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Abstract—We propose a real-time motion synthesis framework
to control the animation of 3D avatar in real-time. Instead of
relying on motion capture device as the control signal, we use
low-cost and ubiquitously available 3D accelerometer sensors.
The framework is developed under a data-driven fashion, which
includes two steps: model learning from existing high quality
motion database, and motion synthesis from the control signal. In
the model learning step, we apply a non-linear manifold learning
method to establish a high dimensional motion model which
learned from a large motion capture database. Then, by taking
3D accelerometer sensor signal as input, we are able to synthesize
high-quality motion from the motion model we learned from the
previous step. The system is performing in real-time, whichmake
it available to a wide range of interactive applications, such as
character control in 3D virtual environments and occupational
training.

I. I NTRODUCTION

Real-time character animation technique is critical in a number
of interactive applications, such as avatar control in 3D Virtual
Environments (VE) and occupational training. As one of the
most popular automatic animation recording and playback
techniques, optical motion capture systems, such as VICON,
provide a real-time performance capture solution for charac-
ter animation. Because its high-fidelity data quality, motion
capture systems have been adopted as a standard animation
generation tool in animated-film and video game industry.
However, high cost and complex configuration place signifi-
cant constraints for its ubiquitous application and extension. In
this paper, we propose a low-cost motion synthesis framework
to control the animation of 3D avatar in real-time. Our frame-
work takes control signals from low-cost 3D accelerometer
sensors as input and generate high quality human motion in
real-time by applying a statistical model learned from a pre-
recorded motion database. Our system is low cost and easy to
set up since our proposed system only needs four Nintendo
Wii controllers.

The main focus of our approach lies on the model learning
from a prerecorded human motion database which it is critical
for the quality of synthesized motion. The challenge of this
research is to generate detailed and high dimensional motion

data (more than 80 dimensions) from a noisy and lower di-
mensional sensor signals (less than 25 dimensions). We adopt
a data-driven approach that build a statistical mapping model
between low dimensional input signal and high dimensional
motion data by learning from a pre-captured sensor and motion
database. In our approach, the database consists of motions
from various sport movements, such as tennis, basketball and
golf etc. Global linear models have difficulties handling this
type of heterogeneous motion database [3], [13], [17]. To solve
the limitation of linear models, we learn a strong nonlinear
reduced-dimension models. We useLocally Linear Embedding
(LLE) to learn the nonlinear manifold in high dimensional
motion data. Our result shows that the nonlinear manifold
leaning model has better performance than linear models.

We evaluate our system by comparing the synthesized results
with ground truth which is simultaneously captured by an
optical motion capture system. The evaluation shows that our
system can accurately estimate full body motion using a small
number of low-cost and noisy accelerometer sensors.

The remainding paper is organized as follows. Section II
provides the background and describes the related work in
this area. Section III explains the system architecture while
Sections IV provides the detailed description of our approach.
Section V shows the experimental results and demonstrates the
accuracy of our approach numerically and visually. SectionVI
concludes the paper, discusses the limitations and future work
to address the current limitations.

II. BACKGROUND

Our proposed work can be categorized into the research of
performance capture for human motion, where human perfor-
mance can be recorded by sensors and re-generated in the
form of 3D animated avatars. In this section, we will describe
the existing work in this area, and then explain how we are
motivated to use nonlinear manifold learning methods for this
research.



A. Performance capture for human motion

There exist a variety of performance capture systems for
human motion, which are widely used in animated films,
education, training, sports, and video games. Depending on
the technique used, current systems can be classified into two
groups: optical systems and non-optical systems.

1) Optical systems:Optical systems utilize image data cap-
tured from a number of cameras to track special markers
attached to a subject, or to recognize surface features identified
dynamically for each particular subject. Marker-based optical
systems can generate high-fidelity animation data with subtle
details of human motions. These systems perform best in
the applications that mostly play back the original motions,
e.g., animated movies. However, most popular optical motion
capture systems, such as VICON or Motion Analysis, are
costly and, then, can not be widely deployed for interactive
motion capture and motion control.

In order to lower the cost of performance capture, researchers
explored the possibility of using standard video camera, com-
pared with expensive professional camera. Chai et al. [4]
implemented a vision based system that requires only two
inexpensive video cameras. Using only six markers attached
to a body, the system can synthesize a wide variety of human
movement without a long suit-up time. The synthesized mo-
tions are very detailed because a data-driven approach is used
to query a high quality motion capture database. Similarly,
Liu et al. [10] applied a linear regression model to estimate
human motions from a reduced marker set. However, these
systems require a restrictive motion capture environment and
suffer from the occlusion problem of a vision based tracking
system.

