
CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

CUDA Programming Model

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Parallel Algorithm Design Concepts

Mapping: Thread -> Core

Mapping: Task -> Thread

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

CUDA “Compute Unified Device Architecture”

Ø General purpose parallel programming model

Ø Support “Zillions” of threads

Ø Much easier to use
Ø C language, No shaders, No Graphics APIs
Ø Shallow learning curve: tutorials, sample projects, forum

Ø Key features
Ø  Simple management of threads
Ø  Simple execution model
Ø  Simple synchronization
Ø  Simple communication

Goal:
Focus on parallel algorithms (kernels), rather than parallel management

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

CUDA “Compute Unified Device Architecture”

What we get?

Ø Not enough controls
Ø Only handle data-parallel application well

Ø Easy to program
Ø High performance

Ø Not easy for some other applications (Large
data dependency between threads)

Ø Easier than before, but not a fully general
parallel programming model

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

CUDA Programming Model

Ø Executing kernel functions within threads
Ø Threads organization

Ø Blocks and Grids
Ø Hardware mapping of threads

Ø Computation-to-core mapping
Ø Thread -> Core
Ø Thread blocks -> Multi-processors

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

CUDA Threads and Functional Kernels
Ø  Many threads are executing a single kernel function

Ø Same Code (SIMD)
Ø Different Data (using Thread ID)

7 6 5 4 3 2 1 0

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

Kernel:

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Thread Blocks

Ø Threads are grouped into multiple blocks

…
Idx = I(threadID, blockID);
float x = input[Idx];
float y = func(x);
output[Idx] = y;
…

ThreadID

Thread Block 0

…

Thread Block 1 Thread Block N-1
76543210 76543210 76543210

BlockID

…
Idx = I(threadID, blockID);
float x = input[Idx];
float y = func(x);
output[Idx] = y;
…

…
Idx = I(threadID, blockID);
float x = input[Idx];
float y = func(x);
output[Idx] = y;
…

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Grid

Ø A number of blocks are grouped into Grid.

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Thread organization Overview

Ø An array of threads -> block
Ø An array of blocks -> grid

Ø All threads in one grid execute the same
kernel

Ø Grids are executed sequentially.

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Thread organization Overview

Host

Kernel
1

Kernel
2

Device
Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Thread Identification

Ø Block IDs and Thread
IDs
Ø  Threads use IDs to decide which

data to operation on.
Ø Block ID: 1D or 2D or 3D array
Ø  Thread ID: 1D, 2D, or 3D array

Ø Advantage: Easy for
data parallel processing
with rigid grid data
organization

Host

Kernel
1

Kernel
2

Device
Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Block (1, 1)

Thread
(0,1,0) Thread (1,1,0) Thread (2,1,0) Thread (3,1,0)

Thread
(0,0,0) Thread (1,0,0) Thread (2,0,0) Thread (3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Memory Model: Thread and Block

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Memory Model: Between Blocks

Global Memory

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Memory Model: Between Grids (Kernels)

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Memory Model: Between Devices

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Threads Cooperation

Ø  Threads within a block
Ø Shared memory
Ø Atomic operation

Ø Share memory
Ø Global memory

Ø Barrier
Ø  Threads between blocks

Ø Atomic operation
Ø Global memory

Ø  Threads between grids
Ø No way!

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Thread Communication with Host (CPU)

Ø No communication when
GPU kernel is running

Ø Use global memory before
or after GPU kernel call
Ø Host initializes transfer

request
Ø Async vs Sync transfer

Ø Only host can allocate
device memory
Ø No runtime memory

allocation on device

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Hardware Mapping of Threads

Kernel Lunched by Host

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Thread Mapping and Scheduling

Ø A grid of threads takes over the whole device.
Ø A block of threads is mapped on one multi-

processor.
Ø A multi-processor can take more than one blocks.

(Occupancy)
Ø A block can not be preempted until finish.

Ø  Threads within a blocks are scheduled to run on
the cores of multi-processor.
Ø Threads are grouped into warps (warp size is 32)

as scheduling units.

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Transparent Scalability
Ø Hardware is free to schedule thread blocks on any processor

Ø Kernels scale to any number of parallel multiprocessors

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Lightweight Threads

Ø Easy to map to cores (Rigid Grid)
Ø Easy to schedule (One cycle)
Ø  Therefore:

Ø + High performance (data parallel application)
Ø  - Hard to synchronize for applications with

intensive data dependencies

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

CUDA Basics

Ø CUDA device memory allocation and
transfer.

Ø CUDA specific language features.
Ø Our “Hello World!” CUDA example.

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

CUDA Device Memory Allocation

Ø cudaMalloc()
Ø Allocates object in the

device Global Memory
Ø Global Memory is R/W

Ø Requires two parameters
Ø Address of a pointer to the

allocated object
Ø Size of of allocated object

Ø cudaFree()
Ø Frees object from device

Global Memory
Ø Pointer to freed object

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

CUDA Host-Device Data Transfer

Ø Code example:
Ø Transfer a 64 * 64 single precision float array
Ø M is in host memory and Md is in device memory
Ø cudaMemcpyHostToDevice and
cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);!
!
cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);!

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

CUDA Function Declarations

host host __host__ float HostFunc()

host device __global__ void KernelFunc()

device device __device__ float DeviceFunc()

Only callable
from the:

Executed
on the:

Ø  __global__ defines a kernel function
Ø  Must return void

Ø  For functions executed on the device:
Ø  No recursion
Ø  No static variable declarations inside the function
Ø  No variable number of arguments

• 

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Calling a Kernel Function – Thread Creation

Ø  A kernel function must be called with an execution configuration:

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block

size_t SharedMemBytes = 64; // 64 bytes of shared memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

Ø  Any call to a kernel function is asynchronous from CUDA 1.0 on,
explicit synch needed for blocking

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

“Hello World!” – Vector Addition

(Length of the vectors:
N)!

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

“Hello World!” – Vector Addition

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Vector Addition – Host Code for Memory

CUDA Programming Model

Copyright © 2013 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Reading

Ø Please read the second chapters of
NIVIDA CUDA Programming Guide.

