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The application of machine learning (ML) and artificial intelligence (AI) in healthcare
domains has received much attention in recent years, yet significant questions remain
about how these new tools integrate into frontline user workflow, and how their design
will impact implementation. Lack of acceptance among clinicians is a major barrier to
the translation of healthcare innovations into clinical practice. In this systematic review,
we examine when and how clinicians are consulted about their needs and desires for
clinical AI tools. Forty-five articles met criteria for inclusion, of which 24 were considered
design studies. The design studies used a variety of methods to solicit and gather
user feedback, with interviews, surveys, and user evaluations. Our findings show that
tool designers consult clinicians at various but inconsistent points during the design
process, and most typically at later stages in the design cycle (82%, 19/24 design
studies). We also observed a smaller amount of studies adopting a human-centered
approach and where clinician input was solicited throughout the design process (22%,
5/24). A third (15/45) of all studies reported on clinician trust in clinical AI algorithms
and tools. The surveyed articles did not universally report validation against the “gold
standard” of clinical expertise or provide detailed descriptions of the algorithms or
computational methods used in their work. To realize the full potential of AI tools within
healthcare settings, our review suggests there are opportunities to more thoroughly
integrate frontline users’ needs and feedback in the design process.

Keywords: artificial intelligence (AI), clinical AI, machine learning, clinician, human-centered design, evaluation,
healthcare
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INTRODUCTION

The development and use of artificial intelligence (AI) in
healthcare contexts has the potential to greatly improve the
delivery and practice of medicine (Sim et al., 2001), yielding
benefits for patients and clinicians (Chute and French, 2019;
Bates et al., 2020; Brice and Almond, 2020; Sendak et al., 2020).
The use of AI in medicine can assist clinicians and organizations
with a desirable shift toward evidence-based adaptive healthcare
(Sackett et al., 1996; Fineout-Overholt et al., 2005). Clinical
Decision Support Systems (CDSS) integrate AI and machine
learning (ML) algorithms to support decision making in domains
such as diagnosis (Beede et al., 2020; McKinney et al., 2020)
and treatment planning (Jin et al., 2020; Jacobs et al., 2021).
Clinical AI is currently proposed across multiple medical
domains addressing issues such as clinician burnout (Arndt et al.,
2017; Ash et al., 2019), medical errors (Cai et al., 2019a; Van
Camp et al., 2019), and detecting frequently unrecognized and
life-threatening conditions such as sepsis (Sendak et al., 2020).
However, while a growing body of research literature describes
the promise of these algorithmically driven approaches, there
remains a paucity of evidence demonstrating sustained successful
integration of AI into clinical practice (Middleton et al., 2016;
Osman Andersen et al., 2021).

There are two major challenges to successful integration of
AI into clinical practice. One challenge for integration is the
translation of technologies and methods from research domains
into ecologically valid clinical practice (Wears and Berg, 2005;
Schriger et al., 2017; Sligo et al., 2017; Yang et al., 2019; Beede
et al., 2020; Li et al., 2020; Schwartz et al., 2021; Wong et al.,
2021). Specifically, the design and implementation of clinical
AI tools are mismatched with the actual context of clinical
work or the true needs of frontline clinical users (Khairat et al.,
2018; Yang et al., 2019; Jacobs et al., 2021). Unfortunately, even
if the technology functions correctly, it may not get used if
it does not match the clinical workflow (Sittig et al., 2008).
The second pervasive challenge is that technical functionality of
many computational models are not validated against clinician
expertise (i.e., the “gold standard”) through a direct comparison
of a clinician’s and model’s performance on the same task
(Schriger et al., 2017; Shortliffe and Sepúlveda, 2018; Schwartz
et al., 2021), which is necessary to ensure that tools provide
value to the clinicians who are asked to use them. Addressing
these concerns is challenging given the complexity of clinical
work in the real-world and the tendency of research to occur
in academic silos (Sendak et al., 2019; Asan and Choudhury,
2021), which results in a significant gap in current literature.
However, it is critically important to ensure that clinical AI tools
are not disruptive and add value to clinical practice (Sujan et al.,
2019; Choudhury and Asan, 2020). Additional research is needed
to understand how to address these broad limitations and to
determine best practices for clinical AI deployment to maximize
usage across domains of care (Sligo et al., 2017; Shortliffe and
Sepúlveda, 2018; Jacobs et al., 2021; Osman Andersen et al., 2021).

