

CS 5234 – Spring 2013 Advanced Parallel Computing

Introduction

Yong Cao

Course Goals

- Understand the massive parallel architecture of Graphics Processing Units (GPUs)
 - Features and Constrains

> Program on GPUs

- Programing APIs, tools, and techniques
- Achieve high performance and scalability

> Analyze parallel computing problems

- > Principles and paradigms for parallel algorithm design
- > Ability to apply to real life application and algorithms

Why Parallel Computing?

VirginiaTech

Invent the Future

Chase of Performance

IBM 360/91 5 Units/"Cores", 2M memory 1968 Cray-1A Supercomputer "SIMD" Architecture- Vector 1M 72-bits words 1979

Microprocessors

*Virginia*Tech

Invent the Future

Semiconductors: "Moore's Law": a "Free Lunch"

The number of transistors/inch² in these circuits roughly doubled every 18 month

End of "Free Lunch"

- "The size of transistors ... approaching the size of atoms ..."
 Gordon Moore, April 13, 2005.
- Problem: Quantum tunneling

VirginiaTech

Invent the Future

Advanced Parallel Computing

Recent Parallel Processors

General CPU

- ≻ Blue Gene/Q: 17 Cores, 4-way SMT
- > AMD Interlagos: 8 FP cores, 16 Integer cores
- ≻ Intel Xeon E7: 10 cores, 2-way SMT
- Sparc T4: 8 cores, 8-way fine-grain MT per core

> Accelerators

- Intel Xeon Phi: 60 cores
- NVIDIA Kepler K20X: 2688 cores, 3.95 Tflops, 7.1B transistors!!!

> CPU + GPU Hybrid

- ➤ AMD Trinity: 4 CPU cores + 384 GPU cores
- ➢ Intel Ivy Bridge: 4 CPU cores + 6-16 GPU units

CPU vs GPUs

Invent the Future

VirginiaTech

GPUs Throughput Oriented

CPUs Latency Oriented

CPU: Latency Oriented Cores

> Large caches

Convert long latency memory accesses to short latency cache accesses

Sophisticated control

- Branch prediction for reduced branch latency
- Data forwarding for reduced data latency
- > Powerful ALU
 - Reduced operation latency

Advanced Parallel Computing

GPU: Throughput Oriented Cores

 \succ Small caches

rginialech

Invent the Future

- To boost memory throughput
- Simple control
 - \succ No branch prediction
 - No data forwarding
- Energy efficient ALUs
 - Many, long latency but heavily pipelined for high throughput
- Require massive number of threads to tolerate latencies

DRAM

Advanced Parallel Computing

Why GPUs?

> It's powerful!

Invent the Future

VirginiaTech

> It's powerful!

> NVIDIA K20X

➢ 2688 Cores; About 16 TFLOPs (More than the top 1 super computing 11 years ago)

4 NVIDIA K20X GPUs 16 Tera FLOPs About 1,500 Watts Cost: \$13,000

IBM ASCI White at 2000 512 Nodes 8192 Processors 7.266 Tera FLOPs 106 tons 3 Million Watts Cost: \$110 Millions

Why GPUs?

> It's cheap and everywhere.

- E.g. NIVIDA sold more than 200 Million high-end GPGPU devices.
- > A 1536-core Geforce GTX 680 is \$550 on Newegg.com.
- Supercomputer, Desktop, Laptop, Mobile devices

	NAME	SPECS	SITE	COUNTRY	CORES	RMAX PFLOP/S	POWER MW
1	TITAN	Cray XK7, Operon 6274 16C 2.2 GHz + Nvidia Kepler GPU, Custom interconnect	DOE/OS/ORNL	USA	560,640	17.6	8.3
2	SEQUOIA	IBM BlueGene/Q, Power BQC 16C 1.60 GHz, Custom interconnect	DOE/NNSA/LLNL	USA	1,572,864	16.3	7.9
3	K COMPUTER	Fujitsu SPARC64 VIIIfx 2.0GHz, Custom interconnect	RIKEN AICS	Japan	705,024	10.5	12.7
4	Mira	IBM BlueGene/Q, Power BQC 16C 1.60 GHz, Custom interconnect	DOE/OS/ANL	USA	786,432	8.16	3.95
5	JuQUEEN	IBM BlueGene/Q, Power BQC 16C 1.60 GHz, Custom interconnect	Forschungszentrum Jülich	Germany	393,216	4.14	1.97

Why GPU NOW?

> Before:

irginiaTech

Invent the Future

- ➢ 5-6 years ago, everyone used Graphics API (Cg, GLSL, HLSL) for GPGPU programming.
- Restrict random-read (using Texture), NOT be able to random-write. (No pointer!)

Why GPU NOW?

