
Data Transfer and CUDA Streams

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Data Transfer and CUDA Streams

Data Transfer and CUDA Streams

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Objective

Ø To learn more advanced features of the
CUDA APIs for data transfer and kernel
launch
Ø Task parallelism for overlapping data transfer with

kernel computation
Ø CUDA streams

Data Transfer and CUDA Streams

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Serialized Data Transfer and GPU computation

Ø So far, the way we use cudaMemCpy
serializes data transfer and GPU
computation

Trans. A Trans. B Vector Add Tranfer C

time

Only uses one
direction,
GPU idle

PCIe Idle Only uses one
direction,
GPU idle

Data Transfer and CUDA Streams

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Device Overlap
•  Some CUDA devices support device overlap

–  Simultaneously execute a kernel while performing a copy between
device and host memory

 int dev_count;!
cudaDeviceProp prop;!
!
cudaGetDeviceCount(&dev_count);  
for(int i=0; i < dev_count; i++){!
 cudaGetDeviceProperties(&prop, i);!
!
 if (prop.deviceOverlap) … !
!

Data Transfer and CUDA Streams

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Overlapped (Pipelined) Timing
Ø Divide large vectors into segments
Ø Overlap transfer and compute of adjacent

segments

Trans
A.1

Trans
B.1

Trans
C.1

Trans
A.2

Comp
C.1 = A.1 + B.1

Trans
B.2

Comp
C.2 = A.2 + B.2

Trans
A.3

Trans
B.3

Trans
C.2

Comp
C.3 = A.3 + B.3

Trans
A.4

Trans
B.4

Data Transfer and CUDA Streams

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Using CUDA Streams and Asynchronous MemCpy

Ø CUDA supports parallel execution of kernels and
cudaMemCpy with “Streams”

Ø Each stream is a queue of operations (kernel
launches and cudaMemCpys)

Ø Operations (tasks) in different streams can go in
parallel
Ø  “Task parallelism”

Data Transfer and CUDA Streams

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Streams

Ø Device requests made
from the host code are
put into a queue
Ø Queue is read and

processed asynchronously
by the driver and device

Ø Driver ensures that
commands in the queue are
processed in sequence.
Memory copies end before
kernel launch, etc.

Data Transfer and CUDA Streams

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Streams
Ø To allow concurrent

copying and kernel
execution, you need
to use multiple
queues, called
“streams”
Ø CUDA “events” allow the host

thread to query and
synchronize with the
individual queues.

Data Transfer and CUDA Streams

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Conceptual View of Streams

MemCpy A.1

MemCpy B.1

Kernel 1

MemCpy C.1

MemCpy A.2

MemCpy B.2

Kernel 2

MemCpy C.2

Stream 0 Stream 1

Copy
Engine

PCIe
UP

PCIe
Down

Kernel
Engine

Operations (Kernels, MemCpys)

Data Transfer and CUDA Streams

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

A Simple Multi-Stream Host Code

cudaStream_t stream0, stream1;
cudaStreamCreate(&stream0);
cudaStreamCreate(&stream1);
float *d_A0, *d_B0, *d_C0; // device memory for stream 0
float *d_A1, *d_B1, *d_C1; // device memory for stream 1

// cudaMalloc for d_A0, d_B0, d_C0, d_A1, d_B1, d_C1 go here

for (int i=0; i<n; i+=SegSize*2) {
 cudaMemCpyAsync(d_A0, h_A+i, SegSize*sizeof(float),.., stream0);
 cudaMemCpyAsync(d_B0, h_B+i, SegSize*sizeof(float),.., stream0);
 vecAdd<<<SegSize/256, 256, 0, stream0);
 cudaMemCpyAsync(d_C0, h_C+i, SegSize*sizeof(float),.., stream0);
 . . .

