CUDA Programming Model
Parallel Algorithm Design Concepts

- **Tasks: Application**

- **Threads: Algorithm**

- **Cores: Hardware**

Mapping: Thread -> Core

Mapping: Task -> Thread
CUDA Programming Model

CUDA “Compute Unified Device Architecture”

- General purpose parallel programming model
 - Support “Zillions” of threads
- Much easier to use
 - C language, No shaders, No Graphics APIs
 - Shallow learning curve: tutorials, sample projects, forum
- Key features
 - Simple management of threads
 - Simple execution model
 - Simple synchronization
 - Simple communication

Goal:
Focus on parallel algorithms (kernels), rather than parallel management
CUDA “Compute Unified Device Architecture”

What we get?

- Not enough controls
- Only handle data-parallel application well
 - Easy to program
 - High performance
- Not easy for some other applications (Large data dependency between threads)
- Easier than before, but not a fully general parallel programming model
CUDA Programming Model

- Executing *kernel* functions within *threads*
- Threads organization
 - Blocks and Grids
- Hardware mapping of threads
 - Computation-to-core mapping
 - Thread -> Core
 - Thread blocks -> Multi-processors
CUDA Threads and Functional Kernels

- Many *threads* are executing a single *kernel* function
- Same Code (SIMD)
- Different Data (using *Thread ID*)

```c
float x = input[threadID];
float y = func(x);
output[threadID] = y;
```

```
threadID 0 1 2 3 4 5 6 7
```
Threads are grouped into multiple blocks

BlockID	Thread Block 0	Thread Block 1	Thread Block N-1
ThreadID | 0 1 2 3 4 5 6 7 | 0 1 2 3 4 5 6 7 | 0 1 2 3 4 5 6 7

... Idx = I(threadID, blockID);
float x = input[Idx];
float y = func(x);
output[Idx] = y;
...

... Idx = I(threadID, blockID);
float x = input[Idx];
float y = func(x);
output[Idx] = y;
...

... Idx = I(threadID, blockID);
float x = input[Idx];
float y = func(x);
output[Idx] = y;
...
A number of blocks are grouped into Grid.
Thread organization Overview

- An array of threads -> block
- An array of blocks -> grid

- All threads in one grid execute the same kernel
- Grids are executed sequentially.
Thread organization Overview

Host
Kernel 1

Device

Grid 1
Block (0, 0) Block (1, 0)
Block (0, 1) Block (1, 1)

Block (1, 1)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)
(0,1,0) (1,1,0) (2,1,0) (3,1,0)

Grid 2

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes
Thread Identification

- **Block IDs and Thread IDs**
 - Threads use IDs to decide which data to operate on.
 - Block ID: 1D or 2D or 3D array
 - Thread ID: 1D, 2D, or 3D array

- **Advantage:** Easy for data parallel processing with rigid grid data organization
Memory Model: Thread and Block

Per-thread Local Memory → Per-block Shared Memory
Memory Model: Between Blocks
Memory Model: Between Grids (Kernels)
Memory Model: Between Devices

- Host memory
- Device 0 memory
- Device 1 memory

```
cudaMemcpy()
```
CUDA Programming Model

Threads Cooperation

- Threads within a block
 - Shared memory
 - Atomic operation
 - Shared memory
 - Global memory
 - Barrier
- Threads between blocks
 - Atomic operation
 - Global memory
- Threads between grids
 - No way!
Thread Communication with Host (CPU)

- No communication when GPU kernel is running
- Use global memory before or after GPU kernel call
 - Host initializes transfer request
 - Async vs Sync transfer
- Only host can allocate device memory
 - No runtime memory allocation on device
Hardware Mapping of Threads

Kernel Lunched by Host

Device processor array

Device Memory
Thread Mapping and Scheduling

- A grid of threads takes over the whole device.
- A block of threads is mapped on one multi-processor.
 - A multi-processor can take more than one blocks. (Occupancy)
- A block can not be preempted until finish.
- Threads within a blocks are scheduled to run on the cores of multi-processor.
 - Threads are grouped into warps (warp size is 32) as scheduling units.
Transparent Scalability

- Hardware is free to schedule thread blocks on any processor
- Kernels scale to any number of parallel multiprocessors
Lightweight Threads

- Easy to map to cores (Rigid Grid)
- Easy to schedule (One cycle)

Therefore:
- + High performance (data parallel application)
- - Hard to synchronize for applications with intensive data dependencies
CUDA Basics

- CUDA device memory allocation and transfer.
- CUDA specific language features.
- Our “Hello World!” CUDA example.
CUDA Programming Model

CUDA Device Memory Allocation

- **cudaMalloc()**
 - Allocates object in the device **Global Memory**
 - **Global Memory** is R/W
 - Requires two parameters:
 - Address of a pointer to the allocated object
 - Size of allocated object

- **cudaFree()**
 - Frees object from device **Global Memory**
 - Pointer to freed object
CUDA Host-Device Data Transfer

```c
cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);
```

- **Code example:**
 - Transfer a 64 * 64 single precision float array
 - M is in host memory and Md is in device memory
 - `cudaMemcpyHostToDevice` and `cudaMemcpyDeviceToDevice` are symbolic constants
CUDA Function Declarations

<table>
<thead>
<tr>
<th>device float DeviceFunc()</th>
<th>Executed on the:</th>
<th>Only callable from the:</th>
</tr>
</thead>
<tbody>
<tr>
<td>global void KernelFunc()</td>
<td>device</td>
<td>host</td>
</tr>
<tr>
<td>host float HostFunc()</td>
<td>host</td>
<td>host</td>
</tr>
</tbody>
</table>

- __global__ defines a kernel function
 - Must return **void**
- For functions executed on the device:
 - No recursion
 - No static variable declarations inside the function
 - No variable number of arguments
Calling a Kernel Function – Thread Creation

- A kernel function must be called with an execution configuration:

  ```
  __global__ void KernelFunc(...);
  dim3 DimGrid(100, 50);    // 5000 thread blocks
  dim3 DimBlock(4, 8, 8);   // 256 threads per block
  size_t SharedMemBytes = 64; // 64 bytes of shared memory
  KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);
  ```

- Any call to a kernel function is asynchronous from CUDA 1.0 on, explicit synch needed for blocking
"Hello World!" – Vector Addition

```c
// Compute vector sum C = A+B  (Length of the vectors: N)
// Each thread performs one pai-wise addition
__global__ void vecAdd(float* A, float* B, float* C) 
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    C[i] = A[i] + B[i];
}

int main()
{
    // Run N/256 blocks of 256 threads each
    vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);
}
```

Device Code
"Hello World!" – Vector Addition

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global__ void vecAdd(float* A, float* B, float* C)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 C[i] = A[i] + B[i];
}

int main()
{
 // Run N/256 blocks of 256 threads each
 vecAdd<<<N/256, 256>>>(d_A, d_B, d_C);
}

Host Code
Vector Addition – Host Code for Memory

// allocate host (CPU) memory
float* h_A = (float*) malloc(N * sizeof(float));
float* h_B = (float*) malloc(N * sizeof(float));
... initialize h_A and h_B ...

// allocate device (GPU) memory
float* d_A, d_B, d_C;
cudaMalloc((void**)&d_A, N * sizeof(float));
cudaMalloc((void**)&d_B, N * sizeof(float));
cudaMalloc((void**)&d_C, N * sizeof(float));

// copy host memory to device
cudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice);
Please read the second chapters of NVIDIA CUDA Programming Guide.