Human-centered design (HCD), or the philosophy that
understanding human needs, capabilities, and behaviors must
come first in the design process (Norman, 2002), provides a

methodological approach for the development of clinical AI tools
that can overcome the translational gap (Khairat et al., 2018;
Shortliffe and Sepúlveda, 2018; Wiens et al., 2019). This form
of design emphasizes a dynamic and iterative process involving
the identification of application stakeholders and their needs, the
development of design prototypes, and the evaluation of products
by end-users (Norman, 2002, 2005). Recent work emphasizes the
potential for designers to create new tools, methods, and design
processes to more adeptly handle AI and machine learning as
fundamental (but not exclusive) materials within the design
process (Holmquist, 2017; Kelliher et al., 2018; Yang et al., 2018).
When designers adopt a user-centered approach and engage with
a variety of stakeholders (including clinicians) in the early stages
of development, the final products are typically designed to fit
specific clinical needs and may be better oriented for acceptance
(Cai et al., 2019a,b) and success (Mamlin et al., 2007; Kujala,
2010; Wiens et al., 2019). The involvement of end-users in all,
or at least some of the design, implementation, and evaluation
process can also engender higher levels of trust and appropriate
trust calibration in clinical AI tools, encouraging tool use (Tcheng
et al., 2017) and confidence in application output (Chen, 2018;
Benda et al., 2021). However, designing for clinical contexts using
a HCD approach also presents clear challenges including issues
of access to physical spaces and/or digital records (Kulp and
Sarcevic, 2018; Yang et al., 2019), the inability of design teams
to iterate across multiple design cycles (Middleton et al., 2016;
Osman Andersen et al., 2021) and issues with incomplete or even
no substantive evaluations carried out by the design team (Coyle
and Doherty, 2009).

Overall, there is a need to develop better standards for the
design, implementation and evaluation of clinical AI tools to
ensure that they provide value to their intended clinical end users
(Wiens et al., 2019; Li et al., 2020). To support this need, the aim
of this article is to survey the current peer-reviewed literature
detailing the implementation of AI tools into healthcare, with
particular emphasis on how frontline clinicians were engaged in
the implementation process. Specifically, we aim to identify (1)
how designers and developers of clinical AI interact with clinical
end users during the design and implementation process, and (2)
how designers and developers evaluate the value of their products
to clinicians once they are implemented into clinical practice.
This work extends that of other recent reviews (Middleton et al.,
2016; Asan and Choudhury, 2021; Schwartz et al., 2021) and
focuses on clinicians to present a comprehensive picture of the
methods employed by tool designers to understand and report
on clinician needs surrounding clinical AI tools.

METHODS

A systematic, multistep literature review was conducted in line
with PRISMA guidelines for systematic reviews (see Figure 1
for complete steps and numbers). We note that while it
is likely that many clinical AI efforts are not described in
published literature, this review seeks to establish a broad
understanding of the kinds of design efforts undertaken
(i.e., what types of AI products are being developed and
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for which domains), and the design and user evaluation
processes enacted.

Identification and Screening
Our identification approach included a systematic database and
journal search of PsycInfo, Web of Science (includes Medline,
NeurIPS, AAAI, and IEEE), ACM, and PubMed. We selected
these sources to capture a broad range of research related to
healthcare, AI and ML, and user or human centered research. The
database search process was conducted in three separate batches.
The first batch (batch 1, n = 1959) was retrieved on 11/2/2020,
and included all articles published from 1/1/2015 onward. This
timeframe was selected due to the dramatic increase of articles
during this 5-year timeframe. A further two batches of articles
were retrieved (batch 2, n = 2369 added; pulled 11/18/2021), and
(batch 3, n = 4218 added; total n = 7784, excluding duplicates
from same sources; pulled 4/5/2021) which identified additional
articles published after the dates of the first and second searches.
The search criteria (Table 1) were selected to capture a broad
range of results, but also to reduce the total number of ineligible
records thus ensuring that the authors had the capability
of screening and reviewing all identified records. Seventeen
additional references were discovered through hand search.

