follows.

In section II, we discuss related works and give a short

overview on Clark’s common ground theory. Section III

presents the design of our multi-agent model. The descrip-

tion of our coordination model for crowd simulation is pro-

vided in Section IV. Section V presents our implementation

choices and the results of experiments. We draw conclusions

and provide possible future research directions in Section VI.

II. RELATED WORK

A. Crowd Dynamics Simulation Models

Numerous approaches of modeling crowd dynamics have

been proposed in the literature. One common method to the

simulation of mass flow is to model pedestrian in a particle-

like manner [6], [7]. To the degree that humans are physical

entities, and behave like particles, e.g., forming vortices as

they move through an aperture [8], these flow-based models

have been able to account for certain crowd characteristics.

However, humans are more than particles, and physics-

only flow models are incapable for accounting for human

volitional behavior such as individual interest, social activity

maintenance, and individual and group preferences.
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A natural way to represent individual pedestrian is an

agent based approach, in which each agent is modeled as an

autonomous entity capable of perceiving its environment and

interacting with other agents. Modeling of agent behavior

has been heavily studied using variants of agent-based

methods [9], [10] incorporated with social force models [11],

[2], and velocity models [12], [13]. To achieve more realistic

simulations, further sophistication to agent-based approaches

often addresses cognitive [14], psychological [15], [16],

emotional [17], and cultural factors [18], [19] in modeling of

decision-making process of agents. However these models

focus on the behavior selection of individual agents and

not the effect of employing coordination model into a large

scale simulation. In our work, we account how the ongoing

communication and coordination among agents may affect

the overall crowd flows in the simulation.

B. Common Ground Theory

People engage in a joint activity when they act in co-

ordination with others to pursue a common goal. The CG

concept as the basis of joint activity has seen application

in AI agents [20], joint robot activity [21], and Computer-

Supported Cooperative Work (CSCW) [22], [23], [24].

In Clark’s model, CG is negotiated among participants in

a joint activity, and has to be maintained for coordinated

action to be successful. It considers the mutual knowledge,

beliefs, and assumptions among individuals in a collabora-

tive process. According to Clark, p is common ground for

members of group G if and only if [3]:

1. members of G know that p;
2. members of G know that members of G know
that p;
3. members of G know that members of G know
that members of G know that p.

Suppose that A and B are heading to the seats in a football

stadium. As they pass a concession stand, A decides to get

some refreshments. A informs B of his plan to visit the stand

and to return to their current location, x. We denote the plan

to split up and reunite at x as P. For the plan to succeed, A

needs to know that B knows the plan P. This, however, is

insufficient for coordination. B needs to know that A knows

that she is privy to P, otherwise she might think A would be

left looking for her. Furthermore, if the agreement ends here,

A may not know that B knows that he knows the plan, and

may, therefore not be confident to execute the plan. Hence,

A needs to know that B knows that he knows the plan.

This common ground may be communicated verbally, or

may be enacted through action. In our example, A may

signal his intention by pointing toward the concession stand

and pointing to their current location x. This requires that B

be within the range of sight and be looking at A. A needs

to see that B is looking at A, and has signaled agreement

(e.g., by nodding). B needs to see that A sees her nodding.

Finally A needs to see that B sees that he has seen and

acknowledged the plan.

The CG model comprises logically separable components

and thus lends itself to a direct implementation of coor-

dination process. With Clark’s CG model, we can simulate

the coordination process at a higher behavioral level without

modeling the process of social interaction at a lower level of

communicative intent to reasoning. This allows the simula-

tion to be more computationally tractable while maintaining

realism.

III. MULTI-AGENT FRAMEWORK

We design our multi-agent framework as a layered ar-

chitecture. In the lower layer, an individual agent acquires

understanding of its immediate surroundings or situation

that includes the state of member of the group to which

it belongs, and the surrounding environment and selects

proper behaviors for successful coordination among group

members. In the upper layer, group level attributes for

different social groups are maintained.