\succ Now:

rginialech

Invent the Future

▶ NIVIDA released <u>CUDA</u> 6.5 years ago, since then

- > Hundreds of Thousands of CUDA software engineers
- ≻ New job title "CUDA programmer"
- ➤ 2150 publications with "CUDA" in their title since 2006. (Google Scholar today)
- > 8560 publications with "GPU" in their title since 2006.
- > Why?
 - ➢ Standard C language
 - Support Pointer! Random read and write on GPU memory.
 - ≻ Work with C++, Fortran

Advanced Parallel Computing

Where's GPU in the system

WirginiaTech

Invent the Future

NVIDIA GK110 (Kepler) Architecture

Stream Multi-Processor (SMX)

- > 192 SP cores
- ➢ 32 SFUs

roinia lech

Invent the Future

- > 32 L/S units
- > 4 Warp Scheduler
- > 8 Instruction Dispatch units
- 2 instructions per warp

SMX																			
Instruction Cache Warp Scheduler Warp Scheduler Warp Scheduler																			
Dispatch Dispatch				Dispatch Dispatch				Warp Scheduler Dispatch Dispatch					Warp Scheduler						
														J.					
Register File (65,536 x 32-bit)																			
+	+	+	+	+	+	+		+	+	+	+	+		+	+	+	+		+
Core	Core	Core	DP Unit	Core	Core	Core	UP Unit	LD/ST	SFU	Core	Core	Core	UP Unit	Core	Core	Core	UP U	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	nit LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	nit LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	1it LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	it LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	it LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	it LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SEU	Core	Core	Core	DP Unit	Core	Core	Core	DP III	LD/ST	SEU
Core	Com	Com	DR Unit	Com	Coro	Core	DP Unit	10/57	SELL	Core	Coro	Core	DP Unit	Coro	Coro	Coro	DPU		eEII
Core	Core	Core		Core	0	Core	DD U-H		oru	Core	Core	Core		Core	Core	Core			oru
Core	Core	Core	UP Unit	Core	Core	Core	UP Unit	LD/ST	550	Core	Core	Core	DP Unit	Core	Core	Core	UP U	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	nit LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	1it LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	nit LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	nit LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	nit LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	nit LD/ST	SFU
Interconnect Network																			
64 KB Shared Memory / L1 Cache																			
48 KB Read-Only Data Cache																			
	Tex		Tex	۲.	Tex			Tex		Tex			Tex		Tex			Tex	
Tex			Tex		Tex			Tex			Tex		Tex		Тех			Tex	

About me

> Prof. Yong Cao

- ➢ Office hour: By appointment at KWII 1127
- Email: <u>yongcao@vt.edu</u> (Please use CS5234 in your subject line)
- ➢ Phone: 540-231-0415
- > Website: www.cs.vt.edu/~yongcao

Course Website

- http://people.cs.vt.edu/~yongcao/teaching/cs5244/ spring2013/index.html
- > Or go to my website, and click on the course link.

> Five sections:

- Home page
- Syllabus/Schedule
- > Notes
- > Projects
- > Resources

Course Materials

> Textbooks:

Programming Massively Parallel Processors, Morgan Kaufmann, 2nd Edition. David Kirk and Wen-mei Hwu.

Course Materials

> Other Web Resources:

- NVIDIA CUDA Programming Guide. NVIDA CUDA website, <u>http://www.nvidia.com/object/cuda_home.html</u>
- VIUC Parallel Programming Course Website: <u>http://courses.engr.illinois.edu/ece408/</u>

Course Work (Tentative)

- > Programming Assignments 60%
 - Assignment 1: Image convolution.
 - > Assignment 2: Min, max, median
 - Assignment 3: Association rule mining
 - > Assignment 4: Graph/tree traversal
 - Assignment 5: OpenGL interoperation
- > Project Presentation & Report 40%
 - > Problem statement and test data will be provided.
 - > Oral presentation and final written report.

Academic Honesty

Invent the Future

- You are allowed and encouraged to discuss assignments with other students in the class. Getting verbal advice/help from people who've already taken the course is also fine.
- Any reference to assignments from previous terms or web postings is unacceptable
- > Any copying of non-trivial code is unacceptable
 - Non-trivial = more than a line or so
 - Includes reading someone else's code and then going off to write your own.

Late Assignment Policy

irginiaTech

Invent the Future

Assignments will be downgraded 25% for each day late. No exception permitted.

Final Project

- > Two-person team only!
- \succ Presentation are required.
- > Final report is required. (4-6 pages)
 - > Please see class website for the detail.

Reading Material

NVIDIA CUDA Programming Guide, Chapter One <u>http://www.nvidia.com/object/cuda_develop.html</u> and looking for documentation