We used python scripts to compile and pre-screen the articles
extracted from databases sources. The Selenium web scraping
package (Salunke, 2014) assisted in the extraction of records
from databases that did not allow for simple BibTeX or csv
downloads. We created custom scripts to compile all records into
the same csv format, then screened for duplicate titles using the
Levenshtein python package (Deveopedia, 2019), and screened
out articles not written in English and articles that did not
include any of the search criteria in titles, abstracts, or key terms
(n = 4514), resulting in n = 3287 remaining articles. Finally, if the
word “review” was included in the title, abstract or key terms, the
record was marked to assist in the manual screening process.

After the python pre-screening process, titles were manually
reviewed to remove anything that was ineligible due to
irrelevance to the topic (e.g., topics outside of the realm of human
health such as zoology or data security, public health research,
articles describing biochemical or pharmaceutical research that
might occur in a medical lab, review articles, theses, and

TABLE 1 | Three categories of search criteria used to identify articles.

Clinical
domain
terms

“Decision support,” “healthcare,” “health care,” “physician,”
“patient,” “clinic*” (e.g., clinical, clinician), “nurs*” (e.g., nurse,
nursing), “diagnosis,” “medical records” (e.g., electronic medical
records), or “health records” (e.g., electronic health records)

AI terms “AI,” “ML,” “machine learning,” “deep learning,” “intelligen*” (e.g.,
intelligent sensors), “ambient” (e.g., ambient awareness or ambient
intelligence), “CNN,” “RNN,” “neural network,” “convolutional,”
“recurrent,” “Markov” (e.g., Hidden Markov Model), “reinforcement
learning,” “SVM,” “support vector”

User
feedback
terms

“UX,” “usability,” “user” (e.g., user test, user centered design),
“adoption” (e.g., technology adoption), “human centered,” HCI,
“human computer” (e.g., human computer interaction), “human AI”
(e.g., human AI interaction)

The asterisks (“*”) denotes a truncation to include variant endings of related words
(e.g., “nurs*” can flag results including “nurse”, “nurses”, and “nursing”).

dissertations; see Table 2 for a definition). After reviewing titles,
n = 1597 ineligible articles were removed, resulting in n = 1682
remaining articles for manual abstract review.

Consensus and Eligibility
After the initial screening process, two independent raters (STJ
and HS) determined article eligibility through manual abstract
review. For inclusion, articles had to describe primary research
that (1) was related to AI/ML by involving any algorithm
purported to be AI/ML by authors, (2) considered clinicians
as primary users and focused on use within a clinical context,
and (3) described the collection of some form of explicit user
feedback. The inclusion/exclusion criteria codes and definitions
are presented in Table 2. To evaluate consensus, the raters
worked individually to review the abstracts from 20% of the
articles from batch 1 (n = 95 articles). The initial consensus
was 67% agreement on which articles to include and exclude.
To establish greater consensus, the raters reviewed a subset of

TABLE 2 | Evaluation criteria used for inclusion and exclusion.

NA = no AI Included studies needed to include some type of AI/ML, or the authors
themselves needed to explicitly related their research to AI with or
without the addition of algorithms. The assignment of the code “NA”
meant that there was no machine learning or artificial intelligence
involved in the study, nor did the authors claim that the study was
related to AI. For instance, while a decision tree algorithm and predictive
analytics are not technically AI, if the article reports any algorithm to be
AI and asks clinicians about AI tools, we considered this to be AI.
Additionally, hypothetical AI/ML technologies were not excluded

NC = not
clinical

Included articles needed to focus on challenges and work within a
clinical domain. The assignment of the code “NC” meant that the article
was not focused on the support of clinicians in clinical contexts. While
diagnostic tests and tools were relevant, research focused on the work
of lab technicians, speeding up lab results, or aiding in the process of
quality improvement were excluded. Community/public health research
efforts were also excluded

NU = no
user
feedback

Included articles needed to include some form of explicit feedback from
intended clinical end users regarding a proposed or existing tool, or
about AI/ML in general. The assignment of the code “NU” meant that
the article did not describe any attempt to observe what clinicians
thought about AI/ML and/or a specific clinical AI tool. If the users’
opinions are considered in any stage, the article could be included (for
instance, interviews or committees of users to determine what users
want prior to creating the system, or even informal feedback from users
at the end of an evaluation). Efforts that used “user tests” solely for the
purpose of validating system performance and which did not include
any report of user opinions were excluded