A. Agent Model

An agent with its personal identifier i is denoted as Ai.

In order to function with group members, an agent should

be able to interpret status and intentional signals of the

members and adapt its behaviors. The agent also needs

to understand its surrounding situation and respond to the

environment conditions. Hence, our agent is modeled with

sensory capabilities for speech, vision, and touch. Figure 1

shows the proposed sensory model for the agent with a

perception geometry. In our model, touch can be sensed

within range of agent radius r, hearing can be omnidirec-

tional with range limitation dh, and vision is directional and

is effective up to a range, dv , along its gaze direction (for

simplicity, body orientation is synonymous to gaze direction

in our simulation) and within a field of view defined by an

angle, α. An agent can also sense the level of congestion in

surrounding unit area. In a crowded area, dh and dv might

decrease with respect to the level of congestion.

α dV

dh

r

Figure 1. Agent perception geometry

Our agent model is able to handle ‘goal interrupts’

through the introduction of new intermediate sub-goal de-

termined either stochastically or through interaction with

the environment. For instance, a members of groups may

need to visit the restroom (stochastically generated sub-

goal), or a member of a group may found a store that sells
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something he is interested in (environmentally driven goal).

To determine whether an agent is attracted by certain places

during navigation, an agent Ai maintains a list of interests

Ii,α, α = 1, . . . ,K and corresponding propensity-to-visit

values ranging from 0 to 1.0. When passing by some point

of interest, an agent compares its propensity-to-visit value to

the attraction intensity of the place, and selects potential sub-

goals, sh, accordingly. To prevent an agent proposing the

same attraction point as a sub-goal repeatedly, we endow

an agent with ability to keep the list of visited places in

memory.

An agent is associated with a specific roleR in the context

of the current coordination mode. For example, an agent

takes a role of initiator if it proposes a new sub-goal, and

other members become respondents to the agent. These roles

are used to determine which communicative and joint actions

are taken by whom, and in what orders in micro- and macro-

coordination strategies.

B. Group Structure

Our model assumes that the group memberships and goal

of groups are known a priori and the relationships of agents

are not subject to change throughout the simulation. Note

that a group in our approach is formulated to provide social

ties among agents, such as friends or family members. Group

members tend to walk together and maintain the group

cohesiveness. We model a group k as

Gk = [k,Ai, p
0
k, gk, P rk]

such that Gk has initial position p0k, final goal gk and

a roughly planned global path from p0k to gk. To add a

variability in group characteristics, each group may have

different preference probability Prk for macro-coordination

strategies.

IV. COORDINATION MODEL

When a sub-goal is introduced by an agent, this ne-

cessitates the communication and update of CG with the

rest of members to ensure the group cohesiveness. Our

model for coordinated human group activity consists of

three steps of agent execution: situation assessment, micro-
coordination, and macro-coordination. Depending on the

results of the coordination process, the group of agent can

generate different sequences of actions. Figure 2 shows a

conceptual agent architecture addressing the three execution

steps in our model.

A. Situation Assessment

An agent constantly observes the surroundings and up-

dates its awareness of the situation. The sensory information

that an agent acquires includes:

• Event objects: interest points, final destination.

• States of group members: gaze direction, distance.

• Signals from group members: communicative actions.

Other agent states 
check 

Situation Assessment

Agent Instance

Signal interpretation

Environment 
comprehension

Micro-coordination 
strategy execution

Micro-Coordination

Macro-coordination 
strategy execution

Communicative
action Joint action

Macro-Coordination

Macro-coordination 
strategy execution

Joint action

Macro-Coordination

Figure 2. A conceptual architecture of our agent model

• Environment factors: congestion level.

In a normal navigation mode, an agent checks the presence

of points of interest or proximity to the final goal point.

When it finds an interest place, it proposes the place as a

sub-goal to group members by choosing and initiating an

appropriate micro-coordination strategy (microCS) accord-

ing to its group’s physical configuration.

