
CS 4204 Computer Graphics

Structure Graphics and Structure Graphics and
Hierarchical Modeling Hierarchical Modeling

Yong CaoYong Cao
Virginia TechVirginia Tech

References:References:
Interactive Computer Graphics, Fourth Edition, Ed AngleInteractive Computer Graphics, Fourth Edition, Ed Angle

Objectives

Examine the limitations of linear modeling
• Symbols and instances

Introduce hierarchical models
• Articulated models

• Robots

Introduce Tree and DAG models

Examine the limitations of linear modelingExamine the limitations of linear modeling
•• Symbols and instancesSymbols and instances

Introduce hierarchical modelsIntroduce hierarchical models
•• Articulated modelsArticulated models

•• RobotsRobots

Introduce Tree and DAG modelsIntroduce Tree and DAG models

Instance Transformation

Start with a prototype object (a symbol)

Each appearance of the object in the model
is an instance
• Must scale, orient, position

• Defines instance transformation

Start with a prototype object (a Start with a prototype object (a symbolsymbol))

Each appearance of the object in the model Each appearance of the object in the model
is an is an instanceinstance
•• Must scale, orient, positionMust scale, orient, position

•• Defines instance transformationDefines instance transformation

Symbol-Instance Table
Can store a model by assigning a number to
each symbol and storing the parameters for
the instance transformation

Can store a model by assigning a number to Can store a model by assigning a number to
each symbol and storing the parameters for each symbol and storing the parameters for
the instance transformationthe instance transformation

Relationships in Car Model
Symbol-instance table does not show relationships
between parts of model
Consider model of car
• Chassis + 4 identical wheels
• Two symbols

Rate of forward motion determined by rotational
speed of wheels

SymbolSymbol--instance table does not show relationships instance table does not show relationships
between parts of modelbetween parts of model
Consider model of carConsider model of car
•• Chassis + 4 identical wheelsChassis + 4 identical wheels
•• Two symbolsTwo symbols

Rate of forward motion determined by rotational Rate of forward motion determined by rotational
speed of wheelsspeed of wheels

Structure Through Function
Calls
car(speed)car(speed)

{{

chassis()chassis()

wheel(right_front);wheel(right_front);

wheel(left_front);wheel(left_front);

wheel(right_rear);wheel(right_rear);

wheel(left_rear);wheel(left_rear);

}}

Fails to showFails to show relationships wellrelationships well
Look at problem using a graphLook at problem using a graph

Graphs

Set of nodes and edges (links)

Edge connects a pair of nodes
• Directed or undirected

Cycle: directed path that is a loop

Set of Set of nodesnodes and and edges (links)edges (links)

Edge connects a pair of nodesEdge connects a pair of nodes
•• Directed or undirectedDirected or undirected

CycleCycle: directed path that is a loop: directed path that is a loop

loop

Tree

Graph in which each node (except the root) has
exactly one parent node
• May have multiple children

• Leaf or terminal node: no children

Graph in which each node (except the root) has Graph in which each node (except the root) has
exactly one parent nodeexactly one parent node
•• May have multiple childrenMay have multiple children

•• Leaf or terminal node: no childrenLeaf or terminal node: no children

root node

leaf node

Tree Model of Car

DAG Model

If we use the fact that all the wheels are identical,
we get a directed acyclic graph
• Not much different than dealing with a tree

If we use the fact that all the wheels are identical, If we use the fact that all the wheels are identical,
we get a we get a directed acyclic graphdirected acyclic graph

•• Not much different than dealing with a treeNot much different than dealing with a tree

Modeling with Trees

Must decide what information to place in
nodes and what to put in edges
Nodes
• What to draw

• Pointers to children

Edges
• May have information on incremental changes to

transformation matrices (can also store in nodes)

Must decide what information to place in Must decide what information to place in
nodes and what to put in edgesnodes and what to put in edges