Data Transfer and CUDA Streams

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

for (int i=0; i<n; i+=SegSize*2) {
 // stream 0
 cudaMemCpyAsync(d_A0, h_A+i, SegSize*sizeof(float),.., stream0);
 cudaMemCpyAsync(d_B0, h_B+i, SegSize*sizeof(float),.., stream0);
 vecAdd<<<SegSize/256, 256, 0, stream0)(d_A0, d_B0, …);
 cudaMemCpyAsync(d_C0, h_C+i, SegSize*sizeof(float),.., stream0);
 // stream 1
 cudaMemCpyAsync(d_A1, h_A+i+SegSize,

 SegSize*sizeof(float),.., stream1);
 cudaMemCpyAsync(d_B1, h_B+i+SegSize,

 SegSize*sizeof(float),.., stream1);
 vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, …);
 cudaMemCpyAsync(d_C1, h_C+i+SegSize,

 SegSize*sizeof(float),.., stream1);
}

A Simple Multi-Stream Host Code

Data Transfer and CUDA Streams

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Kernel Engine

A View Closer to Reality

Kernel 1

Kernel 2

Stream 0 Stream 1

Copy
Engine

PCIe
UP

PCIe
Down

Operations (Kernels, MemCpys)

Dependencies
MemCpy A.1

MemCpy B.1

MemCpy C.1

MemCpy A.2

MemCpy B.2

MemCpy C.2

Data Transfer and CUDA Streams

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Not quite the overlap we want …
Ø C.1 blocks A.2 and B.2 in the copy engine queue

Trans
A.1

Trans
B.1

Trans
C.1

Trans
A.2

Comp
C.1 = A.1 + B.1

Trans
B.2

Comp
C.2 = A.2 +
B.2

Data Transfer and CUDA Streams

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

A Better Multi-Stream Host Code

for (int i=0; i<n; i+=SegSize*2) {
 // enqueue A0, B0 --> A1, B1
 cudaMemCpyAsync(d_A0, h_A+i; SegSize*sizeof(float),.., stream0);
 cudaMemCpyAsync(d_B0, h_B+i; SegSize*sizeof(float),.., stream0);
 cudaMemCpyAsync(d_A1, h_A+i+SegSize,

 SegSize*sizeof(float),.., stream1);
 cudaMemCpyAsync(d_B1, h_B+i+SegSize,

 SegSize*sizeof(float),.., stream1);
 // enqueue kernel 0, kernel 1
 vecAdd<<<SegSize/256, 256, 0, stream0)(d_A0, d_B0, …);
 vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, …);
 // enqueue C0 --> C1
 cudaMemCpyAsync(d_C0, h_C+i, SegSize*sizeof(float),.., stream0);
 cudaMemCpyAsync(d_C1, h_C+i+SegSize,

 SegSize*sizeof(float),.., stream1);
}

Data Transfer and CUDA Streams

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Kernel Engine Copy
Engine

A View Closer to Reality

MemCpy A.1

MemCpy B.1

MemCpy A.2

MemCpy B.2

MemCpy C.1

Kernel 1

Kernel 2

Stream 0 Stream 1

PCIe
UP

PCIe
Down

Operations (Kernels, MemCpys)

MemCpy C.2

Data Transfer and CUDA Streams

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Overlapped (Pieplined) Timing
Ø Divide large vectors into segments
Ø Overlap transfer and compute of adjacent

segments

Trans
A.1

Trans
B.1

Trans
C.1

Trans
A.2

Comp
C.1 = A.1 + B.1

Trans
B.2

Comp
C.2 = A.2 + B.2

Trans
A.3

Trans
B.3

Trans
C.2

Comp
C.3 = A.3 + B.3

Trans
A.4

Trans
B.4

Data Transfer and CUDA Streams

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Hyper Queue

Ø Provide multiple real queues for each
engine

Ø Allow much more concurrency by allowing
some streams to make progress for an
engine while others are blocked

17

Data Transfer and CUDA Streams

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Fermi (and older) Concurrency

18

Data Transfer and CUDA Streams

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Kepler Improved Concurrency

19