PU = a
patient is
the user

Included articles needed to focus on clinicians as end users. The
assignment of the code “PU” meant that patients were the intended
users and clinicians were not considered to be primary users of any
component of the tool/system. Articles that did include clinicians and
patients as users of different components of the design were not
excluded

Ineligible Articles that were considered ineligible included research that was
outside of the realm of human health (e.g., zoology, data security), or
were related to public health research (e.g., tracking the spread of HIV,
measuring depression and anxiety on social media), articles that
described the technical details of laboratory tests (e.g., new
biochemical assays), articles that did not present primary research (e.g.,
published study protocols, case studies, review articles, editorials, or
position pieces), and papers that were not peer-reviewed (e.g.,
published theses or dissertations)
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the coded articles together and discussed why individual coding
decisions were made. Following the consensus building exercise,
each rater independently re-reviewed the original 95 article
abstracts with access to their own and their co-rater’s codes to
re-evaluate consensus. Final consensus on these articles was 83%
agreement on which articles to include. The raters divided up
the remaining articles from batch 1 (n = 369 remainder), with
10% (n = 37) randomly selected for both raters to review to test
consensus again, which resulted in a final acceptable consensus
of 84% on which articles to include and exclude. When there was
disagreement, articles were included for full article review where
a better determination could be made. The raters then worked
independently to review all remaining abstracts. In total, n = 1496
articles were removed, and n = 194 articles were considered for a
full article review.

During the full article review process, the two raters divided
up the remaining n = 194 articles and determined eligibility using
the same inclusion/exclusion criteria presented in Table 2. Upon
completion, a total of n = 148 articles were removed yielding a
final total of n = 45 articles that were included.

Data Extraction and Analysis
If an article met inclusion criteria during the full article review
process, the rater then reviewed the article and filled out a Google
form that was created to capture and organize the information
that was determined to be of interest. This was an iterative
process, where entry fields within the Google form were adjusted
or added as the articles were being reviewed, resulting in re-
review and re-categorization of data to synthesize a. The final
dataset included details related to the type of study that was
being presented, the methods being employed, the individuals
whose perspectives were being studied (i.e., users and other
stakeholders) and when they were engaged relative to design
progress, the types of tools that were being developed, details
on the underlying algorithms being used, and whether or not
the article reported any insights into clinician and stakeholder
trust of clinical AI tools, which is presented below in the section
“Results.”

RESULTS

Reviewed Articles and Product Matrix
While our original intention was to examine articles that
described the design of novel clinical AI tools and the process of
gathering feedback from clinical end users, we identified other
types of articles that met our inclusion criteria. The 45 included
articles can broadly be characterized as comprising four primary
categories (see “Type of study” columns in Table 3):

(1) A design study, defined as the design and study of a
novel clinical AI tool. These included efforts that used
a user-centered approach and consulted end users early
and throughout the design process as well as efforts which
primarily focused on the description of the algorithm and
application and reported at least minimal user feedback,
typically at the end of the design or implementation process
(n = 24, see rows in gray in Table 3).

(2) A third party study, defined as research conducted on
clinical AI tools (i.e., the tool design team was not
responsible for the publication) to understand the effect of
implementation, what end users thought of the product(s),
or what end users would need from the product for a
successful implementation (n = 4).

(3) A preliminary design study defined as preliminary user-
centered research to collect feedback prior to the
development of a clinical AI tool (n = 6).

(4) Empirical research to evaluate clinical end user experiences,
needs, or concerns about hypothetical clinical AI tools or in
general (n = 10).

Additionally, articles were classified by whether or not they
described research surrounding a “real tool” that consisted of
at least a working prototype involving the intended ML/AI, or
research of “hypothetical tools,” that were either in the process
of being designed or were described abstractly to participants
for the purpose of conducting empirical research (see “Real
Tool” columns in Table 3). This distinction was valuable when
describing and comparing things like classes of algorithms and
validation efforts.

