CS 6204 Character Animation

Skeleton Based Full Body Animation

Yong Cao
Virginia Tech

Objective

What are the technical details for implementing a
skeleton based full body animation system?

« Typical Programming Structure of Animation Systems

« Skeleton

Joint / Bone, Hierarchy

DOF, Representation of Rotation

 Animation Data
Poses and Channels

Interpolation

Structure of Animation System

while (not finished) {

MoveEverything(),
DrawEverything();

m Interactive vs. Non-Interactive
m Real Time vs. Non-Real Time

Structure of Animation System

while (not finished) {

MoveEverything(),
DrawEverything();

- Can be implemented with Event-Driven design.

. Such as Windows Message Passing
- OpenGL GLUT event handling library

Animating a Character

Animating a Character

« Animating Mesh Vertices

 Animating Vertex Groups

* How to group?

File Edit View Help Production

Articulated Figures with Joints

Parent joint VS Child joint

Global (character) Coordinate VS Local Coordinate

Joint Hierarchy and DOF

DOF: Degree of Freedom

%‘

" LHip

' RHip

: Neck

LCollar

LCollar

|

v

v

i Head

'LShld

' LShld

v

|

LElbow

LElbow

v

v

:LWrist

[LWrist |

Skeletons

Skeleton: A pose-able framework of joints
arranged in a tree structure.

Joint: A joint allows relative movement within the
skeleton. A rotation matrix.

Bone = Joint

Joints

Core Joint Data
* DOFs (N floats)
* Local matrix: L

* World matrix: W

Additional Data

Joint offset vector: r
DOF limits (min & max value per DOF)

Type-specific data (rotation/translation axes,
constants...)

Tree data (pointers to children, siblings, parent...)

Animation Data

If a character has N DOFs, then a pose can be thought of as a point
in N-dimensional pose space

D=\|p ¢ .. ¢,

An animation can be thought of as a point moving through pose
space, or alternately as a fixed curve in pose space

@ =D()

Channels

If the entire animation is an N-dimensional
curve in pose space, we can separate that into
N 1-dimensional curves, one for each DOF

Channels

Array of Channels

An animation can be stored as an array of channels

(NumDOFs x NumFrames)

Array of Poses

An alternative way to store an animation is
as an array of poses

(NumFrames x NumDOFs)

Which is better, poses or channels?

Poses vs. Channels

Which is better?

It depends on your requirements.

The bottom line:
 Poses are faster

» Channels are far more flexible and can potentially use
less memory

Poses vs. Channels

Array of poses is great if you just need to play back some
relatively simple animation and you need maximum
performance.

Array of channels is essential if you want flexibility for an
animation system or are Interested in generality over raw
performance

Representing Rotation DOFs

Representing Orientations

Compared with Position, Orientation is not easy
to represent:

Popular options:

» Euler angles

» Rotation vectors (axis/angle)
+ 3x3 matrices

* Quaternions

* and more...

Euler’s Theorem

Euler’s Theorem: Any two independent
orthonormal coordinate frames can be related
by a sequence of rotations (not more than
three) about coordinate axes, where no two
successive rotations may be about the same
axis.

Euler Angles

Any orientation can be represented by 3 numbers

A sequence of rotations around principle axes is called an
Euler Angle Sequence

Assuming we limit ourselves to 3 rotations without
successive rotations about the same axis, we could
use any of the following 12 sequences:

XYZ XZY XYX XZX
YXZ YZX YXY \ 4 4
XY ZYX IXZ ZYZ

Euler Angles

This gives us 12 redundant ways to store an
orientation using Euler angles

Different industries use different
conventions for handling Euler angles (or
no conventions)

Euler Angles to Matrix
Conversion

To build a matrix from a set of Euler angles, we
Just multiply a sequence of rotation matrices
together:

$,8,6,—CS. €S, +58.S,
$.8,8,+c.c. €S8 —5.C.

$.C, c.c,

Euler Angle Order

As matrix multiplication is not commutative, the
order of operations is important

Using Euler Angles

To use Euler angles, one must choose which
of the 12 representations they want

There may be some practical differences
between them and the best sequence may
depend on what exactly you are trying to
accomplish

Gimbal Lock

One potential problem that they can suffer from is ‘gimbal lock’

This results when two axes effectively line up, resulting in a
temporary loss of a degree of freedom

How a Gimbal Works

ROTATIONAL MOVEMENT STATIC POSITION

Interpolating Euler Angles

One can simply interpolate between the three
values independently

Interpolating near the ‘poles’ can be problematic

Note: when interpolating angles, remember to
check for crossing the +180/-180 degree

boundaries

Euler Angles

Euler angles are used in a lot of applications, but they
tend to require some rather arbitrary decisions

They also do not interpolate in a consistent way (but this
isn’t always bad)

They can suffer from Gimbal lock and related problems
There is no simple way to concatenate rotations

Conversion to/from a matrix requires several
frigonometry operations

They are compact (requiring only 3 numbers)

