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1. Introduction 

The emergence of the mediated social web – a distributed network of participants 

creating rich media content and engaging in interactive conversations through In-

ternet-based communication technologies – has contributed to the evolution of 

powerful social, economic and cultural change. Online social network sites and 

blogs, such as Facebook, Twitter, Flickr and LiveJournal, thrive due to their fun-

damental sense of ―community‖. The growth of online communities offers both 

opportunities and challenges for researchers and practitioners. Participation in on-

line communities has been observed to influence people's behavior in diverse 

ways ranging from financial decision-making to political choices, suggesting the 

rich potential for diverse applications. However, although studies on the social 

web have been extensive, discovering communities from online social media re-

mains challenging, due to the interdisciplinary nature of this subject. In this ar-

ticle, we present our recent work on characterization of communities in online so-

cial media using computational approaches grounded on the observations from 

social science. 

 

Motivation – human community as meaning-making eco-system. A key idea 

from situated cognition is that knowledge is fundamentally situated within the ac-

tivity from which it is developed [6]. Brown, Collins and Duguid [6] offers an 

analysis of how we make meaning with the lexical and grammatical resources of 

language – people can interpret indexical expressions (containing such words as I, 

you , here, now, that, etc.) only when they can find what the indexed words might 

refer to. The concept of indexicality suggests [6] that ―knowledge, which comes 

coded by and connected to the activity and environment in which it is developed, 

is spread across its component parts, some of which are in the mind and some in 

the world much as the final picture on a jigsaw is spread across its component 

pieces.‖ In other words, knowledge does not solely reside in the mind of an indi-

vidual, but is distributed and shared among co-participants in authentic situations. 

The meaning-making eco-social systems, denoted by Lemke [25], shape and 

create meaning not by individual components (people, media, objects, etc.), but by 

their co-participation in an activity situation. 

 



2  

 

 

 
Being influenced by this theory, we believe that semantics is an emergent artifact 

of human activity that evolves over time. Human activity is mostly social, and the 

social networks of human are conceivable loci for the construction of meaning. 

Hence, it is crucial to identify real human networks as communities of people inte-

racting with each other through meaningful social activities, and producing stable 

associations between concepts and artifacts in a coherent manner.  

 

Motivating applications. The discovery of human communities is not only philo-

sophically interesting, but also has practical implications. As new concepts emerge 

and evolve around real human networks, community discovery can result in new 

knowledge and provoke advancements in information search and decision-

making. Example applications include: 

 Context-sensitive information search and recommendation: The discovered 

community around an information seeker can provide context (including ob-

jects, activities, time) that help identify most relevant information. For exam-

ple, when a user is looking at a particular photo, the community structure may 

be used to identify peers or objects likely co-occurring with the photo. 

 Content organization, tracking and monitoring: The rapid growth of content 

on social media sites creates several challenges. First, the content in a photo 

stream (either for a user or a community) is typically organized using a tem-

poral order, making the exploration and browsing of content cumbersome. 

Second, sites including Flickr provide frequency based aggregate statistics in-

cluding popular tags, top contributors. These aggregates do not reveal the rich 

temporal dynamics of community sharing and interaction. Community struc-

ture may be used to reflect the social sharing practice and facilitate the organ-

ization, tracking and monitoring of user-generated social media content. 

 Behavioral prediction: Studies have shown that individual behaviors usually 

result from mechanisms depending on their social networks, e.g. social ebed-

dedness [17] and influence [13]. Community structure that accounts for inhe-

rent dependencies between individuals embedded in a social network can help 

understand and predict the behavioral dynamics of individuals. 

 

Data characteristics and challenges. Large volumes of social media data are be-

ing generated from various social media platforms including blogs, FaceBook, 

Twitter, Digg, Flickr. The key characteristics of online social media data include: 

 Voluminous: Recent technological advances allow hundreds of millions of 

users to create social and personal content instantly. The amount of data and 

the rate of data production can be enormous.  

 Dynamic: Users’ online actions are constantly archived with timestamps. 

These online activity records enable a fine-grained observation on the dynam-

ics of human interactions and interests. 

 Context-rich: Most social media platforms allow a wide array of actions for 

managing and sharing media objects – e.g. uploading photos, submitting and 
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commenting on news stories, bookmarking and tagging, posting documents, 

creating web-links, as well as actions with respect to other users (e.g. sharing 

media and links with a friend), or on media objects produced by other users. 

The complex social interactions among users result in multi-relational net-

work data. 

The large-scale, fine-grained, rich online interaction records pose new challenges 

on community discovery: 

 Lack of well-defined attributes: Traditional studies of human communities are 

often based on fixed demographic characteristics [3,38]. Within online social 

networks, individuals may shift fluidly and flexibly among communities de-

pending on their online social actions (e.g. who they recently interact with, 

what they recently share with each other, etc.) [4]. 

 Limitation in network centric analysis: Classical social network analyses 

mostly focus on static interpersonal relationships (e.g. self-reported friend-

ships), with a primary interests on the graph topological properties These stu-

dies range from well-established social network analysis [38] to recent suc-

cessful graph mining algorithms such as HITS [22], PageRank [5] and 

spectral analysis [36]. These methods are limited in discovering important as-

pects of online communities since the interpersonal relationships may evolve 

with their online interactions and may involve rich media contexts (e.g. tags, 

photos, time, and space). 

 Scalability requirement: The Internet scale social network data requires a 

scalable analysis framework to support community discovery based on infor-

mation latent in the multi-relational social network data [23]. 

 

Problem overview. We are interested in characterizing human communities that 

emerge from online interpersonal social activities. Given the challenges discussed 

above, we have focused on the following research problems: 

 How to identify meaningful interpersonal relationship from online social ac-

tions? In social network literature, community discovery usually refers to de-

tecting cohesive subgroups of individuals within networked data collected 

based on well-defined social relationship such as self-reported friendship 

[38]. Characterization of communities in online social networks deviates from 

traditional social network analysis because the social meaning of the networks 

is not definite. 

 How to identify sustained evolving communities from dynamic networks? On-

line communities are temporal phenomena emerge from sustained human ac-

tions and interests, and the actions and interests may evolve over time. Tradi-

tional analysis of social networks focuses on the properties of a static graph 

(aggregation or snapshot of network), which overlooks the temporal characte-

ristics of communities. Discovering communities based sustained activities 

and at the same time characterizing their temporal evolution is challenging. 
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 How to identify communities with rich interaction context? Online social me-

dia websites (e.g. Flickr, Facebook) enable rich interaction between media 

and users, as well as complex social interactions among users – two users 

may share similar tags or read the same feeds. Discovery communities from 

such complex social interactions pose technical challenges that involve deal-

ing with networked data consisting of multiple co-evolving dimensions, e.g. 

users, tags, feeds, comments, etc. Existing high dimensional data mining 

techniques are usually computational intensive and not suitable for dealing 

with large scale social networked data. 