Recently, Aguiar et al. [6] presented a markerless approach
for video-based performance capture. This approach require 8
cameras of high resolution and produces feature-rich human
motion, comprising of high-quality geometry, life-like motion
data and surface texture of recorded subjects. This multi-view
stereo approach support people wearing a wide variety of
everyday apparel and performing fast motion. As the feature-
rich output format, this method supplements and exceeds
the capabilities of marker-based optical capturing systems.
However, it is still a high cost approach and is limited by
the capture environment.

2) Non-optical systems:Non-optical systems use acoustic,
inertial, magnetic sensors or combinations of these sensors,
which are usually low-cost. The sensors signals, providingan
digital representation of the motion, are used as control signals
to synthesize human motion.

Badler et al. [1] proposed a system that reconstructs full-body
motion using four magnetic sensors and a real-time inverse-
kinematic algorithm to control a standing character in a VE.
The system introduced a data-driven approach to address the
kinematic redundancy problem. Another system developed by

Yin and Pai [19] synthesizes full-body motion within one
second by using a foot pressure sensor. However, it can only
generate a small range of behaviors and cannot produce motion
for complex upper body movements. Oore et al. [11] use six
degree-of-freedom tracking devices to interactively control the
locomotive animations. Dontcheva et al. [7] also use a tangible
user interface in their puppetry system to control the motions
divided into several different layers.

Recently, Vlasic et al. [16] combined accelerometer, inertial
and acoustic sensors to capture high-fidelity motions that are
comparable to the motions captured from marker based vision
systems. The system removes the restriction of constrained
motion capture environments, and allows the user to be tracked
almost “everywhere”. However, the cost of the systems are still
high and, due to the necessary post-processing time, it is not
a real-time system.

Safonova et al. [13] utilize an existing motion capture database
and proposed a optimization algorithm in low-dimensional
spaces to synthesize human motion. Principle Component
Analysis (PCA) is used on motion with similar behavior
to reduce data dimensionality thus the subject behavior has
to be specific. The limitation results from dimensionality
reduction technique used because for a global linear method,
such as PCA, it is hard to model a heterogeneous database
which is possibly nonlinear. Global linear models might be
appropriate for Safonova’s application which is synthesisof
motion without a continuous control signals, however, it is
not a best choice for us. Similarly, Carvalho et al. [3] pre-
sented a low-dimensional optimization framework that used
a Prioritized Inverse Kinematics (PIK) strategy. Two local
motion models, i.e. PCA and Probabilistic PCA, are used to
reduce dimensionality and their performances are compared
for solving the optimization problem. However, the approach
is only limited to specific behavior, i.e., golf swing, suffering
from the model problem.

B. Nonlinear dimension reduction for motion synthesis

In order to estimate and synthesize high-quality human motion
from noisy input signal, we adopted a widely used data-driven
approach where a statistical model is learned from motion
data. In our previous work [17], the statistical model we
used is a piece-wise linear model which results from a global
clustering and linear model learning for each local cluster.
However, we find the approach is limited by the clustering
result when operates on linearly dimension-reducted (e.g.by
PCA) data.

To solve the limitation of linear dimensionality reduction,
a new class of nonlinear dimensionality reduction technique
have been developed. These algorithms are designed to explore
the nonlinear structure for high dimensional data. Isomap algo-
rithm [15] is a nonlinear generalization of MDS [5]. Isomap
is designed to preserve the geodesic distance between pairs
of multivariate data point, instead of simply taking Euclidean



distance. The geodesic distance can present the distances along
the manifold. Roweis et al. [12] and Saul et al. [14] proposed
LLE, an unsupervised learning algorithm that computes low
dimensional embedding with neighborhood relationship pre-
serving of high dimensional data. LLE is able to discover
nonlinear structure in high dimensional data by optimally
preserving the local configurations of nearest neighbors. The
advantage of LLE over linear dimension reduction technique,
such as PCA and MDS, is that LLE is able to correctly detect
the nonlinear structure and project the multivariate data into a
single global coordinate system of low dimension.

Yeasin et al. [18] discussed the performances of several linear
and nonlinear dimensionality reduction techniques in classi-
fying universal facial expressions, i.e., PCA, Non-negative
Matrix Factorization (NMF) and LLE. Their results show LLE
has highest recognition accuracy.