To select a microCS, an initiator agent Ai ∈ Gk collects

the following sensory inputs with respect to its group mem-

bers that we model as the situational relationships (sitij) of

Ai with all agents Aj ∈ Gk, ∀j �= i.

sitij : [dij , gdj , Vji|αi, EGk
]; Aj ∈ Gk, ∀j �= i, (1)

where dij is a distance between Ai and Aj , gdj is a

gaze direction of Aj , Vji|αi is the visibility of Aj to Ai

subject to Ai’s field of view αi, and EGk
describes the local

environment of Gk as the level of congestion around the

group Gk. The effect of EGk
is to determine the value of

αi and the visibility and audibility thresholds for dij . In

a sparse crowd, longer-range gestures and speeches may

be allowed while agents must be much closer together to

communicate in a dense crowd. Furthermore, each agent

may have its own evaluation function as a property of

the agent (to determine its tolerance for crowdedness, for

example). Then it selects an available microCS depending

on the sitij ; ∀Aj ∈ Gk, j �= i.

Figure 3 shows the six possible relations some agent Aj

may have to Ai that will influence the micro-coordination

choices made by Ai. In each case, we assume that Ai is

already oriented toward Aj (i.e. Vji is TRUE), otherwise no

micro-coordination initiation is possible because the initiator

would not know where the recipient is. Ai could already be

in the visual field of Aj (conditions c1 and c2). Ai could

be near to the visual field of Aj (conditions c3 and c4). We

denote the near visual field condition as V ′
ij . Ai could be

outside V ′
ij (conditions c5 and c6). For notation, we call this

state V ij . Additionally we model the audibility range of Aj

to Ai (meaning if Ai can gain the attention of Aj by using a

vocal signal). Conditions c2, c4, and c6 are in the audibility

range, which we denote Hij , and c1, c3, and c5 are in the

Hij condition. In summary, the condition to state mapping

are: c1 ← (Vij ,Hij), c2 ← (Vij ,Hij), c3 ← (V ′
ij ,Hij),

c4 ← (V ′
ij ,Hij), c5 ← (V ij ,Hij), and c6 ← (V ij ,Hij).
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Hence, Equation 1 can be evaluated for each Aj to assign

it with one of our six configuration labels.

C1

C2

C5

C3

Aj

C2

AAjA

C6

C4

Figure 3. (a) Six possible relations of group members

B. Micro-coordination Strategy

A micro-coordination strategy (microCS) is a set of com-

municative actions that simulates how group members get

each other to understand what they intend, so that some

particular macro-coordination strategy (macroCS) may be

initiated. Consider the situation where agent Ai receives a

sub-goal event trigger (e.g., to visit the restroom). Depending

on the evaluation of Equation 1, it will select an appropriate

microCS, μγ to perform with the closest Aj . For example,

if Equation 1 evaluates to c3 ← (V ′
ij ,Hij), it may select the

microCS described in Table I. For our example, suppose the

macroCS Mβ in line 5 is a ‘divide-and-wait’ strategy, Aj

will be tasked to communicate an ‘inform-to-wait’ activity

with all other group members. This will require Aj to prop-

agate the message to other group members by performing

a microCS with each one to initiate the ‘inform-and-wait’

macroCS. The macroCS activity of Ai, in this case, is to

proceed to its destination and return.

In our c3 example, a second microCS may have been

selected to move into hearing range (satisfying Hij) and

simulating a speech interaction. Yet another c3 microCS may

be to have Ai walk within hearing range, and signal Aj

to look at her, and then to proceed with a visual/gestural

interaction. In our model each of these are coded separately

as alternatives from which Ai may choose. This range of

possible choices picked either randomly or based on some

agent-specific preference may serve to make the simulation

seem less mechanistic or fully deterministic, thereby adding

to realism. The key is that the design of the microCS

behaviors conform to the rules for CG negotiation outlined

in Section II-B. Similarly, each configuration c1, . . . , c6 can

initiate a set of appropriate microCSs.