 

Our approach. Our work concerns approach to the three problems (see Figure 1 

for illustrating summarization): 

Figure 1: Our work concerns multiple aspects on community analysis: (a) Mu-

tual awareness – a bi-directional relationship indicating how well a pair of 

bloggers is aware of each other, as fundamental property of a community. (b) 

Mutual awareness expansion – a random walk based distance measure which 

estimates the probability that two bloggers are aware of each other on the net-

work. (c) FacetNet – for analyzing communities and their evolutions in a uni-

fied process. (d) MetaFac – the first graph-based multi-tensor factorization 

framework for analyzing the dynamics of heterogeneous social networks. 

mutual awareness

time

(a) (b)

time

(c)

users
documents

tags

projects

(d)
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 Mutual awareness: We propose mutual awareness (ref. Figure 1(a)), a bi-

directional relationship indicating how well a pair of bloggers is aware of 

each other, as fundamental property of a community. We provide computa-

tional definition to quantify mutual awareness and use it as a feature for 

community discovery. Then, we capture the amount of mutual awareness ex-

panding on the entire network using a random walk based distance measure, 

commute time, which estimates the probability that two bloggers are aware of 

each other on the network (ref. Figure 1(b)). We propose an efficient iterative 

mutual awareness expansion algorithm to extract communities, which parti-

tions the network by maximizing the commute time distance between two sets 

of bloggers. The experimental results for community extraction in terms of 

standard evaluation metrics are promising. 

 FacetNet: We introduce the FacetNet framework to analyze communities and 

their evolutions in a unified process. In our framework (ref. Figure 1(c)), the 

community structure at a given timestep is determined both by the observed 

networked data and by the prior distribution given by historic community 

structures. Algorithmically, we propose the first probabilistic generative mod-

el for analyzing communities and their evolution. The experimental results 

suggest that our technique is scalable and is able to extract meaningful com-

munities based on social media context. (e.g., dramatic change in a short time 

is unlikely). 

 MetaFac: We propose MetaFac, the first graph-based tensor factorization 

framework for analyzing the dynamics of heterogeneous social networks (ref. 

Figure 1(d)). In this framework, we introduce metagraph, a novel relational 

hypergraph representation for modeling multi-relational and multi-

dimensional social data. Then we propose an efficient multi-relational factori-

zation algorithm for latent community extraction on a given metagraph. Ex-

tensive experiments on large-scale real-world social media data and from the 

enterprise data suggest that our technique is able to extract meaningful com-

munities that are adaptive to social media context. 

 

Organization. The rest of this article is organized as follows. Section 2 presents 

community discovery based on mutual awareness. Section 3 presents method for 

extracting sustained evolving communities. Section 4 presents method for extract-

ing communities with rich interaction context. Section 5 concludes with future di-

rections.  
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2. Actions, Networking and Community Formation 

In this section we study the online blog network and propose computational ap-

proach for discovering communities in the blogosphere. Blogs (or weblogs) have 

become popular self-publishing social media on the Web. Although they are a 

type of websites, the analysis of blog communities is different from traditional 

Web analysis literature. The differences lie in the different semantics and struc-

tures of the hyperlinks in the context of blogosphere. A blog is typically used as a 

tool for communication. Driven by an event (such as a real-world news), bloggers 

publish entries that refer to each other. Thus links among blog entries are consi-

dered to be interactions between two bloggers and have significant temporal local-

ity. On the Web, it is common that a new page refers to a relevant page that exists 

for a long time, such as an authoritative page [5,22]. A ―community of web pages‖ 

due to the links of relevance is thus different from a ―community of bloggers‖ 

formed due to the links of interactions. The analysis of blog network also deviates 

from traditional social network analysis [38] because the social meaning of the 

blog network is not as well-defined as in traditional social networks (e.g. links 

represent friendship). Hence, community discovery in the blogosphere requires a 

new analytical framework grounded in the unique characteristics of the blog me-

dia. 

 

2.1 Mutual Awareness and Community Discovery 

The notion of virtual community, or online community, has been discussed exten-

sively in prior research. Rheingold [34] defined virtual communities to be ―social 

aggregations that emerge from the Net when enough people carry on those public 

discussions long enough, with sufficient human feeling, to form webs of personal 

relationship in cyberspace.‖ Jones [20] considered four characteristics as the ne-

cessary conditions for the formation of a virtual community: interactivity, com-

municators, virtual common-public-place where the computer-mediated commu-

nication takes place, and sustained membership. These conditions echo 

Garfinkel’s observation on the necessity of mutually observable actions [14]. The 

same idea that interactivity forms a social reality has also been discussed by Dou-

rish [12]. According to Dourish, interaction involves presence (some way of mak-

ing the actors present in the locale) and awareness (some way of being aware of 

the other’s presence). In what Dourish called an action community, members share 

the common sense understandings through the reciprocal actions. The common 

aspect of the prior work is the emphasis on the significance of action and interac-

tion in online communities. However, little work has studied the counter perspec-

tive – how to discover communities due to actions.  

 

We introduce mutual awareness that is fundamental to blog community formation. 

By mutual awareness of action we mean that individual blogger actions must lead 

to bloggers becoming aware of each other’s presence. The idea is in the light of 

Locale theory [12] that discusses how social organization of activity is supported 
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in different spaces. While the domains of activity must provide means for the 

community members to act, the space must also accord members’ presence and 

facilitate mutual awareness. 

 

Note that mutual awareness may be related to, but is different from, link reciproci-

ty, which refers to the tendency of vertex pairs to form mutual connections be-

tween each other [15]. It is also related to tie strength discussed in the social net-

work literature [16] – ―the strength of a tie is a (probably linear) combination of 

the amount of time, the emotional intensity, the intimacy (mutual confiding), and 

the reciprocal services which characterize the tie.‖ However, quantifying tie 

strength based on these elements remains challenging. In fact, mutual awareness 

can be considered as a mechanism for tie strength situated in particular communi-

cation media. 

