
Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Parallel Prefix Sum – Scan

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

2

Objective
Ø  To master parallel Prefix Sum (Scan) algorithms

Ø  Frequently used for parallel work assignment and resource
allocation

Ø  A key primitive in many parallel algorithms to convert serial
computation into parallel computation

Ø  Based on reduction tree and reverse reduction tree

Ø  Reading – Mark Harris, Parallel Prefix Sum with CUDA
Ø  http://developer.download.nvidia.com/compute/cuda/1_1/Website/

projects/scan/doc/scan.pdf

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

(Inclusive) Prefix-Sum (Scan) Definition

3

Definition: The all-prefix-sums operation takes a binary
associative operator ⊕, and an array of n elements!
 [x0, x1, …, xn-1],!
!
and returns the array!
!

! ![x0, (x0 ⊕ x1), …, (x0 ⊕ x1 ⊕ … ⊕ xn-1)].!
!
Example: If ⊕ is addition, then the all-prefix-sums operation
on the array ! [3 1 7 0 4 1 6 3],!
would return! [3 4 11 11 15 16 22 25].!

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Inclusive Scan Application Example

Ø Assume we have a 100-inch sandwich to feed 10
Ø We know how many inches each person wants

Ø  [3 5 2 7 28 4 3 0 8 1]

Ø How do we cut the sandwich quickly?
Ø How much will be left?

Ø Method 1: cut the sections sequentially: 3 inches first, 5
inches second, 2 inches third, etc.

Ø Method 2: calculate Prefix scan and cut in parallel
Ø  [3, 8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)

4

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Typical Applications of Scan

Ø Scan is a simple and useful parallel building block
Ø Convert recurrences from sequential :

 for(j=1;j<n;j++)
 out[j] = out[j-1] + f(j);

Ø  into parallel:
 forall(j) { temp[j] = f(j) };
 scan(out, temp);

Ø Useful for many parallel algorithms:
• Radix sort
• Quicksort
• String comparison
• Lexical analysis
• Stream compaction

• Polynomial evaluation
• Solving recurrences
• Tree operations
• Histograms
• Etc.

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Other Applications

Ø Assigning space in farmers market
Ø Allocating memory to parallel threads
Ø Allocating memory buffer for

communication channels
Ø …

6

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

A Inclusive Sequential Prefix-Sum
Given a sequence [x0, x1, x2, ...]
Calculate output [y0, y1, y2, ...]

Such that y0 = x0

 y1 = x0 + x1

 y2 = x0 + x1+ x2
 …

Using a recursive definition
 yi = yi − 1 + xi

7

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

A Work Efficient C Implementation

 y[0] = x[0];

 for (i=1; i < Max_i; i++)
 y[i] = y[i-1] + x[i];

Computationally efficient:

N additions needed for N elements - O(N)

8

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

A Naïve Inclusive Parallel Scan
Ø Assign one thread to calculate each y

element
Ø Have every thread add up all x elements

needed for the y element
 y0 = x0

 y1 = x0 + x1

 y2 = x0 + x1+ x2

Parallel programming is easy as long as you

don’t care about performance.
 9

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

10

A Slightly Better Parallel Inclusive Scan Algorithm

T0 3 1 7 0 4 1 6 3

Each thread reads one value from the input array
in device memory into shared memory array T0.
Thread 0 writes 0 into shared memory array.

1.  Read input
from device
memory to
shared
memory

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

11

T0 3 1 7 0 4 1 6 3

T1 3 4 8 7 4 5 7 9

Stride 1

Iterate #1
Stride = 1

•  Active threads: stride to n-1 (n-stride threads)
• Thread j adds elements j and j-stride from T0 and
writes result into shared memory buffer T1 (ping-pong)

1. Read input from
device memory to
shared memory

2. Iterate log(n)
times: Threads
stride to n: Add pairs
of elements stride
elements apart.
Double stride at
each iteration. (note:
must double buffer
shared mem arrays)

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

12

T0 3 1 7 0 4 1 6 3

T1 3 4 8 7 4 5 7 9

Stride 1

Iterate #2
Stride = 2

•  Active threads: stride to n-1 (n-stride threads)
• Thread j adds elements j and j-stride from T1 and
writes result into shared memory buffer T0 (ping-pong)