The failure or success of a microCS is dependent on

two factors. The first is that the respondent agent Aj is

somehow unable to comply with the signaling request of

Ai (e.g., because it is simultaneously attending to another

microCS from some other agent in the group), or if any

step in the microCS script is unattainable (e.g., Ai’s way

is blocked to make it visible to Aj). The second is that

the final random evaluation function of the microCS returns

Table I
AN EXECUTION OF A MICROCS, μγ . (V ′

ij ,Hij) CONDITION

step Action Description
1 Ai moves to satisfy Vij

2 Ai performs a signaling action, S .
3 Aj gives attention to Ai.
4 Ai proposes a macroCS, Mβ (i.e. select Mβ)
5 Aj signifies acknowledgement for Mβ .
6 If μγ is successful,

Return TRUE (i.e. execute Mβ),
Else Return FALSE (coordination failed)

a FALSE value. We do this to add some variability to the

simulation. The probability of this random function returning

FALSE is generally set to a very low number, meaning that

most microCS negotiations result in a TRUE result. The

associated macroCS script is activated only if the microCS

is successful. The resulting action when a microCS fails is

dependent on domain of simulation, and intended action. Ai

could decide to abandon the sub-goal, or it may retry with

a different microCS.

C. Macro-coordination Strategy

Given the ability to signal to other group member to adapt

their actions, agents jointly select and perform a macro-level

actions to achieve the group’s goal (or sub-goal). A macro-

coordination strategy (macroCS) refers to the macro-level

action plan. MacroCSs need to be initiated whenever some

sub-goal inducing event takes place that requires joint action.

The most common kind of sub-goal event is when a

group member has to go to some point of interest and the

entire group has to eventually proceed to its original goal.

We call this the ‘point-subgoal-and-resume’ situation. The

‘divide-and-wait’ macroCS described earlier satisfies this

kind of sub-goal. Another macroCS that can satisfy this sub-

goal is the ‘divide-and-proceed’ strategy (see Section V-A2).

Other sub-goal types may include an agent abandoning the

group and leaving (‘agent-leaves-group’), and the group

abandoning their original goal and evacuating (e.g., when

an emergency occurs – ‘emergency-exit’). Depending on

application domain, various other sub-goal types can be

implemented. For example, in a military scenario, a sub-goal

may be to send out a reconnaissance and wait, to divide

and proceed to different goals, or to spread out and head

to original goal position. The design of macroCSs may be

based on common sense, typical domain-specific strategies,

or from ethnographic observations of a population of people

whose strategies are being modeled [18], [19].

When selecting a macroCS in certain situation, an initiator

agent Ai of Gk may select a specific Mβ from the set of

macroCSs that satisfies the current sub-goal. This set may

be constrained by the group’s preference Prk. A simpler

approach might be choosing a relevant macroCS to the sub-

goal randomly.
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V. EXPERIMENT AND RESULTS

In this section we first discuss the implementation of our

CG-based crowd simulation, and present a series of exper-

iments to show the quantitative differences in simulation

results with and without incorporation of the CG model.

A. Implementation

1) MicroCS: A series of communicative actions to simu-

late the micro-coordination is defined for each situational

relationship, c1, . . . , c6, which are shown in Figure 3.

Multiple options of microCS are available at each case, and

the initiating agent must select one of them. For example, in

c1, a visual gestural coordination strategy may be activated

in some cases, while in others, the agent may move to meet

the audibility range constraint and communicate verbally.