The types of clinical AI tools described in the included
articles can be defined as AI tools that assist with diagnosis
(n = 18), treatment planning (n = 13), risk assessment (n = 9),
ambient intelligence or telemonitoring (n = 7), natural language
processing (n = 5), and administrative tasks (n = 5) (see
Supplementary Table 1 for a description of articles).

Thirty articles were published by the product designers,
including 24 that described a finished or nearly finished design
that used actual ML algorithms, while six related product design
teams detailed preliminary research conducted prior to design
or completion of a prototype. Four studies were conducted by
a third party after a product was implemented, and 10 were
empirical research efforts that involved only hypothetical AI tools
for the purpose of conducting research into clinicians’ experience
with clinical AI tools, or their opinions, needs, or desires (see
columns labeled “Type of study” and “Real tool” columns in
Table 3).

A variety of algorithms were described, including hypothetical
classes of products (e.g., “digital phenotyping” of psychiatric
symptoms using biosensors, Bourla et al., 2020), specific types
of algorithms (e.g., case based reasoning for diagnosis, Ehtesham
et al., 2019), and existing proprietary tools (e.g., “Brilliant
Doctor,” Wang et al., 2021) (see “Algorithms used” columns in
Table 3).

A variety of qualitative and quantitative research methods
were described. The most used methods were interviews (n = 23)
and various types of surveys (n = 23). Most articles (n = 39)
included some measure of user opinions. Seventeen articles
included some measure of performance or errors [see “Method
type,” “Method(s),” and “Metric(s)” columns in Table 3]. Method
types and the number of times they were employed in included
articles is seen in Figure 2. Total numbers of participants
included within studies described in included articles can be
seen in Figure 3. While all articles included the consideration
of clinicians as key stakeholders, nine also included patients as
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Sakellarios et al., 2020* X X X X X X 95 X X X X X X X X X X

Tschandl et al., 2020 X X X X X 302 X X X X X X X X X X

Trivedi et al., 2018* X X X X X 9 X X X X X X X X X X

Wang et al., 2021* X X X X X X 22 X X X X X X X X

Strohm et al., 2020 X X X X X 24 X X X X X X X X X X
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Blease et al., 2019* X X X X X 720 X X X X X X X
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Risk Jin et al., 2020* X X X X X X 9 X X X X X X X X X

assess- Brennan et al., 2019 X X X X X X X 20 X X X X X X X X X X

ment Sandhu et al., 2020 X X X X 15 X X X X X X X

Sendak et al., 2020 X X X X X X X X X Unknown X X X X X X X X X X X X X X X X X

Lagani et al., 2015 X X X X X 2 X X X X X X X X X

Jauk et al., 2021 X X X X X X 47 X X X X X X X X X

Gilbank et al., 2020 X X X X X X 10 X X X X X X X X X X

Bourla et al., 2020* X X X X X 2322 X X X X X X X X X

Baxter et al., 2020 X X X X X 15 X X X X X X X X X

Ambient Cohen et al., 2017 X X X X X X X 17 X X X X X X X

intell- Lee et al., 2020* X X X X X X X X X 16 X X X X X X X X X X X X X X

igence Khodabandehloo et al., 2021* X X X X X X 8 X X X X X X X X X X X X

and tele Bourla et al., 2020* X X X X X 2322 X X X X X X X X X

monito- Bourbonnais et al., 2019 X X X X X 20 X X X X X X X X X X

ring Poncette et al., 2020 X X X X 270 X X X X X X X X X X

Bourla et al., 2018 X X X X X 515 X X X X X X X X

NLP Long et al., 2016* X X X X X X X 12 X X X X X X X X X X X

Trivedi et al., 2019 X X X X X X X 15 X X X X X X X X X X

Trivedi et al., 2018* X X X X X 9 X X X X X X X X X

Petitgand et al., 2020 X X X X X X 20 X X X X X X X X X

Goss et al., 2019 X X X X 1731 X X X X X X

Admin- Donoso-Guzmán and Parra, 2018 X X X X X 24 X X X X X X X X X

istrative Long et al., 2016* X X X X X X X 12 X X X X X X X X X X X

tasks Klakegg et al., 2018 X X X X X X X 19 X X X X X X X X X X

Van Camp et al., 2019 X X X X X X 5 X X X X X X X X

Blease et al., 2019* X X X X X 720 X X X X X X X

The gray rows designate “design” studies.
*Indicates that paper appears in more than one category.
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FIGURE 1 | Systematic review process and numbers of articles included and excluded. Articles were first identified through online databases, then pre-processed
using python scripts. Next, all articles were manually reviewed by title and abstract prior to reviewing full articles to evaluate which articles were included.

stakeholders, and eight included some other type of stakeholder
[(e.g., hospital leaders, Sendak et al., 2020; or researchers,
Nemeth et al., 2016); see “Stakeholders considered” columns in
Table 3].

