CS 4204 Computer Graphics

Structure Graphics and
Hierarchical Modeling

Yong Cao
Virginia Tech

References:
Interactive Computer Graphics, Fourth Edition, Ed Angle

Objectives

Examine the limitations of linear modeling

¢ Symbols and instances

Introduce hierarchical models

» Articulated models

» Robots

Introduce Tree and DAG models

Instance Transformation

Start with a prototype object (a symbol)

Each appearance of the object in the model
IS an Instance

« Must scale, orient, position

Symbol-Instance Table

Can store a model by assigning a number to
each symbol and storing the parameters for
the instance transformation

dy, d,, d,

Relationships in Car Model

Symbol-instance table does not show relationships
between parts of model

Consider model of car

» Chassis + 4 identical wheels
* Two symbols

Rate of forward motion determined by rotational
speed offwheels

Structure Through Function
Calls

car(speed)

{
chassis()
wheel (right_front);
wheel (left_front);
wheel (right_rear);
wheel (left_rear);

Fails to show relationships well
Look at problem using a graph

Graphs

Set of nodes and edges (links)

Edge connects a pair of nodes

* Directed or undirected

Cycle: directed path that is a loop

I

<
<

\C

loop

Tree

Graph in which each

node (except the root) has

exactly one parent node

« May have multiple children

» Leaf or terminal node: no children

/.\ root node

o

Tree Model of Car

Chassis

Rightfront Left-front Rightrear Left-rear
wheel wheel wheel wheel

DAG Model

If we use the fact that all the wheels are identical,
we get a directed acyclic graph

« Not much different than dealing with a tree

Chassis

Right rear
Left front

c
O
Pl

——
c
o2
o

Modeling with Trees

Must decide what information to place In
nodes and what to put in edges

Nodes

 What to draw

* Pointers to children

Edges

< May have information on incremental changes to
transformation matrices (can also store in nodes)

Robot Arm

parts in their own
coordinate systems

robot arm

Articulated Models

Robot arm Is an example of an articulated
model

 Parts connected at joints
» Can specify state of model by

giving all joint angles

Relationships in Robot Arm

Base rotates independently
» Single angle determines position

Lower arm attached to base
 |ts position depends on rotation of base

» Must also translate relative to base and rotate
about connecting joint

Upper arm attached to lower arm
« |ts position depends on both base and lower arm

» Must translate relative to lower arm and rotate
about joint connecting to lower. arm

Required Matrices

Rotation of base: R,
* Apply M = R, to base

Translate lower arm relative to base: T,

Rotate lower arm around joint: Ry,
* Apply M =R, T, R,,to lower arm

Translate upper. arm relative to upper. arm: T,

Rotate upper; arm around joint: R,

= Apply M =R, T, Ry, T, Ry, t0 Upper arm

OpenGL Code for Robot

robot_arm()

{
glRotate(theta, 0.0, 1.0, 0.0);
base();
glTranslate(0.0, hl, 0.0);
glRotate(phi, 0.0, 1.0, 0.0);
lower _arm();
glTranslate(0.0, h2, 0.0);
glRotate(psi, 0.0, 1.0, 0.0);

upper_arm();

Tree Model of Robot

Note code shows relationships between parts of
model

« Can change “look” of parts easily without altering relationships
Simple example of tree model
Want a general node structure +

for nodes Lower arm

#

Upper arm

Possible Node Structure

Code for drawing part or
pointer to drawing function

Child —m Child

linked list of pointers to children

matrix relating node to parent

Generalizations

Need to deal with multiple children
 How do we represent a more general tree?
« How do we traverse such a data structure?

Animation

* How to use dynamically?

« Can we create and delete nodes during execution?

Objectives

*Build a tree-structured model of a humanoid figure
=Examine various traversal strategies

*Build a generalized tree-model structure that Is
Independent of the particular model

Humanoid Figure

Leftupper
arm

Y

Leftlower
arm

Rightupper
arm

v

Rightlower
arm

Leftupper
leg

v

Leftlower
leg

Rightupper
leg

v

RightHlower
leg

Building the Model

Can build a simple implementation using quadrics:
ellipsoids and cylinders

Access parts through functions
= torso()

= left _upper_arm(Q)

Matrices describe position of node with respect to
Its parent

* M, positions left lower leg with respect to left upper arm

Tree with Matrices

Leftupper Right-upper
arm arm

+ MHG + Mrfo'

Left-lower Rightlower Left-lower Rightlower
arm arm leg leg

Display and Traversal

The position of the figure is determined by 11 joint
angles (two for the head and one for each other
part)

Display of the tree requires a graph traversal
 Visit each node once

» Display function at each node that describes the part associated

with the node, applying the correct transformation matrix for
position and orientation