 
2.2 Extracting Communities based on Mutual Awareness Structure 

We propose a computational approach for community discovery in the blogos-

phere. Grounded on the actions of individual bloggers, we propose to discover 

community based on the idea of mutual awareness. We propose a computational 

definition for determining mutual awareness in the blog network. Then, using mu-

tual awareness as features, we propose methods for extracting blog communities. 

 
2.2.1 Computable Definition for Mutual Awareness 

Let us examine the actions of individual bloggers – how bloggers read and com-

municate ideas with other bloggers. The bloggers can act in the blogosphere, in 

several ways: surf / read, create entries (containing entry-to-entry links, entry to 

blog / web, or no link), comment or change blogroll. Some actions (e.g. surf/read) 

may be hidden, while others may be observable. 

 

How a specific blogger action leads to mutual awareness may depend on (a) if the 

action is mutually observed, and (b) the importance of the action for the blogger 

who performs the action. Note that some blogger actions are not observable by 

other bloggers. For example, let us consider two hypothetical bloggers, Mary and 

John. Let us assume that Mary creates an entry with a hyperlink that points to 

John’s blog. In this case John would be unaware of Mary’s entry. On the other 

hand, if Mary leaves a comment on John’s entry, then John is immediately aware 

of her presence. If Mary mostly leaves comments on other bloggers, and the im-

portance of a comment for Mary is low – while many bloggers are aware of Mary, 

she may not feel that she in engaged in dialogue with them. The assessment of 

mutual awareness is the first step toward the discovery of blog communities. 

 

We thus characterize mutual awareness as follows (see Figure 2 for an illustra-

tion): mutual awareness between two bloggers is affected by the type of action, the 

number of actions for each type, and when the action occurred. It depends on sus-
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tained actions – it increases if there are follow-up actions that lead to mutual 

awareness and decreases if actions are not sustained over time. 

 
We represent the set of bloggers in the blogspace as a weighted directed graph G = 

(V, E), where each node v∈V represents a blogger, each edge between any pair of 

nodes u and v represents an action performed by u with respect to v. The weight 

on each edge f(u,v) indicates the mutual awareness between two bloggers u and v. 

The corresponding matrix M with each entry Muv= f(u,v) is called mutual aware-

ness matrix and is defined as follows. 

 

Definition 1 (Mutual awareness matrix): 

 𝐌 =  𝛼𝑘min(𝐗 𝑘 , 𝐗 𝑘
𝑇

)𝑘   (1) 

where the index k is used to denote a specific action (e.g. leaving a comment, or 

creating an entry-to-entry link) and αk represent the importance of the actions and 

is usually empirically determined. 𝐗 𝑘  is aggregated action matrix for the action 

type k. Since mutual awareness due to earlier actions will gradually diminish, the 

temporal effect can be modeled as a decaying exponential function: 

 𝐗 𝑘 =  𝐗𝑘 ;𝑡𝑒
−𝜆𝑘 (𝑇−𝑡)𝑇

𝑡=𝑡0
  (2) 

where λk is the decaying factor for the action type k. Different types of actions may 

decay at different rate. Xk;t denotes all-pair type-k actions occurring at time t, and 

𝐗 𝑘  aggregates these actions from time t0 to time T. 

 

Mutual awareness is a bi-directional relationship indicating how well a pair of 

bloggers is aware of each other. This semantics results in a symmetric mutual 

awareness matrix. The reciprocity condition min(⋅,⋅) in Eq. (1)  makes the possi-

bility of both bloggers being aware of each other to be high. 

 

Figure 2: Mutual awareness between two bloggers is affected by the type of 

actions, the number of such actions, and when such actions occur. The arrow 

direction indicates the source and the destination blogger on whom the action 

is performed. A mutual awareness curve is plotted to show the action impacts. 
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Empirical evaluation. We have studied the effectiveness of mutual awareness 

(MA) matrix on real-world blog datasets [26]. We use the subgroup extraction 

procedure described in [26] to extract subgroups, and evaluate the quality of these 

subgroups in terms of different metrics. Compared with the baseline adjacency 

matrices (with entries indicating the total number of entry-to-entry links), the sub-

groups extracted using mutual awareness matrices are usually of higher quality. 

The quality evaluation is based on several metrics, including conductance, inter-

esting coefficient, etc. (see the definitions of the metrics in [26]). Figure 3(a) 

shows the performance comparison of results from the WWE 2006 Workshop 

Blog Dataset [26]. An example subgroup is shown in Figure 3(b) – the group is 

observed to have cohesive topic about mystery novels based on the top keywords 

from their blog contents. 

 
 

2.2.2 Mutual Awareness Expansion 

We extend the idea of mutual awareness to community extraction. Mutual aware-

ness quantifies the relationship between two bloggers. To extract a set of bloggers 

having high mutual awareness, we hypothesize how mutual awareness expands in 

a blog network: 

 Transitivity: One could become aware of a member without direct interaction 

since he or she can observe his or her direct peers interacting with other 

people. Thus awareness is transitive. (The transitivity property in social net-

work has been first examined in Travers and Milgram’s well-known small 

world experiment [37], which motivates our proposed algorithm [27].) 

Mystery Community  

(―harry potter‖ ―buffy the 

vampire slayer‖) 

 
Number of nodes: 239 

Conductance: 0.0004 
Interest coefficient: 0.99 

Coverage: 0.02 

Figure 3: (a) Performance comparison between the Baseline communities and 

the MA communities in terms of metrics conductance, interest coefficient, and 

coverage. (b) An example subgroup cohesive topic about mystery novels, ex-

tracted using MA matrix. 

(a) Performance comparison (b) Case study 
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 Reciprocity: Such transitive awareness must be reciprocal. If expansion of 

awareness is only one directional, one might not feel belonging to the com-

munity 

 Frequency: The amount of observed interaction must be sufficient for mem-

bers to feel connected to each other. 

 

We characterize such mutual awareness expansion process by a random walk 

model. The probability that two bloggers are aware of each other on the entire 

network is quantified using the random walk expected length between two nodes 

corresponding to the bloggers. We refer to this expected length as symmetric so-

cial distance. It is computed as follows: Given a direct graph G = (V,E) and the 

mutual awareness matrix W associated with G, the random walk on G is defined 

to be the Markov chain with state space V and the transition matrix P = D
-1

W, 

where D is a diagonal matrix with element dii = ∑j wij. A random walker at a node 

i on G will follow the transition probability pij = Pij to visit the next node j. Note 

that by construction wii = ∑j wij  (i.e. pii = 1/2) for i≠j . 

