GPU Memory

— Memory issue for CUDA programming
CUDA Variable Type Qualifiers

<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Memory</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>device local int LocalVar;</td>
<td>local</td>
<td>thread</td>
<td>thread</td>
</tr>
<tr>
<td>device shared int SharedVar;</td>
<td>shared</td>
<td>block</td>
<td>block</td>
</tr>
<tr>
<td>device int GlobalVar;</td>
<td>global</td>
<td>grid</td>
<td>application</td>
</tr>
<tr>
<td>device constant int ConstantVar;</td>
<td>constant</td>
<td>grid</td>
<td>application</td>
</tr>
</tbody>
</table>

- __device__ is optional when used with __local__, __shared__, or __constant__

- Automatic variables without any qualifier reside in a register
 - Except arrays that reside in local memory
Where to declare variables?

Can host access it?

- **Yes**
 - *Register (automatic)*
 - *Shared*

- **No**
 - *Local*

Outside of any Function

In the kernel

Global

Constant
Variable Type Restrictions

- **Pointers** can only point to memory allocated or declared in global memory:
 - Allocated in the host and passed to the kernel:
    ```c
    __global__ void KernelFunc(float* ptr)
    ```
 - Obtained as the address of a global variable:
    ```c
    float* ptr = &GlobalVar;
    ```

Copyright © 2013 Yong Cao, Referencing UIUC ECE498AL Course Notes
A Common Programming Strategy

- Global memory is much slower than shared memory
- So, a profitable way of performing computation on the device is to **tile data** to take advantage of fast shared memory:
 - Partition data into subsets that fit into shared memory
 - Handle each data subset with one thread block by:
 - Loading the subset from global memory to shared memory, **using multiple threads to exploit memory-level parallelism**
 - Performing the computation on the subset from shared memory; each thread can efficiently multi-pass over any data element
 - Copying results from shared memory to global memory
A Common Programming Strategy (Cont.)

- Constant memory also resides in device memory - much slower access than shared memory
 - But... cached!
 - Highly efficient access for read-only data

- Carefully divide data according to access patterns
 - R/Only \rightarrow constant memory (very fast if in cache)
 - R/W shared within Block \rightarrow shared memory (very fast)
 - R/W within each thread \rightarrow registers (very fast)
 - R/W inputs/results \rightarrow global memory (very slow)

For texture memory usage, see NVIDIA document.
GPU Atomic Integer Operations

- Atomic operations on integers in global memory:
 - Associative operations on signed/unsigned ints
 - add, sub, min, max, ...
 - and, or, xor
 - Increment, decrement
 - Exchange, compare and swap

- Requires hardware with compute capability 1.1 and above.
Shared Memory

Matrix Multiplication as example again.
Review: Matrix Multiplication Kernel using Multiple Blocks

```c
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
    // Calculate the row index of the Pd element and M
    int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
    // Calculate the column index of Pd and N
    int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

    float Pvalue = 0;
    // each thread computes one element of the block sub-matrix
    for (int k = 0; k < Width; ++k)
        Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

    Pd[Row*Width+Col] = Pvalue;
}
```
How about performance on G80?

- All threads access global memory for their input matrix elements
 - Two memory accesses (8 bytes) per floating point multiply-add
 - 4B/s of memory bandwidth/FLOPS
 - \(4 \times 346.5 = 1386\) GB/s required to achieve peak FLOP rating
 - 86.4 GB/s limits the code at 21.6 GFLOPS
- Need to drastically cut down memory accesses to get closer to the peak 346.5 GFLOPS
Idea: Use Shared Memory to reuse global memory data

- Each input element is read by \textit{WIDTH} threads.
- Load each element into Shared Memory and have several threads use the local version to reduce the memory bandwidth
 - Tiled algorithms
Break up the execution of the kernel into phases so that the data accesses in each phase is focused on one subset (tile) of M_d and N_d.
Example

[Diagram of GPU Memory with labels for Md and Pd at various coordinates]
Example (Cont’)

- Every **Md** and **Nd** Element is used exactly twice in generating a 2X2 tile of **P**

<table>
<thead>
<tr>
<th></th>
<th>$P_{0,0}$ thread$ _{0,0}$</th>
<th>$P_{1,0}$ thread$ _{1,0}$</th>
<th>$P_{0,1}$ thread$ _{0,1}$</th>
<th>$P_{1,1}$ thread$ _{1,1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_0,0 * N_0,0</td>
<td>$M_0,0$ * $N_1,0$</td>
<td>$M_0,1$ * $N_0,0$</td>
<td>$M_0,1$ * $N_1,0$</td>
<td></td>
</tr>
<tr>
<td>M_1,0 * N_0,1</td>
<td>$M_1,0$ * $N_1,1$</td>
<td>$M_1,1$ * $N_0,1$</td>
<td>$M_1,1$ * $N_1,1$</td>
<td></td>
</tr>
<tr>
<td>M_2,0 * N_0,2</td>
<td>$M_2,0$ * $N_1,2$</td>
<td>$M_2,1$ * $N_0,2$</td>
<td>$M_2,1$ * $N_1,2$</td>
<td></td>
</tr>
<tr>
<td>M_3,0 * N_0,3</td>
<td>$M_3,0$ * $N_1,3$</td>
<td>$M_3,1$ * $N_0,3$</td>
<td>$M_3,1$ * $N_1,3$</td>
<td></td>
</tr>
</tbody>
</table>