Details on Design Studies
The 24 articles that were published by authors who were also
the tools’ designers and were far enough into the design process

to study a “real tool” (i.e., an actual clinical AI product was
described and demonstrated to clinical end users) were our
primary interest and are discussed further below (also see “Type
of study” columns, and rows in gray in Table 3). As our goal
in this review was to examine how clinical AI tool designers
worked to integrate the needs of users, and how they measured
the success of their designs, this subset of papers was critical for
this examination.
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FIGURE 2 | Methods used within included articles and counts.

Details on Algorithms
Of the 24 design articles, which included actual AI/ML, 10
used some type of deep learning, such as a Convolutional
Neural Network (Tschandl et al., 2020) or deep Q-learning (Lee
et al., 2020), or described a generic deep learning algorithm.
Six provided a name for their tools or algorithms, possibly to
reference them with regards to previous or future publications
(e.g., “HealthXAI,” Khodabandehloo et al., 2021) and 11 specified
other particular types of algorithms and/or sources of code (e.g.,
SVM with the scikit-learn python package, Lee et al., 2020). Six
articles gave a generic description of the algorithm within the
article, with three including references to other work further
describing the algorithms (Brennan et al., 2019; Beede et al., 2020;
Benrimoh et al., 2021) (see “Algorithms used” columns in
Table 3).

How and When Are Users Consulted?
We determined what types of clinicians were the intended end
users within included articles by examining explicit statements
by authors as well as the individuals who were included as
participants within studies. Of the 24 articles published by
designers, most tools (n = 15) were intended for physician use.
Four were intended for nurse use and six were intended for

FIGURE 3 | Total number of participants included in studies.

clinicians broadly. Twenty-three included qualitative measures,
20 included quantitative measures, with 19 including both. Five
efforts consulted users throughout the design process (three or
more times), and seven others consulted users at least two times
during the process. Nine total articles reported designers’ efforts
to engage users at the beginning, prior to any design (e.g., a
needs assessment). Twelve only reported user feedback after the
design process that was described in the article was completed
(see “When were users consulted” columns in Table 3).

Stakeholders Included in Design
We considered “stakeholders” of a design to include individuals
who were the intended users as well as other individuals who
would be directly or indirectly affected by the clinical AI tools.
We paid attention to any mention of any individuals besides
end users (i.e., other stakeholders) whose needs and desires were
considered during the design process. Clinical end users were
considered as stakeholders in all included articles whether this
was explicitly stated or not, and seven considered patients as
stakeholders of the design. Only three included stakeholders
other than clinicians or patients (e.g., administrators and care
managers) in the design process.

Trust
Since the calibration of trust is an important feature that
influences clinician adoption of clinical AI tools, we examined
the ways in which these articles assessed clinician perceptions
related to trust of clinical AI tools (e.g., assessments of the extent
to which tool output was trusted, or discussion of what tool
features and/or training, validation, and integration efforts could
increase or calibrate trust in AI tools). Seven of the 24 articles
included trust as a primary measure (i.e., trust was a measure
within a survey or a question within an interview, etc.), and 12
total articles explicitly discussed clinician trust. Twelve articles
did not discuss or evaluate whether users trusted tools.
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Validation
Fifteen articles claimed to have validated their tool, either within
the publication itself or in other articles published by the authors.
Four articles reported measures of accuracy but did not report a
comparison against that of clinical experts. Five articles did not
report any type of validation within the paper or other currently
published literature.