 
Let 𝜏𝑢→𝑣  denote the one-way social distance from node u to v, i.e. the expected 

number of steps to reach node v from node u. We define 𝜏𝑢→𝑣  to have the transi-

tive awareness property: 

Definition 2 (Transitive awareness property): 

 𝜏𝑢→𝑣 =  
1 +  𝑝𝑢𝑥 𝜏𝑥→𝑣  𝑖𝑓 𝑢 ≠ 𝑣 𝑢 ,𝑥 ∈𝐸

0                                      𝑖𝑓 𝑢 = 𝑣
   (3) 

where pux is the transition probability from u to x. The equation can be illustrated 

in Figure 4: To reach v from u, the random walker takes one step to get to the next 

node x with transition probability pux, and then calculates the rest expected dis-

tance to v. The symmetric social distance is defined by 𝜏𝑢↔𝑣 = 𝜏𝑢→𝑣 + 𝜏𝑣→𝑢 . 

Solution. Based on property in Eq. (3), the solution for 𝜏𝑢↔𝑣  ,denoted by 𝜏 𝑢↔𝑣 , 

can be derived by using Green’s function [10]: 

Figure 4: Transitive awareness property – the social distance from node u to v 

is defined by the expected number of steps before node v is visited, starting 

from node. 

u v

x

y

pux

p
uy

1 txv

tyv1
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 𝜏 𝑢↔𝑣  = 𝑣𝑜𝑙  
1

𝜆𝑖
(𝜙𝑖(𝑢) − 𝜙𝑖(𝑣))2𝑘

𝑖=2   (4) 

where vol=∑u,v∈V wuv, ϕi’s and λi’s (0=λ1<λ2≤ … ≤λn) are the eigenvectors and cor-

responding eigenvalues of the Laplacian matrix L=D-W. The solution is com-

puted by truncating after the k-th smallest eigen-pair for k<n. Intuitively, 𝜏𝑢↔𝑣  is 

the random walk expected path length from u to v and back to u, which takes into 

account the indirect interactions between u and v derived by their interactions with 

other nodes over the entire network. 

 

Community extraction. We use the symmetric social distance as a criterion to 

extract a community. Given a set of bloggers V, a subset S from V can be seen as a 

community if the symmetric social distance among members of S is short com-

pared to those with non-members. Therefore, we iteratively split the set V into two 

sets S and V\S by maximizing the symmetric social distance as follows: 

 𝑆 = argmax𝑆⊂𝑉  𝜔(𝑆, 𝑉)  𝜏𝑢↔𝑣𝑢∈𝑆,𝑣∈𝑉\𝑆   (5) 

Where ω(S,V) is a weighted function used to obtained desirable properties (e.g. 

balance partition) of the set of communities. Details of the algorithm can be found 

in [27]. 

 

Empirical evaluation. We compare our community extraction method with well-

known baseline clustering algorithms, including the kernel k-means [11], norma-

lized cut [36] and iterative conductance cutting [21]. The results indicate that our 

method outperforms all baseline methods in terms of low conductance, high cov-

erage, and low entropy [27]. 

 
2.3 Application: Query-sensitive Community Extraction 

We apply the community extraction algorithm to the extraction of query-sensitive 

communities, i.e. blog communities that have a strong content related theme with 

respect to a given query. We summarize the idea as follows (see [27] for more de-

tails): 

 Step 1: Given a query topic Q, extract query-sensitive graph GQ to represent 

interactions relevant to the topic. 

 Step 2: Given GQ, extract communities as described in Section 2.2.  

 

In the first step, we construct a weighted action matrix with respect to a query Q. 

Q contains query keywords that represent the given topics, e.g. ―Katrina‖, ―london 

bomb‖, etc. The weight of an interaction is determined by the relevance score of 

the blog content involved in the interaction. Because the query keywords in Q are 

relatively short, in order to further incorporate relevant blogs in GQ, we compute 

the ―query relevancy‖ by employing a web-based similarity function [27,35].  

Figure 5 shows an example from our experiment. In this case, we extract com-

munities with respect to the query keyword is ―katrina‖, which is about a natural 

disaster caused by the hurricane Katrina in August 2005. In order to understand 
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the ―meaningfulness‖ of the extracted communities, we employ a heuristic method 

[27] to examine the relationship between the topic and the communities over time:  

We connect those communities extracted from different time snapshots based on 

an interaction similarity measure1. In Figure 5, each node represents a detected 

community where the communities detected during the same week are aligned ho-

rizontally and the communities at different time snapshots are connected by ar-

rows. The grayscale of an arrow is proportional to the interaction similarity be-

tween the two communities. The node size reflects the number of community 

members and the reddish shade of node is proportional to the query relevancy for 

the keyword ―katrina‖. More saturated node represents more relevant community.  

 
The interactions among the extracted communities are quite interesting. Two dom-

inated communities, one with a focus on politics (shown on the left) and the other 

with a focus on technology (shown on the right), emerged and evolved due to the 

Katrina event. When the event Katrina occurred at week 7, we found community 

                                                 

 

 

 
1 A more systematical solution will be presented in next section.  

Figure 5: Communities with respect to the query ―katrina.‖ The node size re-

flects the number of community members and the reddish shade of node is 

proportional to the query relevancy for the keyword ―katrina.‖ 

week 5

week 13

week 12

week 11

week 10

week 9

week 8

week 7

week 6

week 14

week 15

8/23 Hurricane Katrina 
forms

Political community 
about “katrina” emerges

Technical community 
about “katrina” emerges

Political community splits

9/17 Hurricane Rita forms

8/29 Levee failures in 
New Orleans

right 
wing

left 
wing

right 
wingleft 
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merged from left-wing and right-wing members, due to debates about the govern-

ment response as well as cooperation of fund-raising. Later at week 11, the com-

munity split into stable communities that correspond to their political preferences. 

The results suggest that for queries such as ―Katrina‖, community extraction help 

identifies people with different viewpoints based on their sustained interactions.  

 

Summary. A key idea in this work was that observable actions lead to the emer-

gence of human communities, and awareness expansion was critical to community 

formation. We provide computational definition to quantify mutual awareness and 

use it as a feature to extract subgroups in the blogosphere. The effectiveness of 

mutual awareness features is verified on real-world blog datasets. 

 

We showed how to detect blog communities based on mutual awareness expan-

sion, given a specific query. We proposed a symmetric social distance measure 

that captures the expansion process and use it to detect communities. The commu-

nity evolution with respect to a query reveals interesting community dynamics.  