1. (Read input from
device memory to
shared memory

2. Iterate log(n)
times: Threads
stride to n: Add pairs
of elements stride
elements apart.
Double stride at
each iteration. (note:
must double buffer
shared mem arrays)

T0 3 4 11 11 12 12 11 14

Stride 2

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

13

T0 3 1 7 0 4 1 6 3

T1 3 4 8 7 4 5 7 9

Stride 1

Iterate #3
Stride = 4

1. (Read input from
device memory to
shared memory

2. Iterate log(n)
times: Threads
stride to n: Add pairs
of elements stride
elements apart.
Double stride at
each iteration. (note:
must double buffer
shared mem arrays)

3. Write output from
shared memory to
device memory

T0 3 4 11 11 12 12 11 14

Stride 2

T1 3 4 11 11 15 16 22 25

Stride 4

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Work Efficiency Considerations

Ø  The first-attempt Scan executes log(n) parallel
iterations
Ø  The steps do (n-1), (n-2), (n-4),..(n - n/2) adds each
Ø  Total adds: n * log(n) - (n-1) à O(n*log(n)) work

Ø  This scan algorithm is not very work efficient
Ø Sequential scan algorithm does n adds
Ø A factor of log(n) hurts: 20x for 10^6 elements!

Ø A parallel algorithm can be slow when execution
resources are saturated due to low work
efficiency

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Improving Efficiency

Ø A common parallel algorithm pattern:
 Balanced Trees

Ø Build a balanced binary tree on the input data and sweep it to
and from the root

Ø  Tree is not an actual data structure, but a concept to determine
what each thread does at each step

Ø  For scan:
Ø  Traverse down from leaves to root building partial sums at

internal nodes in the tree
Ø Root holds sum of all leaves

Ø  Traverse back up the tree building the scan from the partial sums

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Let’s Look at the Reduction Tree Again

16

3 1 7 0 4 1 6 3

4 7 5 9

+ + + +

+ +

11 14

+
25

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Parallel Scan – Reduction Step

17

+

+

+ + +

+

+

x0 x3 x4 x5 x6 x7 x1 x2

∑x0..x1 ∑x2..x3 ∑x4..x5 ∑x6..x7

∑x0..x3
∑x4..x7

∑x0..x7

Time!

In place calculation !
Final value after reduce

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Inclusive Post Scan Step

18

+

x0 x4 x6 x2 ∑x0..x1 ∑x4..x5 ∑x0..x3 ∑x0..x7

∑x0..x5

Move (add) a critical value to a
central location where it is

needed!

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

19

+

x0 x4 x6 x2 ∑x0..x1 ∑x4..x5 ∑x0..x3 ∑x0..x7

∑x0..x5

+ +

∑x0..x2 ∑x0..x4

+

∑x0..x6

Inclusive Post Scan Step

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Putting it Together

20

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Reduction Step Kernel Code

21

 // scan_array[2*BLOCK_SIZE] is in shared memory

int stride = 1;
while(stride <= BLOCK_SIZE)
{
 int index = (threadIdx.x+1)*stride*2 - 1;
 if(index < 2*BLOCK_SIZE)
 scan_array[index] += scan_array[index-stride];
 stride = stride*2;

 __syncthreads();
}

threadIdx.x+1 = 1, 2, 3, 4….!
stride = 1, index = !

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes 22

Sum of left half

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Post Scan Step

23

int stride = BLOCK_SIZE/2;
while(stride > 0)
{
 int index = (threadIdx.x+1)*stride*2 - 1;
 if((index+stride) < 2*BLOCK_SIZE)
 {
 scan_array[index+stride] += scan_array[index];
 }
 stride = stride/2;
 __syncthreads();
}

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

(Exclusive) Prefix-Sum (Scan) Definition

24

Definition: The all-prefix-sums operation takes a binary
associative operator ⊕, and an array of n elements!
 [x0, x1, …, xn-1],!
!
and returns the array!
!