Transformation Matrices

There are 10 relevant matrices

* M positions and orients entire figure through the torso which is
the root node

= M, positions head with respect to torso
: I\/Ilua’ \

* M M., My, M, position lower parts of limbs with respect to

corresponding upper limbs

wa My M., position arms and legs with respect to torso

Stack-based Traversal

=Set model-view matrix to M and draw torso
=Set model-view matrix to MM, and draw head
*For left-upper arm need MM, ,,and so on

*Rather than recomputing MM, , from scratch or
using an inverse matrix, we can use the matrix
stack to store M and other matrices as we

traverse the tree

Traversal Code

figure : :
gureQ) { save present model-view matrix

glPushMatrix()

torso(Q); update model-view matrix for head
glRotate3f(.);

head(); recover original model-view matrix
glPopMatrix();

glPushMatrix(Q; save It again

glTranslate3f(.);
glRotate3f(..);

update model-view matrix

for left upper arm
left upper._arm(Q;

gIPopNatrix() recover and save original

gIPUSHVATIIXO) : model-view matrix again

rest of code

Analysis

The code describes a particular tree and a
particular traversal strategy

« Can we develop a more general approach?

Note that the sample code does not include
state changes, such as changes to colors
« May also want to use glPushAttrib and

glPoOpAttr b to protect against unexpected state
changes affecting later parts of the code

General Tree Data Structure

Need a data structure to represent tree and
an algorithm to traverse the tree

We will use a left-child right sibling structure

Uses linked lists

Each node in data structure Is two pointers
Left: next node

Right: linked list of children

Left-Child Right-Sibling Tree

Tree node Structure

At each node we need to store
« Pointer to sibling
 Pointer to child

« Pointer to a function that draws the object represented by the
node

« Homogeneous coordinate matrix to multiply on the right of the
current model-view matrix

— Represents changes going from parent to node

— In OpenGL this matrix is a 1D array storing matrix
by columns

C Definition of treenode

typedef struct treenode
1
GLfloat m[16];
void (PO
struct treenode *sibling;

struct treenode *chrld;

¥ treenode;

Defining the torso node

treenode torso node, head node, lua node, .. ,;

/* use OpenGL functions to form matrix */
glLoadldentity();
glRotatef(thetajO0], 0.0, 1.0, 0.0);

/> move model-view matrix to m */
glGetFloatv(GL_MODELVIEW _MATRIX, torso_node.m)

torso _node.f = torso; /* torso() draws torso */
Torso _node.siblitng = NULL;
Torso_node.chrld = &head node;

Notes

The position of figure is determined by 11 joint
angles stored in theta|1l1l]

Animate by changing the angles and redisplaying

We form the reguired matrices using glRotate
and gl Translate

» More efficient than software

» Because the matrix is formed in model-view matrix,
we may want to first push original model-view matrix
on matrix stack

Preorder Traversal

voild traverse(treenode *root)

{

if(root == NULL) return;

glPushMatrix();

giIMultMatrix(root->m);

olo) >3 Q)

iT(root->chrld !'= NULL)
traverse(root->chrld);

glPopMatrix();

if(root—>si1bling = NULL)

traverse(root—>si1blrng);

Notes

We must save model-view matrix before
multiplying it by node matrix

« Updated matrix applies to children of node but not to
siblings which contain their own matrices

The traversal program applies to any left-
child right-sibling tree

« The particular tree is encoded in the definition of the
iIndividual nodes

The order of traversal matters because of
possible state changes in the functions

Dynamic Trees

If we use pointers, the structure can be dynamic

typedef treenode *tree ptr;
tree ptr torso ptr;

torso_ptr = malloc(sizeof(treenode));

Definition of nodes and traversal are essentially,
the same as before but we can add and/delete
nodes during execution

	Slide Number 1
	Objectives
	Instance Transformation
	Symbol-Instance Table
	Relationships in Car Model
	Structure Through Function Calls
	Graphs
	Tree
	Tree Model of Car
	DAG Model
	Modeling with Trees
	Robot Arm
	Articulated Models
	Relationships in Robot Arm
	Required Matrices
	OpenGL Code for Robot
	Tree Model of Robot
	Possible Node Structure
	Generalizations
	Objectives
	Humanoid Figure
	Building the Model
	Tree with Matrices
	Display and Traversal
	Transformation Matrices
	Stack-based Traversal
	Traversal Code
	Analysis
	General Tree Data Structure
	Left-Child Right-Sibling Tree
	Tree node Structure
	C Definition of treenode
	Defining the torso node
	Notes
	Preorder Traversal
	Notes
	Dynamic Trees