 

There are some open issues in this work. (1) The communities are independently 

extracted at consecutive timesteps and then the evolutions are characterizes to ex-

plain the difference between these communities over time. Such a two-stage ap-

proach may result in community structures with high temporal variation, and un-

desirable evolutionary characteristics may have to be introduced in order to 

explain such high variation in the community structures. A more appropriate ap-

proach is to analyze communities and their evolutions in a unified framework. (2) 

In order to extract communities with strong content related themes, we construct 

networks with query-dependent edge weights with respect to given concepts. 

However, the theme of a community may not be known in advance, and it may 

emerge and evolve over time, depending on the content and context associated 

with the interactions. This will require a new approach for extracting communities 

from rich interaction contexts. We shall discuss these directions in next two sec-

tions. 
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3. Analyzing Communities and Evolutions in Dynamic Network 

In this section, we present the FacetNet framework that analyzes communities and 

their evolutions in a unified process. Traditional analysis of social networks treats 

the network as a static graph, where the static graph is either derived from aggre-

gation of data over all time or taken as a snapshot of data at a particular time. 

These studies range from well-established social network analysis [38] to recent 

successful applications such as HITS [22] and PageRank [5]. However, this re-

search omits one important feature of communities in networked data – the tem-

poral evolution of communities. 

 

3.1 Sustained Membership, Evolution and Community Discovery 

If evolution is a nature characteristic of human communities, how are they differ-

ent from a chance meeting of casual individuals? Jones [Jones 1997] argued that a 

virtual community is not a chance meeting of casual individuals but should in-

volve long term, meaningful conversations among humans, and this condition 

suggests that there should be a minimal level of sustained membership. Lemke de-

scribed community ecology as follows: ―they have a relevant history, a trajectory 

of development in which each stage sets up conditions without which the next 

stage could not occur,‖ ―the course of their development depends in part on infor-

mation laid down (or actively available) in their environments from prior (or con-

temporary) systems of their own kind.‖ 

 

Recently, there has been a growing body of analytical work on communities and 

their temporal evolution in dynamic networks (e.g. [2,27,32]). However, a com-

mon weakness in these studies, is that communities and their evolutions are stu-

died separately – usually community structures are independently extracted at 

consecutive timesteps and then in retrospect, evolutionary characteristics are in-

troduced to explain the difference between these community structures over time. 

Such a two-stage approach has two issues: (a) At each timestep, communities are 

extracted without considering sustained membership (temporal smoothness of 

clustering). (b) It may result in community structures with high temporal variation, 

and undesirable evolutionary characteristics may have to be introduced in order to 

explain such high variation in the community structures.  

 

Sustained membership is the key to discovery time-evolving communities. We in-

troduce the FacetNet framework to extract sustained and evolving communities 

from dynamic social networks. 

 
3.2 Extracting Sustained Evolving Communities 

We present the formulation of our model, and describe how to extract communi-

ties and their evolutions from the solution of our model. 
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3.2.1 Problem Formulation 

We assume that edges in the networked data are associated with discrete time-

steps. We use a snapshot graph Gt=(Vt,Et) to model the interactions at time t,  
where in Gt, each node vi∈Vt represents an individual, each edge eij∈Et represents 

the presence of interactions between vi and vj, and wt;ij = (Wt)ij denotes the edge 

weight of eij. Note the edge weight can represent mutual awareness, or more gen-

erally, the frequency of interactions between nodes i and j observed at time t. As-

suming Gt has n nodes, Wt ∈ ℜ+
𝑛×𝑛  (nonnegative matrix of size n×n) is the corres-

ponding weight matrix for Gt. Over time, the interaction history is captured by a 

sequence of snapshot graphs G1, … , Gt, … indexed by time. 

 
The basic principles (as illustrated in Figure 6) behind our models are the commu-

nity structure at time t is determined by (1) the data observed at time t (i.e. W, 

which is short for Wt), and (2) the community structure at time t-1. We propose to 

use the community structure at time t-1 (already extracted) to regularize the com-

munity structure at current time t (to be extracted). To incorporate such a regula-

tion, we introduce a cost function to measure the quality of community structure at 

time t, where the cost consists of two parts—a snapshot cost and a temporal cost: 

 𝑐𝑜𝑠𝑡 = 𝛼 ⋅ 𝒞𝒮 + (1 − 𝛼) ⋅ 𝒞𝒯  (6) 

This cost function is first proposed by Chakrabarti et al. [8,9] in the context of 

evolutionary clustering. In this cost function, the snapshot cost 𝒞𝒮 measures how 

well a community structure fits W, the observed interactions at time t. The tem-

poral cost 𝒞𝒯 measures how consistent the community structure is with respect to 

historic community structure (at time t-1). The parameter a is set by the user to 

control the level of emphasis on each part of the total cost. 

A community structure at time t should fit W well, where W is the observed inte-

raction matrix at time t. This requirement is reflected in the snapshot cost 𝒞𝒮 in 

the cost function Eq. (6). We adopt a stochastic block model first proposed in [39]. 

Figure 6: The community structure at time t (denoted as Ut) is determined by 

(1) the data observed at time t (denoted as Wt), and (2) the community struc-

ture at time t-1 (denoted as Ut-1). 
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Assume that there exist m communities at time t, and that the interaction wij is a 

combined effect due to all the m communities. That is, we approximate wij using a 

mixture model wij=  𝑝𝑘 ⋅ 𝑝𝑘→𝑖 ⋅ 𝑝𝑘→𝑗
𝑚
𝑘=1 , where pk is the prior probability that the 

interaction wij is due to the k-th community, 𝑝𝑘→𝑖  and 𝑝𝑘→𝑗  are the probabilities 

that an interaction in community k involves node vi and vj, respectively. Written in 

a matrix form, we have 𝑊 ≈ 𝑋Λ𝑋𝑇 , where X ∈ ℜ+
𝑛×𝑚  is a non-negative matrix 

with xik = 𝑝𝑘→𝑖  and ∑i xik = 1. In addition, Λ is an m×m non-negative diagonal ma-

trix with λk = pk, where λk is short for λkk. Matrices X and Λ (or equivalently, their 

product XΛ) fully characterize the community structure in the mixture model. 

Based on this model, we define the snapshot cost 𝒞𝒮 as the error introduced by 

such an approximation, i.e., 

 𝒞𝒮 = 𝐷(𝑊||𝑋Λ𝑋𝑇)  (7) 

where 𝐷(𝐴||𝐵) =  (𝑎𝑖𝑗 log
𝑎𝑖𝑗

𝑏𝑖𝑗
− 𝑎𝑖𝑗 + 𝑏𝑖𝑗 )𝑖 ,𝑗  is the KL-divergence between A and 

B. The snapshot cost is high when the approximate community structure XΛX
T
 

fails to fit the observed data W well. 