DISCUSSION

While clinical AI products are rapidly proliferating, our review
shows that consultation with clinical end users prior to and
throughout the design process is inconsistent. In addition,
descriptions of the types of ML algorithms used in tools as well
as model performance through validation and comparison to
the performance of clinical experts (i.e., a “gold standard”) is
not universal across efforts. The findings from this literature
review shows that a human-centered design approach (i.e.,
commitment to end-user engagement throughout the design
process) and attention to clinician trust through explicit
evaluation and transparency of the ML used within the clinical
AI tool are frequently underdescribed or not presented in
published articles. This limitation makes it challenging for
such efforts to demonstrate the comprehensive value of their
tools to clinicians.

How Design Is Approached – “Worthy
Nails”
The main purposes of this article is to better understand
how designers of clinical AI tools determined what end users
wanted and needed from these tools, how they incorporated
feedback into their designs, and how they measured and reported.
A key component of this success is ensuring that the design is
focused on addressing specific clinical issues that are perceived as
important to clinicians, which can only be determined through
explicit conversation, and may be best realized through applying
standardized research and design methodology. For instance,
within our own research, we have found that the involvement
of clinicians within large meetings can limit the opportunities
for individuals to be heard or to elicit deep conversations about
needs and challenges, particularly when supervisors are present
or when the conversation focuses on meeting deadlines set
by the institution. One method for achieving this goal is to
involve the users in the beginning and throughout the design
process through research activities (Kujala, 2010), especially as
additional implicit and/or explicit needs can emerge over time.
HCD methodology emphasizes the engagement of end users
and other key stakeholders at the beginning and throughout
the design process. Employing HCD methods provides designers
with the opportunity to develop clinical AI tools that can meet
the needs of clinical end users for successful implementation
into healthcare (Beres et al., 2019), and can assist designers in
gaining and appropriately calibrating clinician and patient trust
in healthcare innovations (Glikson and Woolley, 2020; Wheelock
et al., 2020; Benda et al., 2021), which is imperative for clinician
adoption (Tcheng et al., 2017). Efforts to develop AI tools without

first understanding the specific needs identified by intended users
risk a “law-of-instrument” mentality, where, “I have a hammer,
so let me treat all problems as nails” (Gellner and Kaplan,
1965). The mentality runs the risk of introducing cognitive bias
into the process, whereby assumptions are made by the tool
designers about the applicability of an AI solution to a particular
problem, without deep understanding of the fundamental needs
and challenges of users in that space. The pattern of fitting the
problem to the tool rather than the tool to the problem is a
known challenge in the development of clinical AI, partially
due to the complexity of the development of ML algorithms
and the sparse availability of rich datasets necessary for such
development efforts (Wiens et al., 2019). We refer to these efforts
as “worthy nails,” because while it is a worthy ambition to create
tools to assist with important and persistent medical challenges,
research into clinical AI tool success and failure suggests that
the limited involvement of clinical end users throughout the
process reduces the odds of successful implementation (Khairat
et al., 2018; Yang et al., 2019). Our review findings indicate that
end user involvement is inconsistent, or at least inconsistently
reported on, and therefore highlights one potential solution for
the challenges faced by healthcare organizations in successfully
implementing clinical AI.