Elgammal et al. [8] employed LLE to find the low dimen-
sional embeddings of silhouette manifold. Given sequencesof
silhouette from monocular uncalibrated camera, a sequenceof
human 3D poses are produced by RBF interpolations from the
silhouette manifold to 3D pose in body joint space. Likewise,
Jaeggli et al. [9] proposed a body pose estimation system
using video sequence as input. The pose is synthesized from
a statical model of 3D pose, dynamics, activity transition
and silhouette using sparse kernel regressors. Both of the
approaches are offline. Our approach is partly similar to
Elgammal’s, however, our goal is different. We focus on real-
time animation driven by accelerometer sensors.

III. SYSTEM OVERVIEW

We describe a novel approach that uses low-cost 3D ac-
celerometer sensors for full-body motion synthesis. The high-
quality motion is synthesized using a statistic model learned
from a motion capture database. There are three major phases
of our approach – data collection, model learning and motion
synthesis. Figure 1 shows the work flow of our system.

Data collection and preprocessing:We first perform a series
of off-line motion capture sessions using simultaneously an
optical motion capture system and accelerometer sensors (Wii
controllers). Both motion capture data and sensor data are pre-
processed to reduce noise. We then synchronize the motion
data with the sensor data in order to get a precise frame-to-
frame mapping. All the data is then stored in a database for
motion synthesis. The part will be explained in the Section V.

Model learning: To build a statistical model of the captured
motion database, we uselocal linear embedding(LLE) to
learn a nonlinear manifold in a reduced dimensional space.
We then use aGaussian Mixture Clustering(GMM) algorithm
to segment the low dimensional nonlinear manifold data into
a number of clusters. The clustering result provides us a
better understanding of the structure of motion data in terms
of data feature similarity. Finally we build aRadial Basis
Function(RBF) interpolation model for each cluster. The local

Fig. 1: Our system work flow

linear models enable us to learn the nonlinear manifold in the
database.

Motion synthesis: During the motion synthesis phase, the
user performs actions using only 3D acceleration sensors (Wii
controllers) attached to the body. Using this sensor data as
input, we synthesize high quality motion data by the local
linear model built from the motion database captured in the
previous phase. For each frame of the input sensor data, we
apply the RBF interpolation function of the cluster associated
with the input data. The result is a 3D pose with the same
quality as the one of the motion capture data.

IV. A PPROACH

In this section, we describe how we learn our model first,
and then we discuss how to use the learned model for motion
synthesis.

A. Model Learning

In our data-driven framework, a variety of dataset can be
applied. Our current database consists of two types of syn-
chronized data: one is obtained from a high quality motion
capture system (Vicon), and the other from low-cost sensors
with less accurate signals (accelerometers). These two types
of data should be synchronized before modeling since the
frame rates of device signal from various resources are usually
different. The synchronized database is represented as

{(ct ,qt)|t = 1, . . . ,N}

whereN is the total number of frames andct is ad dimensional
data of sensors representing the low quality signal at timet.
qt is the D dimensional data of high quality data at timet.
d = 24 andD = 88 in our current database.

Once the database is synchronized, it is ready to be used to
learn the local models. To improve the performance of the
signal recognition and reduce computation cost, we perform



classification on the high quality dataset, which means our
model describe the relationship between the low-dimensional
database and the high-dimensional database with the same
clustering information. Since the two data sets (high quality
and less accurate data set) are synchronized before, the two
data sets have exactly the same classification. In our previous
work [17], we demonstrate that we need to perform clustering
algorithm on the high quality motion capture dataset because
of the accuracy reason. However, the high quality data is usu-
ally quite high dimension and contains a bunch of redundant
features which do not help recognition. If the classification is
applied directly onto the original high dimensional dataset, the
performance is lower than our expectation. Thus we employ
dimensionality reduction strategy to remove the redundant
features in the original database. We use PCA in our previous
work [17] but we found that linear dimensionality reduction
technique are not the best way to represent our database for the
complex nonlinear structure. SinceLLE is a excellent way for
nonlinear manifold learning, therefore, we useLLE for better
representation of our data.

1) Non-linear Dimension Reduction:LLE is introduced for
the problem of nonlinear dimensionality reduction. GivenN
input vectors{x1,x2, . . . ,xN},xi ∈ Rd, LLE calculates new
vectors{y1,y2, . . . ,yN},yi ∈ Rm, and m≤ d. Normally, LLE
consists three steps in its algorithm:

• Find thek nearest neighbors for eachxi .
• Measure reconstruction error resulting from the approx-

imation of each point by its neighbors and calculate the
reconstruction weightswi j which minimize the error.