 

In the cost function Eq. (6), the temporal cost 𝒞𝒯 is used to regularize the com-

munity structure. We propose to achieve this regularization by defining 𝒞𝒯 as the 

difference between the community structure at time t and that at time t-1. Recall 

that the community structure is captured by XΛ. Therefore, with 

Y= Xt-1Λt-1, the temporal cost is defined as: 

 𝒞𝒯 = 𝐷(𝑌||𝑋Λ)  (8) 

where D(||) is the KL-divergence as defined before. The temporal cost 𝒞𝒯 is high 

when there is a dramatic change of community structure from time t-1 to t. 

 

Putting the snapshot cost 𝒞𝒮 and the temporal cost 𝒞𝒯 together, we have an opti-

mization problem as to find the best community structure at time t, expressed by X 

and Λ, that minimizes the following total cost: 

 𝑐𝑜𝑠𝑡 = 𝛼 ⋅ 𝐷(𝑊||𝑋Λ𝑋𝑇)  + (1 − 𝛼) ⋅ 𝐷(𝑌||𝑋Λ)  (9) 

subject to X ∈ ℜ+
𝑛×𝑚 , ∑i xik = 1, and Λ being a m×m non-negative diagonal matrix. 

Solving this optimization problem is the core of our FacetNet framework. 

 

Solution. We provide an iterative EM algorithm to find the optimal solutions for 

Eq. (9) as follows: 

 

𝑥𝑖𝑘 ← 𝑥𝑖𝑘 ⋅ 2𝛼  
𝑤𝑖𝑗 ⋅𝜆𝑘 ⋅𝑥𝑗𝑘

(𝑋Λ𝑋𝑇)𝑖𝑗
+ (1 − 𝛼) ⋅ 𝑦𝑖𝑘𝑗  

then normalized such that  𝑥𝑖𝑘𝑖 = 1 ∀𝑘 

𝜆𝑘 ← 𝜆𝑘 ⋅ 𝛼  
𝑤𝑖𝑗 ⋅𝑥𝑖𝑘 ⋅𝑥𝑗𝑘

(𝑋Λ𝑋𝑇)𝑖𝑗
+  1 − 𝛼 ⋅  𝑦𝑖𝑘𝑖𝑖𝑗  

then normalized such that  𝜆𝑘𝑘 = 1 . 

(10) 

Details about the proposed model and the convergence of the solution can be 

found in [29]. Different from the matrix factorization formulation presented here, 

in [29], the problem is reformulated in terms of maximum a posteriori (MAP) es-
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timation and we show a close connection between the optimization framework for 

solving the evolutionary clustering problem and our proposed generative probabil-

istic model. 

 

3.2.2 Extracting Communities and Evolutions 

Community membership. Assume we have computed the result at time t-1, i.e., 

(Xt-1,Λt-1), and the result at time t, i.e., (Xt,Λt). We define a diagonal matrix Dt, 

whose diagonal elements dt;ii=∑ij(XtΛt)ij. Then the i-th row of 𝐷𝑡
−1𝑋𝑡Λ𝑡  indicates 

the ―soft‖ community memberships of vi at time t. 

 
Community evolution. To derive the community evolutions, we align the two bi-

partite graphs, that at time t-1 and that at time t, side by side by merging the cor-

responding network nodes vi’s (as illustrated in Figure 7). A natural definition of 

community evolution (from community ci;t-1 at time t-1 to community cj;t at time t) 

is the probability of starting from ci;t-1, walking through the merged bipartite 

graphs, and reaching cj;t. A simple derivation shows that P(ci;t-1, cj;t) 

=(Λ𝑡−1𝑋𝑡−1
𝑇 𝐷𝑡

−1𝑋𝑡Λ𝑡)𝑖𝑗  and P(cj;t|ci;t-1) =(𝑋𝑡−1
𝑇 𝐷𝑡

−1𝑋𝑡Λ𝑡)𝑖𝑗 . Each node and each 

edge contribute to the evolution from ci;t-1  to cj;t. That is, all individuals and all in-

teractions are related to all the community evolutions, with different levels. This is 

more reasonable compared to traditional methods where the analysis of communi-

ty evolution assumes all members having identical importance in a community. 

 
3.3 Application: Time-dependent Ranking in Communities 

We apply the FacetNet algorithm on the DBLP co-authorship dataset (see [29] for 

more details). In Figure 8(a) we list the extracted top authors in two of the ex-

tracted communities, Data Mining (DM) and Database (DB), where the rank is de-

termined by the value xik, i.e., , 𝑝𝑘→𝑖 . Recall that 𝑝𝑘→𝑖  indicates to what level the k-

Figure 7: The evolution of communities from time t-1 to t, is obtained by 

merging the bipartite graphs through corresponding nodes vi’s – as the proba-

bility of starting from ci;t-1 (community nodes at t-1), walking through the 

merged bipartite graphs, and reaching cj;t (community nodes at t). 
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th community involves the i-th node, where the value is derived based on both the 

current and the historic community structures. So from our framework, we can di-

rectly infer who the important members in each community are. Note that the im-

portance of a node in a community is determined by its contribution to the com-

munity structure. 

 

We can also track the role each individual plays in a community by looking the 

value of 𝑝𝑘→𝑖  over time. In Figure 8(b) and (c), We demonstrate one top author 

(Philip S. Yu) in the DM community whose community membership remains sta-

ble over all the timesteps and another top author (Laks V. S. Lakshmanan) whose 

community membership varies very much over the 5 timesteps. In the figure, each 

Figure 8: (a) Top members in the Data Mining (DM) and Database (DB) 

communities, sorted by pk→i. (b,c) The evolution of community memberships 

for two top authors. In the compasses, an arrow close to the vertical axis indi-

cates a large value of the community membership in the DM community and 

to the horizontal axis indicates a large value of the community membership in 

the DB community. Hence, the first author consistently played an important 

role mainly in the DM community, whereas the second author had a varying 

role in both communities. 