Access order
Breaking Md and Nd into Tiles
Example (2)

Each phase of a Thread Block uses one tile from Md and one from Nd

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Step 5</th>
<th>Step 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{0,0}$</td>
<td>$Md_{0,0}$</td>
<td>$Nd_{0,0}$</td>
</tr>
<tr>
<td>$T_{1,0}$</td>
<td>$Md_{1,0}$</td>
<td>$Nd_{1,0}$</td>
</tr>
<tr>
<td>$T_{0,1}$</td>
<td>$Md_{0,1}$</td>
<td>$Nd_{0,1}$</td>
</tr>
<tr>
<td>$T_{1,1}$</td>
<td>$Md_{1,1}$</td>
<td>$Nd_{1,1}$</td>
</tr>
</tbody>
</table>
First-order Size Considerations in G80

- Each **thread block** should have many threads
 - TILE_WIDTH of 16 gives 16*16 = 256 threads

- There should be many thread blocks
 - A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks

- Each thread block perform 2*256 = 512 float loads from global memory for 256 * (2*16) = 8,192 mul/add operations.
 - Memory bandwidth no longer a limiting factor
CUDA Code – Kernel Execution Configuration

// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
dim3 dimGrid(Width / TILE_WIDTH, Width / TILE_WIDTH);
Tiled Matrix Multiplication Kernel

```c
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) {
    __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
    __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

    int bx = blockIdx.x; int by = blockIdx.y;
    int tx = threadIdx.x; int ty = threadIdx.y;

    // Identify the row and column of the Pd element to work on
    int Row = by * TILE_WIDTH + ty;
    int Col = bx * TILE_WIDTH + tx;

    float Pvalue = 0;

    // Loop over the Md and Nd tiles required to compute the Pd element
    for (int m = 0; m < Width/TILE_WIDTH; ++m) {
        // Collaborative loading of Md and Nd tiles into shared memory
        Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
        Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];
        __syncthreads();

        for (int k = 0; k < TILE_WIDTH; ++k)
            Pvalue += Mds[ty][k] * Nds[k][tx];
        __syncthreads();
    }
    Pd[Row*Width+Col] = Pvalue;
}
```
Tiled Multiply

- Each **block** computes one square sub-matrix $P_{d_{\text{sub}}}$ of size TILE WIDTH
- Each **thread** computes one element of $P_{d_{\text{sub}}}$
G80 Shared Memory and Threading

- Each SM in G80 has 16KB shared memory
 - SM size is implementation dependent!
 - For TILE_WIDTH = 16, each thread block uses $2 \times 256 \times 4B = 2KB$ of shared memory.
- Can potentially have up to 8 Thread Blocks actively executing
 - This allows up to $8 \times 512 = 4,096$ pending loads. (2 per thread, 256 threads per block)
 - The next TILE_WIDTH 32 would lead to $2 \times 32 \times 32 \times 4B = 8KB$ shared memory usage per thread block, allowing only up to two thread blocks active at the same time
- Using 16x16 tiling, we reduce the accesses to the global memory by a factor of 16
 - The 86.4B/s bandwidth can now support $(86.4/4) \times 16 = 347.6$ GFLOPS!
Tiling Size Effects

- not tiled
- tiled only
- tiled & unrolled

- 4x4 tiles
- 8x8 tiles
- 12x12 tiles
- 16x16 tiles

GFLOPS
Summary - Typical Structure of a CUDA Program

- Global variables declaration
 - __host__
 - __device__...__global__, __constant__, __texture__
- Function prototypes
 - __global__ void kernelOne(…)
 - float handyFunction(…)
- Main ()
 - allocate memory space on the device – cudaMalloc(&d_GlblVarPtr, bytes)
 - transfer data from host to device – cudaMemcpy(d_GlblVarPtr, h_Gl…)
 - execution configuration setup
 - kernel call – kernelOne<<<execution configuration>>>(args…);
 - transfer results from device to host – cudaMemcpy(h_GlblVarPtr,…)
 - optional: compare against golden (host computed) solution
- Kernel – void kernelOne(type args,…)
 - variables declaration - __local__, __shared__
 - automatic variables transparently assigned to registers or local memory
 - syncthreads()…
- Other functions
 - float handyFunction(int inVar…);