! ![0, x0, (x0 ⊕ x1), …, (x0 ⊕ x1 ⊕ … ⊕ xn-2)].!
!
Example: If ⊕ is addition, then the all-prefix-sums operation
on the array ! ! [3 1 7 0 4 1 6 3],!
would return! [0 3 4 11 11 15 16 22].!

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Why Exclusive Scan
Ø  To find the beginning address of allocated buffers

Ø  Inclusive and Exclusive scans can be easily derived
from each other; it is a matter of convenience

25

! ![3 1 7 0 4 1 6 3]!
!
Exclusive ![0 3 4 11 11 15 16 22]!
!
Inclusive ![3 4 11 11 15 16 22 25]!
!

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Exclusive Post Scan Step
(Add-move Operation)

26

+

x0 x4 x6 x2 ∑x0..x1 ∑x4..x5 ∑x0..x3 0

0

∑x0..x3

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Exclusive Post Scan Step

27

+

x0 x4 x6 x2 ∑x0..x1 ∑x4..x5 ∑x0..x3 0

0

++

∑x0..x3

∑x0..x3 ∑x0..x5
∑x0..x1 0

++++

∑x0..x6 ∑x0..x5 ∑x0..x4 ∑x0..x3 ∑x0..x1 ∑x0..x2 x0 0

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Exclusive Post Scan Step
if (threadIdx.x==0) scan_array[2*blockDim.x-1] = 0; 
int stride = BLOCK_SIZE;

while(stride > 0)  
{ 
 int index = (threadIdx.x+1)*stride*2 - 1; 
 if(index < 2* BLOCK_SIZE)  
 { 
 float temp = scan_array[index]; 
 scan_array[index] += scan_array[index-stride];  
 scan_array[index-stride] = temp;  
 }  
 stride = stride / 2; 
 __syncthreads();  
}

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

29

Exclusive Scan Example – Reduction Step
T 3 1 7 0 4 1 6 3

Assume array is already in shared memory

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

30

Reduction Step (cont.)
T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

Stride 1 Iteration 1, n/2 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each corresponds
to a single thread.

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

31

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

Stride 1

Stride 2 Iteration 2, n/4 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each corresponds
to a single thread.

Reduction Step (cont.)

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

32

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

T 3 4 7 11 4 5 6 25

Iterate log(n) times. Each thread adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Iteration log(n), 1 thread

Stride 1

Stride 2

Stride 4

Each corresponds
to a single thread.

Reduction Step (cont.)

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

33

Zero the Last Element

T 3 4 7 11 4 5 6 0

We now have an array of partial sums. Since this is an exclusive scan,
set the last element to zero. It will propagate back to the first element.

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

34

Post Scan Step from Partial Sums
T 3 4 7 11 4 5 6 0

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

35

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 1
1 thread

Stride 4

Each corresponds
to a single thread.

Post Scan Step from Partial Sums

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

36

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 2
2 threads

Stride 4

Stride 2

Each corresponds
to a single thread.

Post Scan Step from Partial Sums

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

37

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

T 0 3 4 11 11 15 16 22

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).
Total work: 2 * (n-1) adds = O(n) Work Efficient!

Iteration log(n)
n/2 threads

Stride 2

Stride 4

Stride 1

Each corresponds
to a single thread.

Post Scan Step from Partial Sums

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

38

Work Analysis
Ø  The parallel Inclusive Scan executes 2*log(n) parallel iterations

Ø  log(n) in reduction and log(n) in post scan
Ø  The iterations do n/2, n/4,..1, 1, …., n/4, n/2 adds
Ø  Total adds: 2* (n-1) à O(n) work

Ø  The total number of adds is no more than twice that
done in the efficient sequential algorithm
Ø  The benefit of parallelism can easily overcome the 2X work

when there is sufficient hardware

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Working on Arbitrary Length Input
Ø Build on the scan kernel that handles up to

2*blockDim.x elements
Ø Assign each section of 2*blockDim elements to a

block
Ø Have each block write the sum of its section into a

Sum array indexed by blockIdx.x
Ø  Run parallel scan on the Sum array

Ø May need to break down Sum into multiple sections if it is too big
for a block

Ø Add the scanned Sum array values to the elements of
corresponding sections

Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Overall Flow of Complete Scan

40