Data Min-

ing 

Philip S. Yu, Jiawei Han, Jian Pei, Wei Wang, Haixun Wang, Beng Chin Ooi, 
Kian-Lee Tan, Charu C. Aggarwal, Jiong Yang, Hongjun Lu, Mong-Li Lee, Jeffrey 

Xu Yu, Tok Wang Ling, Anthony K. H. Tung, Dimitris Papadias,Wynne Hsu, Bing 

Liu, Ke Wang, Yufei Tao, Xifeng Yan, Wei Fan, Laks V. S. Lakshmanan, Sourav 
S. Bhowmick, Guozhu Dong, Jianyong Wang 

Database 

Divesh Srivastava, Nick Koudas, Divyakant Agrawal, Hans-Peter Kriegel, Surajit 

Chaudhuri, Amr El Abbadi, H. V. Jagadish, Rajeev Rastogi, Minos N. Garofalakis, 

S. Muthukrishnan, Jennifer Widom, Rakesh Agrawal, Elke A. Rundensteiner, Jeff-
rey F. Naughton, Rajeev Motwani, Flip Korn, Michael J. Franklin, Johannes 

Gehrke, Hector Garcia-Molina, Vivek R. Narasayya, Raghu Ramakrishnan, Laks V. 

S. Lakshmanan, Walid G. Aref, Christos Faloutsos, Sihem Amer-Yahia 

 

(a) Top members in two communities 

(b) Philip S. Yu 

(c) Laks V. S. Lakshmanan 
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compass indicates a pair (𝑝𝑘1→𝑖 , 𝑝𝑘2→𝑖) where k1 and k2 correspond to the DB and 

the DM communities, respectively. So in a compass, a vertical arrow (which has a 

large projection on the y-axis) indicates a large value of the community member-

ship in the DM community and a horizontal arrow (which has a large projection 

on the x-axis) indicates a large value of the community membership in the DB 

community. We can see that the first author consistently played an important role 

mainly in the DM community, whereas the second author had a varying role in 

both the two communities. 

 

Compared to prior link analysis algorithms, such as HITS and PageRank, our Fa-

cetNet has two advantages: (a) Localized measures: Unlike most of the ranking 

algorithms that give global measures, In FacetNet, we obtain individual impor-

tance (in terms of his/her participation in each community) and community mem-

bership simultaneously. The importance measures are localized (per community) 

and can be aggregated as global measures on the entire network. (b) Temporal var-

iation: The importance of a node, and the context in which the node is deemed im-

portant, may vary over time. A simple function for discounting the historic data is 

not sufficient to capture different types of variation. FacetNet allows understand-

ing how the nodes’ global and local importance change over time. 

 

Summary. The analysis of communities and their evolutions in dynamic temporal 

networks is a challenging research problem with broad applications. In this work, 

we proposed a framework, FacetNet, that combines the task of community extrac-

tion and the task of evolution extraction in a unified process. To the best of our 

knowledge, our framework is the first probabilistic generative model that simulta-

neously analyzes communities and their evolutions. The results obtained from our 

model allow us to assign soft community memberships to individual nodes, to 

analyze the strength of ties among various communities, to study how the affilia-

tions of an individual to different communities change over time, as well as to re-

veal how communities evolve over time. The experimental results on time-

dependent ranking in the DBLP communities demonstrate utility of our FacetNet 

framework. It reveals the community membership evolution for an individual or 

the evolutions of the communities, and to discover many interesting insights in 

dynamic networks that are not directly obtainable from existing methods. 

 

We are currently extending this framework in two directions. First, our current 

model only considered the link information. In many applications, the content in-

formation (e.g., the contents of blog entries and the abstracts of papers) is also 

very important. We are investigating how to incorporate content information into 

our framework. Second, so far we only use our model to explain the observed da-

ta. To extend our model to predict future behaviors of individuals in a dynamic 

social network is also an important research topic. We shall investigate some of 

these directions in next section.  
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4. Community Analysis on Multi-Relational Social Data 

This work aims at discovering community structure in rich media social networks, 

through analysis of the time-varying multi-relational data. As an example scena-

rio, let us consider the use of social media in enterprises, which have increasingly 

embraced social media software to promote collaboration. Such social media, in-

cluding wikis, blogs, bookmark sharing, instant messaging, emails, calendar shar-

ing, and so on, foster dynamic collaboration patterns that deviates from the formal 

organizational structure (e.g. cooperate departments, geographical places, etc.). 

People who are close in the formal organizational structure (e.g. formal collabora-

tion network) might be far apart in the communication network (e.g. the network 

of instant messaging). On the other hand, users’ document access patterns might 

be related to their corporate roles as well as personal interests. Figure 9(a) shows 

an example of such multi-relational social data. The complex and dynamic inter-

play of various social relations and interactions in an enterprise reflects the day-to-

day collaboration practice – how people assemble themselves for a task or activi-

ty, how ideas are shared or propagated, through which communication means, 

who are considered to be expert at some tasks, or what pieces of information are 

relevant to a particular task, and so on. 

 

Figure 9: (a) Users and related objects in an enterprise. (c) A metagraph that 

represents the enterprise social context. 

(a) multi-relational social data 

(b) metagraph 
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In this section, we introduce the first graph-based tensor factorization algorithm to 

analyze the dynamics of heterogeneous social networks, which can flexibly dis-

cover communities along different dimensions (membership, content, etc.), and 

can help predict users’ potential interests. 

 

4.1 Embeddedness, Artifacts and Community Discovery 

Studies have shown that individual behaviors usually result from mechanisms de-

pending on their social networks. Social embeddedness [17] indicates the choices 

of individuals depend on how they are integrated in dense clusters or multiplex re-

lations of social networks. For example, social embeddedness in cohesive struc-

tures can lead people to make similar political contributions [31]. A similar idea 

has been grounded in situated cognition. According to Dewey, an individual’s ac-

tions will always be interrelated to all others within certain social medium that 

forms the individual membership in a community. Once membership is estab-

lished, the individual begins to share the same supply of knowledge that the group 

possesses. Accordingly, this shared experience forms an emotional tendency to 

motivate individual behavior in such a way that it creates purposeful activity evok-

ing certain meaningful outcomes [1]. 

 

This work has suggested the behavioral dynamics of individuals occur under com-

plex, social conditions that simultaneously give rise to the community structure 

(i.e. the ―dense cluster‖ or ―community membership‖). While the conditions may 

be ambiguous, situated cognition theorists have suggested that "artifacts holding 

historic and negotiated significance within a particular context." Based on the 

idea, we presume the community structure latent in multiplex relations based on 

shared artifacts affects and is affected by individual choices. That is, community 

structure that accounts for inherent dependencies between individuals embedded 

in a multi-relational network can help understand and predict the behavioral dy-

namics of individuals. 

