
Technology and the Arts:
Educational Encounters of the Third
Kind

M y introduction to the world of program-

ing as a child was through the line editor

on an Atari 800XL, as I copied out Basic com-

mands from computer magazines and waited for

them to run… slowly. The fun quota for this not-

exactly Minecraft activity was, perhaps unsur-

prisingly, reached rather quickly, and it took

another 15 odd years or so before I attempted to

wrestle with bending machines to my will, this

time through the object-oriented joy of Java.

Over time, I slowly began to enjoy the creative

possibilities of communicating with computers

at varying levels of programmatic abstraction,

and became aware of the tremendous numbers

of people doing quite extraordinary, beautiful,

and mind-blowing work in concert with pro-

grammable machines.

Discovering the technology-arts community

and the possibilities of creative coding provided

me with a “career re-orienting” encounter for

which I am very grateful. Having neither suc-

ceeded as a young hobbyist programmer nor

pursued a formal computer science education, I

am fortunate to have noodled along sufficiently

as a design/art/technology hybrid to find a pro-

fessional and creative outlet and home for my

skills and interests.

In looking around today, I can certainly iden-

tify less circuitous routes toward achieving an

integrated tech-arts education and career path

preparation. However, some familiar arguments

and scenarios regarding arts and science educa-

tion continue to appear—albeit in different

guises.

Still with the Two Cultures?
In 1959, when C.P. Snow spoke of the “Two

Cultures,” he was referring to the “traditional”

arts/humanities and the “forward-thinking”

sciences. He described the stark separation, mis-

understandings, lost “creative chances,” and

social rigidity delineated between these increas-

ingly separate and distinct forms of human

inquiry.1 Speaking within a Western context,

he decried the “fanatical belief in educational

specialization” making unbridgeable chasms

between the sciences and the nonsciences.

Although the notion of the Two Cultures has

attracted support, derision, and extension in

the last half century (for example, popular or

streetwise science has been considered as a

“third” culture2), the ghosts of Snow’s concerns

still linger somewhat in the current and

ongoing battle between the science and arts

proxies of STEM versus STEAM.

The momentum in favor of STEM (Science,

Technology, Engineering, and Math) learning is

propelled in part by economic fears about falter-

ing innovation and a reduction in technical work-

force skills, particularly in Europe and the US in

the face of growing foreign competition. Encour-

aging and enticing students into focused STEM

education and career paths is widely seen as a

solid and practical approach to addressing this

issue and is favored and supported by many poli-

ticians, industry analysts, and funding agencies.

When pressed to include the “A-related” dis-

ciplines in this educational model, some propo-

nents insist that the arts are already covered

within STEM, while others believe that adding

another leg to the chair only serves as a distrac-

tion within an arena already struggling with

student engagement.3 However, advocates for a

more inclusive form of learning describe adding

the “A” as being innovative in directing stu-

dents through hands-on STEM-related proj-

ects that are imbued with opportunities for

creative thinking, risk taking, and the cultiva-

tion of necessary design skills (see, for exam-

ple, the STEAM initiative at the Rhode Island

School of Design; www.risd.edu/about/STEM

to STEAM).

Aisling Kelliher
Virginia Tech

Aisling Kelliher
Virginia TechArtful Media

1070-986X/16/$33.00�c 2016 IEEE Published by the IEEE Computer Society8

Although there are arts practitioners who cau-

tion about simply throwing the arts into the mix

in a subservient or “service-based” role, careful

arguments are also made as to how a STEAM for-

mulation can serve as a hook or “on-ramp” for

communities of students not typically oriented

toward STEM careers or education. Positing a

larger umbrella term as a means to increase and

sustain diversity is supported in the literature,

where art- and design-based technology experi-

ences (from elementary school on up) prove

helpful in expanding the pool of participants in

technical fields.4,5

To Code or Not to Code
Apossiblebridging argument that has found favor

to varying degrees within both STEM and STEAM

camps is the claim that everyone should learn

how to code. Championed by NBA players (Chris

Bosch), former New York city mayors (Michael

Bloomberg), rock stars (will.i.am) and giant corpo-

rate geeks alike (Bill Gates and Mark Zuckerberg),

organizations such as code.org are pushing the

idea that a populace that knows how to program

will be able to think systematically, break down

problems, and become “wizards” of the future

with their “superpowers” (see for yourself at www.

youtube.com/watch?v¼STRPsW6IY8k).

One could posit that marketing this flavor of

computer science as a linear walk from hacking

with JavaScript to Internet riches and fame is

both self-serving to the affiliated corporate part-

ners and overly narrow in conceptualizing the

scope and degree to which programming as a

skill and practice could manifest itself in peo-

ple’s lives. Indeed, perhaps it’s all just a colossal

waste of time, because surely the era of inten-

tional programming6 is just around the corner—

or, more bluntly, the imminent time in which

“we won’t program computers” but rather will

“train them like dogs.”7

Speaking pragmatically, I still think we have

quite a ways to go before the AI/machine learn-

ing/neural net combination shifts engineering

to some form of metababysitting. In the mean-

time, we can continue to tease out the how and

why of the variety of ways in which program-

ming, and indeed, technology more broadly, is

encountered, learned, and taught within and

across the so-called “two cultures.”