Table II
A LIST OF MICROCSS IN OUR SIMULATION

Action block 1
Sit. Action Description
c1 Immediate Comm. Visual Gesture

Move to satisfy Hij & Comm. Verbal
c2 Immediate Comm. Visual Gesture

Immediate Comm. Verbal
c3 Ai moves to satisfy Vij & Comm. Visual Gesture

Ai moves to satisfy Hij & Comm. Verbal
c4 Immediate Comm. Verbal

Ai moves to satisfy Vij & Comm. Visual Gesture
c5 Ai moves to satisfy Vij & Comm. Visual Gesture

Ai moves to satisfy Hij & Comm. Verbal
c6 Aj calls Aj , Aj turns around & Comm. Verbal

Ai approaches and taps Aj , Aj turns around
& Comm. Verbal

Action block 2
Ai performs a signaling action, S .
Aj gives attention to Ai.
Ai proposes a macroCS, Mβ (i.e. select Mβ).
Aj signifies acknowledgement for Mβ .
If μγ is successful,

Return TRUE (i.e. execute Mβ),
Else Return FALSE (coordination failed).

As previously shown in Table I, a microCS consists of

several steps of action. Actions in step 1 are pertinent to a

specific situational relationship of agents. Actions described

in step 2 through step 6 in the table are general and

commonly applicable to any microCS. Thus, we frame a

microCS specification with two action blocks. Action block

1 contains a set of particular actions subject to a kind of

microCS, and action block 2 is the generalizable part of

microCS. Once agents complete the actions specified in

action block 1, they perform the actions stated in the action

block 2. A signaling action S implements the communica-

tion mode selected in action block 1. Table II summarizes

a list of available microCSs in our simulation, in which Ai;

(Ai ∈ Gk) is an initiator, and Aj ; (Aj ∈ Gk, ∀j �= i) is a

respondent agent.

2) MacroCS: Since our implementation focuses on gener-

ating cohesive group movements in a crowd, we implement

macroCSs only for the most common sub-goal type: ‘point-

subgoal-and-resume’. We support three macroCSs, ‘divide-

and-proceed’, ‘divide-and-wait’, and ‘detour-together’ as

listed in Table III. Ai is a member of Gk and initiator,

and Aj ; (Aj ∈ Gk, ∀j �= i) is a respondent agent. Suppose

the ‘divide-and-wait’ is selected. Ai heads for the sub-

goal by itself while the rest of group members stay at

the current location. Once it achieves the sub-goal, Ai

returns to where it left the group members. When all of the

involved group members reunite, they resume the original

navigation. At the selection of ‘detour-together’, Ai leads all

the members together to the sub-goal. When the sub-goal is

accomplished, they resume the original navigation from the

sub-goal location. In essence, during the detour, the group

is in a ‘follow-the-leader’ macroCS with Ai in the role of

the leader. Therefore a global path plan is updated first, and

the group proceed to the final destination along the path. In

our simulation, an agent choose a macroCS using the group

preference characteristic, Prk.

Table III
A LIST OF MACROCSS IN OUR SIMULATION

Action Description
divide Ai proceeds to a sub-goal sh,
-and-proceed If the sub-goal is accomplished,

proceed to a goal gk
Aj proceeds to a goal gk

divide-and-wait Ai proceeds to a sub-goal sh
If the sub-goal is accomplished,
Ai returns to its previous location

Aj stays and waits until Ai returns
If Ai returns,
∀A ∈ Gk proceed to a goal gk

detour-together Ai leads Gk to the sub-goal sh
All Aj ∈ Gk follow Ai

If the sub-goal is accomplished,
∀A ∈ Gk proceed to a goal gk

3) Agent Model: For simplicity, we apply the perception

model described in Figure 1 in the same way to all agents.

The distance parameters dh and dv are subject to an environ-

mental influence function modeled as a sigmoid function:

d′ε = dε, x ≤ t,

d′ε = dε(
1

1 + e
(x−t)
wε

), x > t, (2)

where x is a number of agents in the unit cell, t is a tolerance

for the crowdedness, wε determines the width of the sigmoid

for each perceptual mode.