What Does This Review Tell Us About the
Current State of Artificial Intelligence in
Healthcare?
The tools described by papers in this review can be categorized
as tools that assist clinicians with diagnosis, treatment planning,
risk prediction, ambient intelligence/telemonitoring, NLP, and
administrative tasks. This review offers a “snapshot” of the
current state of published literature on clinical AI tools that
are designed for clinician use, which reveals that much more
work is needed to establish consistent design and evaluation
procedures for such tools to maximize their benefits within
healthcare. While the number of articles published each year
fitting our inclusion criteria increased over time, many efforts
did not report any level of engaging of users in the tool design
(e.g., the “NU” articles), although it is possible that some efforts
were conducted but not reported. Additionally, while many of
the design articles presented or claimed some form of model
validation, there was no evidence of a universal commitment
to comparing model performance to the “gold standard” of
expert clinician performance. This finding is consistent with
other recent literature (Sendak et al., 2019; Choudhury and
Asan, 2020; Asan and Choudhury, 2021). However, it is also
important to note here that validation efforts are necessary upon
implementation of any clinical AI tool into a healthcare system,
yet many of the innovations described in reviewed articles were
not yet implemented into actual healthcare institutions. Others
have discussed the disparity between studies reporting the design
of new tools within a lab, and studies that present information
about the real integration, evaluation, and redesign that occurs
upon translation into real-world clinical environments (Sujan
et al., 2019; Choudhury and Asan, 2020; Sendak et al., 2020;
Osman Andersen et al., 2021).
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Limitations
This review is limited in a variety of ways. While this systematic
approach attempted to capture all relevant work in the last
5 years, it is likely that some relevant articles were not discovered.
The database search parameters were created to capture a broad
range of publications, but also with a clear scope in mind, so
as to limit the amount of ineligible articles requiring review.
Another important limitation to note is that our categorization
of the data from each effort described in the surveyed articles
(e.g., at which point users were consulted, which stakeholders
were included in design) only included information that was
described within the articles themselves. It is possible, and
even likely, that some design efforts included stakeholders and
steps that were not described in the publications, therefore
the authors of this review would not be aware of this data.
Additionally, as the focus of this article was how users were
integrated into the design process and the methodologies
used, we did not focus on whether or not authors explicitly
claimed to apply theoretical frameworks such as HCD. Nor
were we able to report whether or not design teams included
clinicians, or if clinicians co-authored articles, as this was not
consistently reported on within articles. Additionally, since we
were specifically interested in tools with clear research goals and
outcomes, only peer-reviewed, primary research articles were
included in the analysis, which may have excluded a number
of related works.

Research and Design Opportunities
Discovered Through This Review
This review offers is a detailed comparison of the current clinical
tasks and domains algorithmic tools are being applied to, and
the research methods that are employed by tool designers to
engage users and stakeholders within the design process. Our
work compliments other recent studies that have identified a
greater need for understanding clinical end users in the design
process and the need for standardized validation and reporting
of model performance (Middleton et al., 2016; Yang et al., 2019;
Choudhury and Asan, 2020; Asan and Choudhury, 2021; Osman
Andersen et al., 2021). This review also points to the need
for a standardized protocol for design and implementation of
clinical AI tools to ensure that they are helpful to clinicians
upon implementation (Sujan et al., 2019; Wiens et al., 2019; Li
et al., 2020; Osman Andersen et al., 2021). Additionally, we join
with other authors (Cai et al., 2019b; Wheelock et al., 2020;
Khodabandehloo et al., 2021), to suggest that a commitment to
transparency in how tool output and specifications are presented
to clinicians, and how this is reported on within the literature,
should be a focus for designers and researchers.

Through our review and comparison, we have discovered
that there may be opportunities to focus on nurses as clinical
users, as the majority of studies included were developed for
physicians. Additionally, the administrative burden associated
with medical practice has been identified as a top contributor to
clinician burnout (National Academies of Sciences, Engineering
and Medicine et al., 2019). A relatively low number of articles
included in our review are focused on assisting clinicians with

administrative tasks (11%, n = 5/45 articles), and therefore
designers may find that this is a domain with great research and
design opportunities. It is our hope that other researchers may
use our Product Matrix (Table 3) to quickly identify literature
relevant to their own work to elucidate key considerations,
and empower them in selection of appropriate human-centered
methods that may be applied to their own work.

Future Work: Integrating
Human-Centered Design Into
Development and Testing Phases of
Artificial Intelligence in Healthcare
Based on our examination of the current literature, we argue
that there are a number of investigative gaps that require more
attention from clinical AI tool designers. In particular, it is critical
to establish when and how to engage clinical end users and other
key stakeholders in the design process, how to foster transparency
of design and evaluated performance, and how to increase and
appropriately calibrate clinician trust in clinical AI tools.

Future work will focus on establishing standard methodology
that can be used by researchers to provide a strong, evidence
based argument demonstrating the value of their tool to the
intended clinical end users. The anticipated steps in this process
include: (1) Determining the direct value of the tool for identified
clinical end users and key stakeholders; (2) Establishing how
the design and implementation of the clinical AI would be
valuable to clinicians; (3) Verifying that tools are valuable and
providing quantitative and qualitative evidence of the value;
(4) Ensuring that tools add sustained (and adaptive) value for
clinicians and key stakeholders once implemented into everyday
clinical practice.
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