Encountering Technology-Arts
Education
In the last 20 years, there has been strong

growth in the number of integrative tech-arts

certificates, minors, majors, and graduate degree

programs offered in universities and colleges

across the globe. Foundational initiatives

include studio research/atelier labs—such as the

MIT Media Lab, New York University’s Interac-

tive Telecommunications Program (NYU’s ITP),

and Carnegie Mellon University’s Entertain-

ment Technology Center. Other contemporary

exemplars include Interaction Ivrea (now

defunct), Umea’s Institute of Design, and the

cross-institutional Standford d.school. During

this time, the evolution of new fields of inquiry,

such as human-computer interaction, computa-

tional storytelling, information visualization,

and interaction design, have helped drive the

development of the creative technologies indus-

try. Furthermore, the accessibility of cheap and

powerful computers and the growth of open

source creative tools have introduced new ave-

nues for hybrid tech-arts practitioners.

Integrating Tools and Techniques

Processing, OpenFrameworks, Cinder, and Pure

Data are just some of the languages, environ-

ments, and libraries taught in innovative and

creative tech-arts courses, many of which are

also exploring meaningful ways to integrate

contemporary algorithmic innovations into

expressive and provocative projects. For exam-

ple, there’s a rich history, tracing back to the

early 1970s, of interactive artworks and projects

incorporating computer vision techniques for

detecting motion, presence, gaze, or facial

expressions in participatory installations.8

Although computer vision has been a famil-

iar part of tech-arts curricula and syllabi for

many years, more recently we see the addition

of machine learning as a fundamental compo-

nent in media arts training. At NYU’s ITP,

Heather Dewey-Hagborg, Patrick Hebron, and

Gene Kogan have developed and taught a series

of courses introducing machine learning to cre-

ative practitioners. In a recent article, Kogan

outlined some of the challenges (such as the

need for big and sometimes hard-to-find data-

sets and the need for fast machines) and oppor-

tunities (such as the wealth of online tutorials

and guides and generalizability of machine-

learning applications) encountered in teaching

and learning machine-learning techniques for

artists and designers.9 Furthermore, Kogan added

an as-yet cautionary note with regard to the use

of deep-learning libraries in interdisciplinary

machine-learning courses, highlighting the lack

of “high-level abstraction found in creative

Ju
ly

–S
e
p

te
m

b
e
r

2
0
1
6

9

coding libraries,” and the deep and focused

expertise required for effective and efficient

debugging.

While the next few years will likely yield sol-

utions to this deep dive issue, opportunities

also exist to expand the toe-dipping experien-

ces encouraging new types of learners.

Hooks and On-Ramps

One such example is the “Copy. Connect.

Remap. Repeat” course taught back in 2011 at

the Bergen Academy of Art and Design by

Amber Frid-Jimenez and Ben Dalton (see http://

globe.khib.no/remaprepeat). Using the course

title constructs to introduce students to compu-

tational principles, the instructors created a

rich variety of novel pedagogical frameworks,

including teaching using “glitch” and “reading

code as tourists.” Over email, Dalton recently

explained the motivation for using glitch as

emerging “from the way that a glitch reveals

the mechanics of a file format, data stream or

process.”

Inspired by the works revealed in Iman Mor-

adi’s book Glitch: Designing Imperfection (Mark

Batty Publisher, 2009), the instructors created a

series of glitching exercises (see Figure 1), ena-

bling students to examine concepts of compres-

sion “by breaking various file formats and other

people’s code.” Another framing mechanism

used in the course to introduce novices to more

complex programs, and indeed, entire software

ecosystems (such as GIS mapping software),

involved treating programming languages as “if

you were a tourist experimenting with a few

key phrases, rather than learning a language com-

pletely from scratch.” This high-level, almost dis-

posable approach to encountering technical

languages provides a compelling hook enabling

novices to at least get started using a common-

place metaphor.

Alternative Venues for Learning Tech-Arts

There are also a variety of alternative online and

bricks-and-mortar venues that offer novel, com-

plementary, or continuing education opportuni-

ties to develop skills and expertise relevant to

the field of technology-arts. As noted earlier,

nonprofits such as code.org provide online pro-

grams and resources for elementary ages up,

aimed at promoting coding as a valuable form of

21st century literacy.