NodesNodes
•• What to drawWhat to draw

•• Pointers to childrenPointers to children

EdgesEdges
•• May have information on incremental changes to May have information on incremental changes to

transformation matrices (can also store in nodes)transformation matrices (can also store in nodes)

Robot Arm

robot arm parts in their own
coordinate systems

Articulated Models

Robot arm is an example of an articulated
model
• Parts connected at joints

• Can specify state of model by

giving all joint angles

Robot arm is an example of an Robot arm is an example of an articulated articulated
modelmodel
•• Parts connected at jointsParts connected at joints

•• Can specify state of model by Can specify state of model by

giving all joint anglesgiving all joint angles

Relationships in Robot Arm

Base rotates independently
• Single angle determines position

Lower arm attached to base
• Its position depends on rotation of base
• Must also translate relative to base and rotate

about connecting joint

Upper arm attached to lower arm
• Its position depends on both base and lower arm
• Must translate relative to lower arm and rotate

about joint connecting to lower arm

Base rotates independentlyBase rotates independently
•• Single angle determines positionSingle angle determines position

Lower arm attached to baseLower arm attached to base
•• Its position depends on rotation of baseIts position depends on rotation of base
•• Must also translate relative to base and rotate Must also translate relative to base and rotate

about connecting jointabout connecting joint

Upper arm attached to lower armUpper arm attached to lower arm
•• Its position depends on both base and lower armIts position depends on both base and lower arm
•• Must translate relative to lower arm and rotate Must translate relative to lower arm and rotate

about joint connecting to lower armabout joint connecting to lower arm

Required Matrices
Rotation of base: Rb

• Apply M = Rb to base

Translate lower arm relative to base: Tlu

Rotate lower arm around joint: Rlu

• Apply M = Rb Tlu Rlu to lower arm

Translate upper arm relative to upper arm: Tuu

Rotate upper arm around joint: Ruu

• Apply M = Rb Tlu Rlu Tuu Ruu to upper arm

Rotation of base: Rotation of base: RRbb

•• Apply Apply MM = = RRbb to baseto base

Translate lower arm Translate lower arm relativerelative to base: to base: TTlulu

Rotate lower arm around joint: Rotate lower arm around joint: RRlulu

•• Apply Apply MM = = RRbb TTlulu RRlulu to lower armto lower arm

Translate upper arm Translate upper arm relativerelative to upper arm: to upper arm: TTuuuu

Rotate upper arm around joint: Rotate upper arm around joint: RRuuuu

•• Apply Apply MM = = RRbb TTlulu RRlulu TTuuuu RRuuuu to upper armto upper arm

OpenGL Code for Robot
robot_arm()

{

glRotate(theta, 0.0, 1.0, 0.0);

base();

glTranslate(0.0, h1, 0.0);

glRotate(phi, 0.0, 1.0, 0.0);

lower_arm();

glTranslate(0.0, h2, 0.0);

glRotate(psi, 0.0, 1.0, 0.0);

upper_arm();

}

Tree Model of Robot

Note code shows relationships between parts of
model
• Can change “look” of parts easily without altering relationships

Simple example of tree model

Want a general node structure

for nodes

Note code shows relationships between parts of Note code shows relationships between parts of
modelmodel
•• Can change Can change ““looklook”” of parts easily without altering relationshipsof parts easily without altering relationships

Simple example of tree modelSimple example of tree model

Want a general node structureWant a general node structure

for nodesfor nodes

Possible Node Structure
Code for drawing part or
pointer to drawing function

linked list of pointers to children

matrix relating node to parent

Generalizations

Need to deal with multiple children
• How do we represent a more general tree?

• How do we traverse such a data structure?

Animation
• How to use dynamically?

• Can we create and delete nodes during execution?

Need to deal with multiple childrenNeed to deal with multiple children
•• How do we represent a more general tree?How do we represent a more general tree?

•• How do we traverse such a data structure?How do we traverse such a data structure?

AnimationAnimation
•• How to use dynamically?How to use dynamically?

