
Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Atomic Operations and Applications

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Objectives

Ø Understand atomic operations
Ø Read-modify-write in parallel computation
Ø Use of atomic operations in CUDA
Ø Why atomic operations reduce memory system

throughput
Ø Histogramming as an example application of

atomic operations
Ø Basic histogram algorithm
Ø Privatization

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

A Common Collaboration Pattern
Ø Multiple bank tellers count the total amount of cash in the

safe
Ø Each grab a pile and count
Ø Have a central display of the running total
Ø Whenever someone finishes counting a pile, add the subtotal of

the pile to the running total
Ø A bad outcome

Ø Some of the piles were not accounted for.

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

A Common Parallel Coordination Pattern
Ø Multiple customer service agents serving customers

Ø Each customer gets a number
Ø A central display shows the number of the next customer

who will be served
Ø When an agent becomes available, he/she calls the number

and he/she adds 1 to the display

Ø Bad outcomes
Ø  Multiple customers get the same number
Ø  Multiple agents serve the same number

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

A Common Arbitration Pattern
Ø Multiple customers booking air tickets, each

Ø Brings up a flight seat map
Ø Decides on a seat
Ø Update the the seat map, mark the seat as taken

Ø A bad outcome
Ø Multiple passengers ended up booking the same seat

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Atomic Operations

Ø  If Mem[x] was initially 0, what would the value of Mem[x] be after
threads 1 and 2 have completed?
Ø  What does each thread get in their Old variable?

Ø  The answer may vary due to data races. To avoid data races,
you should use atomic operations

Read:
Modify:

Write:

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Bad Timing

•  Thread 1 Old = 0
•  Thread 2 Old = 0
•  Mem[x] = 1 after the sequence

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Avoid Bad Timing: Atomic Operations

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Atomic Operation in General

Ø Performed by a single ISA instruction on a memory
location address
Ø Read the old value, modify the value, and write the new

value to the location

Ø  The hardware ensures that no other threads can
access the location until the atomic operation is
complete
Ø Any other threads that access the location will typically be

held in a queue until its turn
Ø All threads perform the atomic operation serially

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

CUDA Atomic Functions

Ø  Function calls that are translated into single
instructions (a.k.a. intrinsics)
Ø Atomic add, sub, inc, dec, min, max, exch (exchange), CAS

(compare and swap)
Ø Read CUDA C programming Guide for details

Ø  For example: Atomic Add
int atomicAdd(int* address, int val);

reads the 32-bit word old pointed to by address in global or
shared memory, computes (old + val), and stores the result
back to memory at the same address. The function returns old.

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

More Atomic Adds in CUDA

Ø Unsigned 32-bit integer atomic add
unsigned int atomicAdd(unsigned int* address,
unsigned int val);

Ø Unsigned 64-bit integer atomic add
unsigned long long int atomicAdd(unsigned long long
int* address, unsigned long long int val);

Ø Single-precision floating-point atomic add (capability
> 2.0)
float atomicAdd(unsigned int* address, float
val);

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Histogramming

Ø A method for extracting notable features and patterns
from large data sets
Ø  Feature extraction for object recognition in images
Ø  Fraud detection in credit card transactions
Ø Correlating heavenly object movements in astrophysics
Ø …

Ø Basic histograms - for each element in the data set,
use the value to identify a “bin” to increment

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

A Histogram Example

Ø  In sentence “Advanced Parallel Computation” build
a histogram of frequencies of each letter

Ø Result: A(5), C(2), D(1), E(2), …

Ø How do you do this in parallel?
Ø Have each thread to take a section of the input
Ø  For each input letter, use atomic operations to build the

histogram

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Example: Iteration 1

A D V A N C E D PA R A L L E L C O M P U T A T I O N

Thread 1 Thread 2 Thread 3 Thread 4

1 1 1 1

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Example: Iteration 2

A D V A N C E D PA R A L L E L C O M P U T A T I O N

Thread 1 Thread 2 Thread 3 Thread 4

1 2 1 2 1 1

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Example: Iteration 3

A D V A N C E D PA R A L L E L C O M P U T A T I O N

Thread 1 Thread 2 Thread 3 Thread 4

1 2 2 2 1 2 1 1

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Issue: None coalesced access

A D V A N C E D PA R A L L E L C O M P U T A T I O N

Thread 1 Thread 2 Thread 3 Thread 4

•  Assign inputs to each thread in a strided pattern
•  Adjacent threads process adjacent input letters

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Solution: Coalesced access

A D V A N C E D PA R A L L E L C O M P U T A T I O N

Thread 1 Thread 2 Thread 3 Thread 4

•  Iteration 1

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Solution: Coalesced access

A D V A N C E D PA R A L L E L C O M P U T A T I O N

Thread 1 Thread 2 Thread 3 Thread 4

•  Iteration 2

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Solution: Coalesced access

A D V A N C E D PA R A L L E L C O M P U T A T I O N

Thread 1 Thread 2 Thread 3 Thread 4

•  Iteration 3

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

A Histogram Kernel
Ø  The kernel receives a pointer to the input buffer
Ø  Each thread process the input in a strided pattern

__global__ void histo_kernel(unsigned char *buffer,
long size, unsigned int *histo)
{

 int i = threadIdx.x + blockIdx.x * blockDim.x;
 // stride is total number of threads
 int stride = blockDim.x * gridDim.x;
 // All threads handle blockDim.x * gridDim.x consecutive elements
 while (i < size) {
 atomicAdd(&(histo[buffer[i]]), 1);
 i += stride;
 }

}

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Atomic Operation on Global Memory

Ø An atomic operation starts with a read, with a latency
of a few hundred cycles

Ø  The atomic operation ends with a write, with a latency
of a few hundred cycles

Ø During this whole time, no one else can access the
location

Ø All atomic operations on the same variable (global
memory address) are serialized

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Atomic Operations on Shared Memory

Ø Very short latency, but still serialized
Ø Private to each thread block
Ø Need algorithm work by programmers for the

coordination on the global memory access

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Privatization
Ø  Create private copies of the histo[] array for each thread block

__global__ void histo_kernel(unsigned char *buffer,
long size, unsigned int *histo)
{

 __shared__ unsigned int histo_private[256];
 if (threadIdx.x < 256) histo_private[threadidx.x] = 0;
 __syncthreads();
 int i = threadIdx.x + blockIdx.x * blockDim.x;

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Build Private Histogram

// stride is total number of threads
 int stride = blockDim.x * gridDim.x;
 while (i < size) {
 atomicAdd(&(private_histo[buffer[i]), 1);
 i += stride;
 }

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Build Final Histogram

// wait for all other threads in the block to finish
__syncthreads();
if (threadIdx.x < 256)

atomicAdd(&(histo[threadIdx.x]),private_histo[threadIdx.x]);

}

Atomic Operations

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

More on Privatization

Ø Privatization is a powerful and frequently used
techniques for parallelizing applications

Ø  The operation needs to be associative and
commutative
Ø  True for all uses of atomic operations, because they do not

guarantee ordering
Ø Histogram add operation is associative and commutative

Ø  The histogram size needs to be small
Ø How small does it need to be? How small should it be?

