
Architecture

CS 5234 –Spring 2013
Advanced Parallel Computing

Architecture

Yong Cao

Architecture

Goals

Ø  Sequential Machine and Von-Neumann Model
Ø Parallel Hardware

Ø Distributed vs Shared Memory
Ø Architecture Classes

Ø Multiple-core
Ø Many-core (massive parallel)

Ø NVIDIA GPU Architecture

Architecture

Von-Neumann Machine (VN)

Ø  PC: Program counter
Ø  MAR: Memory address

register
Ø  MDR: Memory data

register
Ø  IR: Instruction register
Ø  ALU: Arithmetic Logic

Unit
Ø  Acc: Accumulator

PC

MAR

Acc MDR OP ADDRESS

MEMORY

 A L U

Decoder

Architecture

Sequential Execution and Instruction Cycle

Ø The six phases of the
instruction cycle:
Ø Fetch
Ø Decode
Ø Evaluate Address
Ø Fetch Operands
Ø Execute
Ø  Store Result

PC

MAR

Acc MDR OP ADDRESS

MEMORY

 A L U

Decoder

Architecture

Sequential Execution and Instruction Cycle

Ø Fetch
Ø MARçPC
Ø MDRçMEM[MAR]
Ø  IRçMDR

PC

MAR

Acc MDR OP ADDRESS

MEMORY

 A L U

Decoder

Architecture

Sequential Execution and Instruction Cycle

Ø Decode
Ø DECODERçIR.OP PC

MAR

Acc MDR OP ADDRESS

MEMORY

 A L U

Decoder

Architecture

Sequential Execution and Instruction Cycle

Ø Evaluate Address
Ø MARçIR.ADDR
Ø MDRçMEM[MAR]

PC

MAR

Acc MDR OP ADDRESS

MEMORY

 A L U

Decoder

Architecture

Sequential Execution and Instruction Cycle

Ø Execute
Ø Acc çAcc + MDR PC

MAR

Acc MDR OP ADDRESS

MEMORY

 A L U

Decoder

Architecture

Sequential Execution and Instruction Cycle

Ø  Store Result
Ø MDRçAcc PC

MAR

Acc MDR OP ADDRESS

MEMORY

 A L U

Decoder

Architecture

Sequential Execution and Instruction Cycle

Ø Register File
PC

MAR

Register File OP ADDRESS

MEMORY

 A L U

Decoder

Architecture

Sequential Execution and Instruction Cycle

PC

MEMORY

 A L U

IR

Register File

Architecture

Parallel Hardware
Ø  Shared vs Distributed Memory

MEMORY

PC

 A L U

IR

Register File

PC

 A L U

IR

Register File

PC

 A L U

IR

Register File

……

Ø  Multi-Core and Many-Core Architecture

Architecture

Parallel Hardware
Ø  Shared vs Distributed Memory

MEMORY

PC

 A L U

IR

Register File

PC

 A L U

IR

Register File

PC

 A L U

IR

Register File

……

MEMORY MEMORY

Ø  Cluster Computing, Grid Computing, Cloud Computing

Architecture

Multi-Core vs Many-Core

Ø Definition of Core – Independent ALU
Ø How about a vector processor?

Ø  SIMD: E.g. Intel’s SSE.
Ø How many is “many”?

Ø What if there are too “many” cores
in the Multi-core design?
Shared control logic (PC, IR,
Schedule)

Architecture

Multi-Core

Ø Each core has its own
control (PC and IR)

Architecture

Many-Core

Ø A group of cores shares
the control (PC, IR and
Thread Scheduling)

Architecture

NVIDIA Fermi Architecture

16 Stream Multiprocessor (SM)
32 Core for Each SM

Architecture

Fermi SM

Architecture

Execution in a SM

A total of 32 instructions from one or two warps can be dispatched in each cycle to any
two of the four execution blocks within a Fermi SM: two blocks of 16 cores each, one
block of four Special Function Units, and one block of 16 load/store units. This figure
shows how instructions are issued to the execution blocks.

Architecture

Data Parallel

Ø Data Parallel vs Task Parallel
Ø What to partition? Data or Task?

Ø Massive Data Parallel
Ø Millions (or more) of threads
Ø  Same instruction, different data elements

Architecture

Computing on GPUs

Ø  Steam processing and Vectorization (SIMD)

Input Stream

Output Stream

Instructions

SIMD

Architecture

GPU Programming Model: Stream

Ø  Stream Programming Model
Ø  Streams:

Ø An array of data units
Ø Kernels:

Ø Take streams as input, produce streams at output
Ø Perform computation on streams
Ø Kernels can be linked together

Stream

Stream

Kernel

Architecture

Why Streams?
Ø Ample computation by exposing parallelism

Ø Stream expose data parallelism
Ø Multiple stream elements can be processed in parallel

Ø Pipeline (task) parallelism
Ø Multiple tasks can be processed in parallel

Ø Efficient communication
Ø Producer-consumer locality
Ø Predictable memory access pattern

Ø Optimize for throughput of all elements, not latency of
one

Ø Processing many elements at once allows latency
hiding