•• Can we create and delete nodes during execution?Can we create and delete nodes during execution?

Objectives

Build a tree-structured model of a humanoid figure

Examine various traversal strategies

Build a generalized tree-model structure that is
independent of the particular model

Build a treeBuild a tree--structured model of a humanoid figurestructured model of a humanoid figure

Examine various traversal strategiesExamine various traversal strategies

Build a generalized treeBuild a generalized tree--model structure that is model structure that is
independent of the particular modelindependent of the particular model

Humanoid Figure

Building the Model

Can build a simple implementation using quadrics:
ellipsoids and cylinders

Access parts through functions
• torso()

• left_upper_arm()

Matrices describe position of node with respect to
its parent
• Mlla positions left lower leg with respect to left upper arm

Can build a simple implementation using quadrics: Can build a simple implementation using quadrics:
ellipsoids and cylindersellipsoids and cylinders

Access parts through functionsAccess parts through functions
•• torso()torso()

•• left_upper_arm()left_upper_arm()

Matrices describe position of node with respect to Matrices describe position of node with respect to
its parentits parent
•• MMllalla positions left lower leg with respect to left upper armpositions left lower leg with respect to left upper arm

Tree with Matrices

Display and Traversal

The position of the figure is determined by 11 joint
angles (two for the head and one for each other
part)

Display of the tree requires a graph traversal
• Visit each node once

• Display function at each node that describes the part associated
with the node, applying the correct transformation matrix for
position and orientation

The position of the figure is determined by 11 joint The position of the figure is determined by 11 joint
angles (two for the head and one for each other angles (two for the head and one for each other
part)part)

Display of the tree requires a Display of the tree requires a graph traversalgraph traversal
•• Visit each node onceVisit each node once

•• Display function at each node that describes the part associatedDisplay function at each node that describes the part associated
with the node, applying the correct transformation matrix for with the node, applying the correct transformation matrix for
position and orientationposition and orientation

Transformation Matrices

There are 10 relevant matrices
• M positions and orients entire figure through the torso which is

the root node

• Mh positions head with respect to torso

• Mlua , Mrua , Mlul , Mrul position arms and legs with respect to torso

• Mlla , Mrla , Mlll , Mrll position lower parts of limbs with respect to
corresponding upper limbs

There are 10 relevant matricesThere are 10 relevant matrices
•• MM positions and orients entire figure through the torso which is positions and orients entire figure through the torso which is

the root nodethe root node

•• MMhh positions head with respect to torsopositions head with respect to torso

•• MMlualua , , MMruarua , , MMlullul , , MMrulrul position arms and legs with respect to torsoposition arms and legs with respect to torso

•• MMllalla , , MMrlarla , , MMllllll , , MMrllrll position lower parts of limbs with respect to position lower parts of limbs with respect to
corresponding upper limbscorresponding upper limbs

Stack-based Traversal
Set model-view matrix to M and draw torso

Set model-view matrix to MMh and draw head

For left-upper arm need MMlua and so on

Rather than recomputing MMlua from scratch or
using an inverse matrix, we can use the matrix
stack to store M and other matrices as we
traverse the tree

Set modelSet model--view matrix to view matrix to MM and draw torsoand draw torso

Set modelSet model--view matrix to view matrix to MMMMhh and draw headand draw head

For leftFor left--upper arm need upper arm need MMMMlualua and so onand so on

Rather than Rather than recomputingrecomputing MMMMlualua from scratch or from scratch or
using an inverse matrix, we can use the matrix using an inverse matrix, we can use the matrix
stack to store stack to store M M and other matrices as we and other matrices as we
traverse the treetraverse the tree

Traversal Code
figure() {

glPushMatrix()

torso();

glRotate3f(…);

head();

glPopMatrix();

glPushMatrix();

glTranslate3f(…);

glRotate3f(…);

left_upper_arm();

glPopMatrix();

glPushMatrix();

figure() {

glPushMatrix()

torso();

glRotate3f(…);

head();

glPopMatrix();

glPushMatrix();

glTranslate3f(…);

glRotate3f(…);

left_upper_arm();

glPopMatrix();

glPushMatrix();

save present model-view matrix

update model-view matrix for head

recover original model-view matrix

save it again

update model-view matrix
for left upper arm

recover and save original
model-view matrix again

rest of code

Analysis

The code describes a particular tree and a
particular traversal strategy
• Can we develop a more general approach?