4) Environment Model: A virtual shopping mall is de-

signed as shown in Figure 4 (top). The shopping mall model

contains 8 restrooms (green squares) and 25 shops (yellow

to red squares) as potential sub-goals. To make analysis

results across conditions comparable in the current study,
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A B

Figure 4. (Top) A snapshot of the shopping mall and (Bottom) a simulation
running with animated characters

we assume all agents have homogeneous interests. The color

intensity of shops represents the level of attraction. For

example, shops in red are the points of highest attraction

and those in yellow are the least attractive points. Eight

exits (blue squares) are generated as possible final goals for

agents. Each cell in the 2D grid describes a 5m×5m area.

Given the initial position, p0i , and final goal, gk, of group

k, the A* algorithm is used to generate a global path. The

global path of G19 is drawn in navy blue in top of Figure 4.

An animation of a simulation in a 3D environment is shown

in bottom of Figure 4.

B. Experiments

We set four simulation configurations and compared the

congestion levels at key points to show the impact of the

‘coordination overhead’ in the simulation. Given the total

number of agents n, the agents are organized as (1) n
of solely individual agents, (2) n/4 simple groups of 4

members without considering the CG model, (3) n/4 groups

of 4 members which instantly choose a macroCS without

processing micro-coordination, and (4) n/4 groups of 4

members with incorporating the CG model. We shall call

each of the four configurations CI (for Individuals), CDT

(for always ‘Detour-Together’), CM (for Macro only), and

CμM (for both micro and Macro CSs), respectively. To

simulate simple groups in CDT, we set the groups to always

choose ‘detour-together’ (i.e., all group members will satisfy

all sub-goals together, before proceeding to the final goal).

1) Scenario and Simulation Parameters: For all the indi-

vidual agents in CI and agents of groups in CDT, CM and

CμM, one of the eight exits is selected as a final goal gk at

random. Initial positions of agents are randomly distributed

in a shopping mall, taking care that members within groups

are collocated. Though agents in CI are all individuals, we

initialized the simulation with agents clustered in groups of

4 to have the same initial conditions as CDT, CM, and CμM.

Starting from initial positions, agents walk around the

shopping mall and eventually proceed to the exit. A random

event generator triggers agents to visit the nearest restroom.

When agents pass by shops, they may be attracted to some

shop within a range (e.g., 15m×15m in our implementation).

We used 1000, 2000, and 3000 for the total number of

agents n, and hence they are organized as 250, 500, and 750

groups, respectively. Default perceptual geometry of agent is

set to: [dv , dh, α] = [15m, 5m, ∠60]. For the environmental

influence introduced in Equation 2, t = 12 and w = 35 are

used (for simplicity, we use the same w for dh and dv). w
is determined assuming that the maximum agent capacity of

a unit cell of 5m×5m being around 35.

C. Results and Discussion

Our hypothesis for the experiment was that the pragmatic

need to maintain common ground incurs costs at the level

of the entire simulation. For instance, if we find a non-

CG simulation to always performs better than a CG-based

model with regard to level of congestion, this might suggest

that models that do not add the cost of coordination may

systematically under-estimate real crowd effects.

In order to compare the congestion levels among the

four simulation configurations, we counted the number of

agents in 3×3 unit cells (hence 15m×15m) centered at key

points such as shops or restrooms per frame. We present the

results measured in area A and B (marked in Figure 4(a)) in

Figure 5. All the results are averaged over 10 independent

simulations. Stochastic events invoking agents to visit a

restroom are indicated with gray vertical lines. Figures 5(a)-

(c) are the level of congestion measured in area A for 250,

500, and 750 groups, respectively. Figures 5(d)-(f) are the

results for area B. The x-axis in each graph represents time

and the y-axis measures the level of congestion in # of agents

per unit area.