• Compute the low-embedding vectorsyi by minimizing
the embedding function with the reconstruction weights
wi j .

In the first stage, we findk nearest neighbors for allxi ∈ Rd

in the d-dimensional space. The Euclidean distance is used to
measure the geodesic distance between two vectors.

In the second stage, we calculate reconstruction error by:

ε(W) = s
N

∑
i=1

|xi −
k

∑
j=1

wi j xi j |
2, (1)

wherexi j is thek nearest neighbors ofxi , andwi j is the weight
of the neighbor. Here, we should notice thatwi j = 0 whenx j

is not count as the neighbor ofxi , and for all the neighbors of

xi ,
k

∑
j=1

wi j = 1. As the design of LLE,wi j reflects the intrinsic

geometric properties of the original data, and we can find a
linear mapping to be a approximate representation of the data.

In the final stage, we are going to compute the embedding
vectorsyi of the original vector dataxi in the low-dimentional
embedding space. To preserve the locally geometric properties
of the original space, we minimize the following embedding

cost function:

φ(Y) =
N

∑
i=1

|yi −
k

∑
j=1

wi j yi j |
2. (2)

This embedding cost function is calculated based on the
previous locally linear reconstruction errors, and the weight
wi j is fixed when optimizingyi . In this procedure, the high-
dimentional vector dataxi is one-to-one mapping to the low-
dimentional vectoryi . So, we can perform a simpler clustering
algorithm on this low-dimentional data set, and get the original
data set the same clusters as this low-dimentional data.

2) Database Clustering and Clusters Mapping:In our clus-
tering algorithm, we model the high quality motion database
by the Gaussian mixture model (GMM), which is defined as:

p(x|θ ) =
K

∑
j=1

π jη(x|µ j ,Σ j). (3)

When we perform LLE on the original high-quality database,
we employ the GMM on the processed database to obtain the
cluster setCi(i = 1, . . . ,k). So, we havek different clusters for
the original database.

Since the high- and low-quality databases are synchronized
when capturing, we apply the same clustering result to the
low quality database, which means for anyCi , it has the same
members in high and low quality database, which represented
as Q j . And we havek different clusters in the low quality
database too. This cluster distribution information is themodel
we learnt for the motion synthesis.

3) Radial Basis Function:Now we can build a local linear
model for each cluster. For thej th cluster, we can build a local
linear model using Radial Basis Functions (RBF) [2] to learn
the mapping function fromc j

i to q j
i , wherec j

i ∈Cj = {c j
i |i =

1,2, .., p j}, q j
i ∈ Q j = {q j

i |i = 1,2, .., p j} andp j is the number
of frames in clusterj. Given a new input sensor data pointc̃t

at the time framet, if this data is classified as thej th cluster,
the mapping function can be expressed using Equation 4 as:

q̃t = Fj(c̃t) = q̄ j +A j

p j

∑
i=1

wi j φ(||c̃t −c j
i ||), (4)

whereq̃t is the high quality pose we want to synthesize,wi j

are unknown weights,|| · || denotes a metric – in our case
Euclidian distance, andφ() is a continuous kernel function.

There are several choices forφ(), including Gaussian, multi-
quadratic, or thin plate spline. We chose the Gaussian function,

φ(r) = e−r2/σ2
, (5)

because it is non-linear and provides good results when applied
locally. The widthσ , determines the amount of area covered
by Gaussian function on the data. Since data points are not
uniformly distributed in the data space, in order to improve
quality of output we implemented a dynamicσ [2] dependent
on the density of local data.



By using the local cluster data{c j
i ,q

j
i }, we can solve for

unknown weightswi j to complete the local linear model
(Equation 4).

B. Motion Synthesis

1) Cluster Detection:When receiving a on-line low quality
signals, which has the samed dimension as the low quality
database, we classify this signal by existing clusters in low
quality database first. As we use GMM to do classification,
we present our clusters by their mean valuesµi(i = 1, . . . ,k).
We compute the likelihood based on the Euclidean distance:

pi =
1

√

∑d
j=1 (sj − µi j )2

. (6)

Because of the Gaussian distribution of our model, we rank the
likelihood and choose the top three clusters as our interpolation
database.

2) Radial Basis Function Interpolation:Given the new input
sensor datãct ,1≤ t ≤ N, with N frames, we apply the local
linear model learned from the previous step to synthesize the
new high quality motioñqt ,1≤ t ≤ N.