Note that the sample code does not include
state changes, such as changes to colors
• May also want to use glPushAttrib and

glPopAttrib to protect against unexpected state
changes affecting later parts of the code

The code describes a particular tree and a The code describes a particular tree and a
particular traversal strategyparticular traversal strategy
•• Can we develop a more general approach?Can we develop a more general approach?

Note that the sample code does not include Note that the sample code does not include
state changes, such as changes to colorsstate changes, such as changes to colors
•• May also want to use May also want to use glPushAttribglPushAttrib and and

glPopAttribglPopAttrib to protect against unexpected state to protect against unexpected state
changes affecting later parts of the codechanges affecting later parts of the code

General Tree Data Structure

Need a data structure to represent tree and
an algorithm to traverse the tree
We will use a left-child right sibling structure
• Uses linked lists

• Each node in data structure is two pointers

• Left: next node

• Right: linked list of children

Need a data structure to represent tree and Need a data structure to represent tree and
an algorithm to traverse the treean algorithm to traverse the tree

We will use a We will use a leftleft--child right siblingchild right sibling structurestructure
•• Uses linked listsUses linked lists

•• Each node in data structure is two pointersEach node in data structure is two pointers

•• Left: next nodeLeft: next node

•• Right: linked list of childrenRight: linked list of children

Left-Child Right-Sibling Tree

Tree node Structure

At each node we need to store
• Pointer to sibling

• Pointer to child

• Pointer to a function that draws the object represented by the
node

• Homogeneous coordinate matrix to multiply on the right of the
current model-view matrix

– Represents changes going from parent to node

– In OpenGL this matrix is a 1D array storing matrix
by columns

At each node we need to store At each node we need to store
•• Pointer to siblingPointer to sibling

•• Pointer to childPointer to child

•• Pointer to a function that draws the object represented by the Pointer to a function that draws the object represented by the
nodenode

•• Homogeneous coordinate matrix to multiply on the right of the Homogeneous coordinate matrix to multiply on the right of the
current modelcurrent model--view matrixview matrix

–– Represents changes going from parent to nodeRepresents changes going from parent to node

–– In OpenGL this matrix is a 1D array storing matrix In OpenGL this matrix is a 1D array storing matrix
by columns by columns

C Definition of treenode
typedef struct treenode

{

GLfloat m[16];

void (*f)();

struct treenode *sibling;

struct treenode *child;

} treenode;

typedef struct treenode

{

GLfloat m[16];

void (*f)();

struct treenode *sibling;

struct treenode *child;

} treenode;

Defining the torso node
treenode torso_node, head_node, lua_node, … ;

/* use OpenGL functions to form matrix */

glLoadIdentity();

glRotatef(theta[0], 0.0, 1.0, 0.0);

/* move model-view matrix to m */

glGetFloatv(GL_MODELVIEW_MATRIX, torso_node.m)

torso_node.f = torso; /* torso() draws torso */

Torso_node.sibling = NULL;

Torso_node.child = &head_node;

treenode torso_node, head_node, lua_node, … ;

/* use OpenGL functions to form matrix */

glLoadIdentity();

glRotatef(theta[0], 0.0, 1.0, 0.0);

/* move model-view matrix to m */

glGetFloatv(GL_MODELVIEW_MATRIX, torso_node.m)

torso_node.f = torso; /* torso() draws torso */

Torso_node.sibling = NULL;

Torso_node.child = &head_node;