The results presented in the graphs indicates the emergent

effects of individual agent and small agent group behavior

on the overall crowd simulation. From the graphs, it can be

seen that the CI case almost always results in the lowest

congestion because there is no coordination or joint action

overhead in the individual action plans. CDT consistently

results in the highest congestion across crowd size simply
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(a) 1000 agents in 250 groups (b) 2000 agents in 500 groups (c) 3000 agents in 750 groups
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(d) 1000 agents in 250 groups (e) 2000 agents in 500 groups (f) 3000 agents in 750 groups

Figure 5. Congestion levels measured as the number of agents in unit areas of CI, CDT, CM, and CμM

because the total distances traversed by all agents is the

highest in this condition. The interesting differences come

in the CM and CμM conditions as these vary depending on

the overall crowd size. Notice that across all crowd sizes,

congestion tends to fall over time as some agents and agent

groups leave the mall, leading to overall lower congestion

everywhere. Since the sub-goal events are generated stochas-

tically, not all groups in the CDT, CμM, and CM cases will

have members that receive sub-goal events at any particular

sub-goal event cycle.

When we compare the conditions with respect to overall

crowd size, we notice that apart from CDT and CI, CM

and CμM are quite similar when the crowd is sparse (1000

agents in 250 groups), with CμM resulting in slightly higher

congestion followed by CM and then CI. This shows that

the joint action and the micro-coordination overheads have

some effect at this crowd level.

This order of difference becomes accentuated in the

middle level of crowd size (2000 agents in 500 groups).

The general difference between locations A and B in the

simulation is that A is near the middle of the environment

where the effects across conditions are accentuated, and B

is near the exit where congestion tends to fall more quickly

as agents exit the environment over time. In both areas

A and B, the micro-coordination overhead causes higher

congestion than the macroCS-only (CM) condition. This

shows that the behavioral cost of performing the necessary

micro-coordination activity cannot be ignored in overall

crowd simulation with multiple agents.

When the overall crowd density is very large (3000 agents

in 750 groups), the congestion across the CDT, CμM, CM,

and CI conditions become relatively similar because we

have arrived at a ceiling effect of overall over-congestion.

One way to think of this is that when the crowd density

gets too high, no strategy will work effectively. However,

even in this condition the order of congestion levels across

groups (CDT, CμM, CM, CI) is generally maintained, and

the micro-coordination process adds higher congestion than

the macroCS-only condition. In area A, especially the con-

gestion of CμM even approaches that of CDT (which is an

unrealistic condition in real life), while the CM congestion

level falls to near CI levels after 8800 time steps as agent

groups exit the environment.

The difference of the congestion level among the different

crowd models in our experiment demonstrates the signif-

icance of incorporating realistic human social interactions

into an agent design to achieve valid simulation results. For

example, suppose that we were designing a mall with certain

target number and placement of shops for a target number of

visitors. Underestimations of crowd complexity may cause

designers to be overly optimistic about the size of corridors

or of evacuation rates in an emergency.

VI. CONCLUSION

We presented a computational model informed by com-

mon ground theory to incorporate the impact of social

interaction in multi-agent simulations. In our approach the

CG model is framed as micro- and macro- coordination

strategies, which allows the multi-agent system to adapt

to varying domains. Our approach focuses on simulating

the coordination process established by CG theory rather

than modeling the process of social interaction at a lower

level of communicative intent to reasoning. We believe

that this intermediate level simulation is viable for two

reasons. First, it is computationally more tractable than

trying to simulate the micro processes of communication
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and negotiation of joint action itself. Second, CG theory is

a well-vetted scientific theory, and already takes the effect

of real human micro-level negotiation of joint activity into

consideration. In fact, because the theory is well established,

any bottom-up micro-negotiation model will be hard pressed

to match the realism of a CG model.

We conducted a series of studies and showed notable

differences resulted in the simulations when the common

ground model is enabled. Since CG is a well-researched

interaction model, such differences provide insight concern-

ing the effect of employing such a model into a large scale

simulation may be important.

Our future research direction includes evaluating the re-

alism of crowd behaviors and dynamics by conducting user

studies. The congestion level in the simulation reflects only

a quantitative aspect of a simulation, and we want to validate

our CG model through a qualitative measurement. In order

to do that, a complete integration of the simulation engine

with animated characters supporting subtle communicative

gestures are also needed.
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