For the input sensor datãct at framet, we identify the cluster
it belongs to by calculating the closest distance against the
mean values of all clusters in sensor data,c̄ j ,1≤ j ≤ K. If it
is classified as clusterj, we use RBF mapping functionFj()
defined in Equation 4 to synthesize new motion data frameq̃t .

3) Estimation and Smoothing:Because the low-quality input
has its limitation of accuracy, we employ a least square method
for estimation. Suppose we have historical series of motion
datami−1. We fit the data to a cure:

f (x) = ax2 +bx+c. (7)

Then, we use this curve to estimate current motionmi .
Meanwhile, we get the current motion synthesis signalsi . We
fuse these two signals with sum-to-one weights:

q̃i = wdetectmi +westimatesi , (8)

while wdetect+westimate= 1. The fusion result reduces the error
and smoothes our motion results at the same time.

V. EXPERIMENT AND NUMERICAL COMPARISON

In this section, we explain the process for our database
construction during the experiment. We then give our results
relying on the database and show visual and quantitative
accuracy of our system. Compared with the linear approach in
our previous paper [17], the improved results show the benefit
of nonlinear manifold learning.

A. Data Collection and Preprocessing

In this section we describe data used in our system, including
data capture, synchronization and pre-processing.

Fig. 2: Data collection: an optical motion capture system and
a 3D acceleration sensor based data acquisition system are
used in parallel. There are 45 retro-reflective markers and
eight sensors (four WiiTMNintendo controllers) attached to the
performer.

1) Data Capture and Representation:As we discussed in the
previous section, we use the Vicon optical motion capture sys-
tem to capture the high quality database, and Wii controllers
are used for low quality motion capture database. In our Vicon
system, we have 8 Vicon MX series cameras at a capturing
rate of 60 frames per second, and we place 45 retro-reflective
markers on the performer to collect motion signals. The Wii
controllers play a role of 3D accelerometers with a range of
interface for data transmission at a peak rate of 100 frames
per second, and we attach 4 Wii remotes and 4 Wii nunchucks
to the performer.

In our database, there are five different types of full-body
motions: tennis forehand (1121 frames), tennis backhand
(1004 frames), basketball shot (1300 frames), golf swing
(1201 frames), and karate middle block (456 frames). In
this procedure, there are totally 5082 frames of data in our
database, represented as

{(ct ,qt)|t = 1, . . . ,5082}

wherect is a 24-dimensional data of sensors representing the
3D acceleration measures of the four pairs of sensors on the
body at timet. qt is the 88-dimensinal data of optical motion
capture data and it represents a pose at timet.

2) Data Synchronization:It is a necessity to synchronize the
data from the accelerometers to the optical motion capture
system to obtain the mapping betweencti and qt j . This is
critical because the independent transmission of each sensor.
Moreover, data from each sensor is received with variable
frame-rate owing to packet loss in the wireless environment.
To solve these two issues, all data received from the sensors
are marked with the sensor ID and placed in a common buffer.
A snapshot of the buffer is taken each frame and the data of
sensor is constructed with the most recently received data.
After a snapshot is taken, the buffer is overwritten if new data



arrives. Typically, there should be only one sensor frame in
the buffer when taking snapshots. However, if the terminal
failed to receive data from any sensor during this time period
(or the buffer is empty), then the previously received frame
is considered again. If there are more than one sensor frame,
we use the average of all frames in the buffer. This way the
sensors can be synchronized at a constant frame-rate of 60Hz
to match the frame rate of the motion capture system.

The next step is to synchronize the motion capture data with
the sensor data. For this step, we ask a performer to strike fists
before and after performing any action. We use this striking
event to synchronize the sensor data and motion capture data,
by aligning the spike in the sensor readings with the frame in
motion capture data when two fists touch each other.

3) Data Pre-Processing:Before the synchronized data can be
used as our animation database, we need to do a pre-processing
for model learning and motion synthesis. We use quaternions
for joint rotation representation so that congruent angles(e.g.
0◦ and 360◦) are represented using the same numerical values.
Noise in optical motion capture data due to marker occlusionis
removed, and the synchronized accelerometer sensor’s datais
removed at the same time, since this noise reduction is crucial
for the animation quality.

Noise also happens in the sensor data because of the wireless
environment we use. To maintain a high bandwidth, we use
Bluetooth receivers which are very sensitive, and it is not
unusual to find a few arbitrary values beyond the range of
what we expect to get from the sensors. This kind of noise
is automatically detected and replace by quantities which are
estimated (by least square function) from the neighboring data.
Even using this automatic method, the outlier in a motion
still exists. We also need to remove the noise as well as its
synthesized optical motion data.