Notes

The position of figure is determined by 11 joint
angles stored in theta[11]

Animate by changing the angles and redisplaying

We form the required matrices using glRotate
and glTranslate

• More efficient than software

• Because the matrix is formed in model-view matrix,
we may want to first push original model-view matrix
on matrix stack

The position of figure is determined by 11 joint The position of figure is determined by 11 joint
angles stored inangles stored in theta[11]theta[11]

Animate by changing the angles and redisplayingAnimate by changing the angles and redisplaying

We form the required matrices usingWe form the required matrices using glRotateglRotate

andand glTranslateglTranslate

•• More efficient than softwareMore efficient than software

•• Because the matrix is formed in modelBecause the matrix is formed in model--view matrix, view matrix,
we may want to first push original modelwe may want to first push original model--view matrix view matrix
on matrix stackon matrix stack

Preorder Traversal
void traverse(treenode *root)

{

if(root == NULL) return;

glPushMatrix();

glMultMatrix(root->m);

root->f();

if(root->child != NULL)

traverse(root->child);

glPopMatrix();

if(root->sibling != NULL)

traverse(root->sibling);

}

void traverse(treenode *root)

{

if(root == NULL) return;

glPushMatrix();

glMultMatrix(root->m);

root->f();

if(root->child != NULL)

traverse(root->child);

glPopMatrix();

if(root->sibling != NULL)

traverse(root->sibling);

}

Notes
We must save model-view matrix before
multiplying it by node matrix
• Updated matrix applies to children of node but not to

siblings which contain their own matrices

The traversal program applies to any left-
child right-sibling tree
• The particular tree is encoded in the definition of the

individual nodes

The order of traversal matters because of
possible state changes in the functions

We must save modelWe must save model--view matrix before view matrix before
multiplying it by node matrix multiplying it by node matrix
•• Updated matrix applies to children of node but not to Updated matrix applies to children of node but not to

siblings which contain their own matricessiblings which contain their own matrices

The traversal program applies to any leftThe traversal program applies to any left--
child rightchild right--sibling treesibling tree
•• The particular tree is encoded in the definition of the The particular tree is encoded in the definition of the

individual nodesindividual nodes

The order of traversal matters because of The order of traversal matters because of
possible state changes in the functionspossible state changes in the functions

Dynamic Trees

If we use pointers, the structure can be dynamic

typedef treenode *tree_ptr;

tree_ptr torso_ptr;

torso_ptr = malloc(sizeof(treenode));

Definition of nodes and traversal are essentially
the same as before but we can add and delete
nodes during execution

If we use pointers, the structure can be dynamicIf we use pointers, the structure can be dynamic

typedeftypedef treenodetreenode **tree_ptrtree_ptr;;

tree_ptrtree_ptr torso_ptrtorso_ptr;;

torso_ptrtorso_ptr = = malloc(sizeof(treenodemalloc(sizeof(treenode));));

Definition of nodes and traversal are essentially Definition of nodes and traversal are essentially
the same as before but we can add and delete the same as before but we can add and delete
nodes during executionnodes during execution

	Slide Number 1
	Objectives
	Instance Transformation
	Symbol-Instance Table
	Relationships in Car Model
	Structure Through Function Calls
	Graphs
	Tree
	Tree Model of Car
	DAG Model
	Modeling with Trees
	Robot Arm
	Articulated Models
	Relationships in Robot Arm
	Required Matrices
	OpenGL Code for Robot
	Tree Model of Robot
	Possible Node Structure
	Generalizations
	Objectives
	Humanoid Figure
	Building the Model
	Tree with Matrices
	Display and Traversal
	Transformation Matrices
	Stack-based Traversal
	Traversal Code
	Analysis
	General Tree Data Structure
	Left-Child Right-Sibling Tree
	Tree node Structure
	C Definition of treenode
	Defining the torso node
	Notes
	Preorder Traversal
	Notes
	Dynamic Trees