The recently launched Kadenze website

(www.kadenze.com) partners with academic

institutions around the world to produce and

distribute tech-arts courses from recognized lead-

ers and innovators. With a combination of free

and membership-required offerings, Kadenze

aims to be, in the emailed words of cofounder

Perry Cook, “a truly arts/media friendly learning

Figure 1. An exercise from the “Copy. Connect. Remap. Repeat” course at the Bergen Academy of Art and

Design—remaking a glitched digital image into a quilt by Johanne: (a) the whole quilt and (b) part of the

quilt in more detail. (Source: Ben Dalton and Amber Frid-Jimenez, Bergen Academy of Art & Design; used

with permission.)

IE
E
E

M
u

lt
iM

e
d

ia
Artful Media

10

management system,” where courses are pre-

pared and taught by “the rock stars who created

the language or system or technique… who are

regarded as the very best teacher of a given sub-

ject, and rock-star artists who use these tools as

guest faculty.” This combination of theory, tech-

nique, and practice, together with automated

grading and feedback tools, aim to shape

Kadenze into a lively and engaging environment

for tech-arts learning.

The beautifully named School for Poetic

Computation in New York provides a hybrid

school/residency/research group-based experi-

ence (http://sfpc.io), where “students and fac-

ulty work closely to explore the intersections of

code, design, hardware and theory—focusing

especially on artistic intervention.” Launched

in 2013, the NY Times profiled the school by

asking readers to “imagine the Robin Williams

character from the movie ‘Dead Poets Society’

teaching Objective C instead of ‘O Captain, My

Captain.’”10 The artist-run school offers a 10-

week program of integrated tech-art courses

three times a year, exploring concepts includ-

ing physical computing, language design, and

building the commons.

Beyond the STEM/STEAM Menu
The notion of a 21st century liberal arts educa-

tion without technology should really be as

unthinkable as a 20th century version is with-

out the arts. Many of the examples I’ve dis-

cussed posit the importance of technical

proficiencies embedded within an arts context;

however, the reverse also holds equally true.

Preparing technologists of all stripes to deal

with the complexity of today’s world requires a

thorough understanding of the full scope of

human experience.

To achieve this, our students need to do

more than simply add on a discrete “A” here

or an “E” or an “S” over there. Instead, they

need to develop broad, encompassing prob-

lem-solving abilities through integrative

humanistic technology training. This general-

ist approach provides a strong foundational

base that can also directly connect in parallel,

or down the line, to fields of specialization

and focused expertise. Creating and support-

ing educational trajectories imbued with

authentic encounters with diverse learning

cultures can ultimately provide value to indi-

viduals, organizations, and institutions

invested in cultivating future generations of

creators and innovators. MM

References

1. C.P. Snow, The Two Cultures, Cambridge University

Press, 1959.

2. J. Brockman, The Third Culture: Beyond the Scientific

Revolution, Simon & Schuster, 1995.

3. G. May, “STEM not STEAM,” Inside Higher Educa-

tion, 30 Mar. 2016, www.insidehighered.com/

views/2016/03/30/essay-criticizes-idea-adding-

arts-push-stem-education.

4. K. DesPortes, M. Spells, and B. DiSalvo, “The

MoveLab: Developing Congruence Between Stu-

dents’ Self-Concepts and Computing,” Proc. 47th

ACM Technical Symp. Computing Science Education

(SIGCSE), 2016, pp. 267–272.

5. I. Greenberg, D. Kumar, and D. Xu, “Creative Cod-

ing and Visual Portfolios for CS1,” Proc. 43rd ACM

Technical Symp. Computer Science Education

(SIGCSE), 2012, pp. 247–252.

6. C. Simonyi, The Death of Computer Languages, The

Birth of Intentional Programming, tech. report MSR-

TR-95-52, Microsoft, 1995.

7. J. Tanz, “Soon We Won’t Program Computers.

We’ll Train them Like Dogs,” Wired, 17 May 2016;

www.wired.com/2016/05/the-end-of-code.

8. G. Levin, “Computer Vision for Artists and Design-

ers: Pedagogic Tools and Techniques for Novice

Programmers,” J. Artificial Intelligence and Soc., vol.

20, no. 4, 2006, pp. 462–482.

9. G. Kogan, “Machine Learning for Artists,” Medium,

3 Jan. 2016; https://medium.com/@genekogan/

machine-learning-for-artists-e93d20fdb097#.

rk07a0a0z.

10. A. O’Leary, “Code to Joy: The School for Poetic

Computation Opens,” The New York Times, 12

Aug. 2013; http://bits.blogs.nytimes.com/2013/

08/12/code-to-joy-the-school-for-poetic-compu-

tation-opens.

Aisling Kelliher is an associate professor in the Depart-

ment of Computer Science and a Catalyst Fellow at the

Institute for Creativity, Arts, and Technology at Vir-

ginia Tech. Contact her at aislingk@vt.edu.

Ju
ly

–S
e
p

te
m

b
e
r

2
0
1
6

11