B. Result and evaluation

Relying on the database built in the data collection, we test
the performance of our system with two subjects performing
various actions. The sensors signals are used as input in our
system to produce our on-line animation. The synthesized mo-
tion are visually compared with the recorded video. Figure 4
shows the results for two synthesized actions, tennis forehand
and backhand. The results clearly show that our system can
clearly capture the poses of the subjects with the sensor signals
as control signals.

We also perform an end-to-end evaluation to numerically
measure the accuracy of our system. During the subjects were
doing actions with Wii controllers, their high quality motions
were recorded using a Vicon optical motion capture system. As
ground truth motions , the recorded high quality motions are
compared against the synthesized motion frame by frame. We
then use the normalized Root Mean Square (RMS) distancee
to quantitatively measure the difference.e, as defined below,

is able to measure the error of degree of freedom per angle.

e= RMS(q̃k,qk) =

√

∑n
i=1(q̃k,i −qk,i)2

n
, (9)

wherek is the frame index,q̃k is the synthesize motion,qk

is the ground truth motion andqk,i is the ith dimension of
qk. The unite ofe is degree of freedom per angle. Figure 5
shows a numerical comparison of the synthesized motions with
the corresponding ground-truth motion. The results of visual
and quantitative comparisons show that our low cost system
generates motions with the quality equivalent to that of an
expensive optical motion capture systems.

Frame Average
Actions Number RMS
Tennis Forehand 256 0.062
Tennis Backhand 206 0.057

TABLE I: Normalized RMS distance is used to compare,
for each action, the synthesized motion with the ground truth
motion captured directly by the optical motion capture system.

C. Numerical Comparison

The performance of the system rely on the ability to represent
human motion in a low-dimensional space. Without this low
dimensional representation, the clustering algorithm hasdiffi-
culty to cluster high dimensional data. Our previous work [17]
depends on PCA to reduce data dimensionality, however, as we
discussed in Section II, a global linear method, such as PCA
and MDS, it is hard to model a heterogeneous database which
is possibly nonlinear. In comparison, nonlinear dimensionality
reduction, e.g. LLE and Isomap, compute low dimensional
embedding with neighborhood relationship preserving of high
dimensional data.

In this section, we compare the performance of our nonlinear
manifold learning algorithm with our previous work [17] using
linear models. Figure 3 plots the RMS errors of synthesized
motion for both methods. It shows that our method creates
more accurate results than the previous work and demonstrates
LLE is a more appropriate technique to understand our data.

VI. D ISCUSSION

In this paper, we present a nonlinear manifold learning frame-
work to control the animation of 3D avatar in real-time. We
utilize low-cost 3D accelerometer sensors as control signal
and a high quality database consisting of prerecorded human
motion and sensors data. Our data-driven approach includes
two steps: offline model learning from existing high quality
motion database, and online motion synthesis from the control
signal. The model learning step enable us to explore the
nonlinear structure of motion data and build piecewise models
on variety of clusters with different features. The learned
models are later used to produce a realistic motion in real-
time. We have shown the effectiveness of our framework by
performing an End-to-End evaluation.
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Fig. 3: Comparison of construction RMS errors of synthe-
sized tennis backhand motions from low-dimensional control
signals. The average RMS error for PCA is 0.078 degree/joint
per frame while average error of LLE is 0.057 degree/joint
per frame. All the test motions are not in the database.

In our experiments, we find our approach can’t guarantee 100
percentage of correct cluster detection. This problem results
partly from the noise in the wireless sensor signal. Another
possibility is that our database is not dense enough that data
in a cluster can’t form a perfect Gaussian distribution. In
addition, the sparse database also result in limitation of type
of behaviors that can be synthesized. However, our design is
scalable and can handle larger databases without performance
degradation. Using a sufficient number of examples we can
synthesize a larger variety of human motions.

Like most of the piecewise model based motion synthesis, our
approach suffers from the non-smoothness problem during mo-
tion synthesis. Our algorithm mainly learn spatial knowledge
for the models while ignore the temporal relationship among
data pointers. To Learn sufficient knowledge from the database
should help us improve the smoothness of synthesized motion.
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Fig. 4: Four different actions (one in each row) synthesized by our system. Each frame shows on the left side the actual pose
and on the right side the synthesized pose.

Fig. 5: motion compared to the ground truth. Each frame shows on the left side the ground truth motion and on the right side
the synthesized motion.