 
4.2 Extracting Communities from Rich-context Social Networks 

We focus on the multi-relational network observed from the social media. We de-

fine the problem as discovering latent community structure from the context of us-

er actions represented by multi-relational social networks. The problem has three 

parts: (1) how to represent multi-relational social data, (2) how to reveal the latent 

communities consistently across multiple relations, and (3) how to track the com-

munities over time. 

 
4.2.1 Problem Formulation 

We formally represent multi-relational social data through tensor algebra and me-

tagraph representation. 
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Tensor algebra. A tensor is a mathematical representation of a multi-way array. 

The order of a tensor is the number of modes (or ways). A first-order tensor is a 

vector, a second-order tensor is a matrix, and a higher-order tensor has three or 

more modes. We use x to denote a vector, X denote a matrix, and 𝒳 a tensor. Each 

entry (i,j,k) in a tensor, for example, could represent the number of times the user i 

submitted an entry on topic j with keyword k.  

 

Metagraph representation. We introduce metagraph, a relational hypergraph for 

representing multi-relational and multi-dimensional social data. We use a meta-

graph to configure the relational context specific to the system features – this is 

the key to make our community analysis adaptable to various social media con-

texts, e.g. an enterprise or a social media website like Digg. We shall an enterprise 

example to illustrate three concepts: facet, relation, and relational hypergraph. 

As shown in Figure 9(a), assume we observe a set of users in an enterprise. These 

users might collaborate under different working projects, e.g. the user u1 and u2 

work for the project j1, and user u2 belong to two projects j1 and j2 at the same 

time. Collaboration can occur implicitly across different social media such as in-

stant messenger or email, e.g. user u3 frequently IM with u1 and u2. We denote a 

set of objects or entities of the same type as a facet, e.g. a user facet is a set of us-

ers, a project facet is a set of projects. We denote the interactions among facets as 

a relation; a relation can involve two (i.e. binary relation) or more facets, e.g. the 

―join-project‖ relation involves two facets (user, project), and the ―bookmark‖ re-

lation involves three facets (user, document, tag). A facet can be implicit, depend-

ing on whether the facet entities interact with other facets, e.g. the set of bookmark 

object might be omitted due to no interaction with other facets. Formally, we de-

note the q-th facet as v
(q)

 and the set of all facets as V. A set of instantiations of an 

M-way relation e on facets v
(1)

, v
(2)

,…, v
(M)

 is a subset of the Cartesian product 

v
(1)
…v

(M)
. We denote a particular relation by e

(r)
 where r is the relation index. 

The observations of an M-way relation e
(r)

 are represented as an M-way data ten-

sor 𝒳(r)
.  

 

Now we introduce a multi-relational hypergraph (denoted as metagraph) to de-

scribe the combination of relations and facets in a social media context (ref. Figure 

9(b)). A hypergraph is a graph where edges, called hyperedges, connect to any 

number of vertices. The idea is to use an M-way hyperedge to represent the inte-

ractions of M facets: each facet as a vertex and each relation as a hyperedge on a 

hypergraph. A metagraph defines a particular structure of interactions among fa-

cets, not among facet elements. Formally, for a set of facets V={v
(q)

} and a set of 

relations E={e
(r)

}, we construct a metagraph G=(V,E). To reduce notational com-

plexity, V and E also represent the set of all vertex and edge indices, respectively. 

A hyperedge/relation e
(r)

 is said to be incident to a facet/vertex v
(q)

 if v
(q)
e

(r)
, 

which is represented by v
(q)

~e
(r)

 or e
(r)

~v
(q)

. E.g., in Figure 9(b), the vertex v
(1)
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represents the user facet, the hyperedge e

(1)
={v

(1)
,v

(2)
,v

(3)
} represents the ―book-

mark‖ relation. 

 

Based on the discussed in Section 4.1, we assume the interaction between any two 

entities (users or media objects) i and j in a community k, written as xij, can be 

viewed as a function of the relationships between community k with entity i, and k 

with j. If we consider the function to be stochastic, i.e. let pki indicate how likely 

an interaction in the k-th community involves the i-th entity and pk is the proba-

bility of an interaction in the k-th community, we can express xij by xijk 

pkipkjpk (as discussed in section 3.2). Likewise a 3-way interaction among enti-

ty i1, i2 and i3 is 𝑥𝑖1𝑖2𝑖3
≈  𝑝𝑘 ∙𝑘 𝑝𝑘→𝑖1

∙ 𝑝𝑘→𝑖2
∙ 𝑝𝑘→𝑖3

. A set of such interactions 

among entities in facet v
(1)

, v
(2)

 and v
(3)

 can be written by: 

 𝓧 ≈  𝑝𝑘𝐮𝑘
(1)

°𝐾
𝑘=1 𝐮𝑘

(2)
°𝐮𝑘

(3)
= [𝐳]  ×𝑚 𝐔(𝑚)3

𝑚=1   (11) 

where 𝒳∈ ℜ+
𝐼1×𝐼2×𝐼3 , is the data tensor representing the observed three-way inte-

ractions among facet v
(1)

, v
(2)

 and v
(3)

. 𝑝𝑘→𝑖𝑞 is written as an (iq,k)-element of U
(q)

 

for q=1,2,3. U
(q)

 is an IqK matrix, where Iq is the size of v
(q)

. The probabilities of 

communities are elements of z, i.e. pk=zk. We use [z] to denote a superdiagonal 

tensor, where the operation [⋅] transforms a vector z to a superdiagonal tensor by 

setting tensor element zk…k=zk and other elements as 0. The decomposition defined 

in eq.(11) is similar to the CP/PARAFAC tensor decomposition [7,18], except that 

the core tensor [z] and the factor matrices {U
(q)

} are constrained to contain non-

negative probability values. Under the nonnegative constraints, the 3-way tensor 

factorization is equivalent to the three-way aspect model in a three-dimensional 

co-occurrence data [33]. 

 

The nonnegative tensor decomposition can be viewed as community discovery in 

a single relation. The interactions in social media networks are more complex – 

usually involving multiple two- or multi-way relations. By using metagraphs, we 

represent a diverse set of relational context in the same form and define communi-

ty discovery problem on a metagraph, with the following two technical issues: (a) 

how to extract community structure as coherent interaction latent spaces from ob-

served social data defined on a metagraph, and (b) how to extract community 

structure as coherent interaction latent spaces from time evolving data given a me-

tagraph. The problems are formally stated as follows. 

 

Definition 3 (Metagraph Factorization, or MF): given a metagraph G=(V,E) and a 

set of observed data tensors {𝒳(r)
}rE defined on G, find a nonnegative core tensor 

[z] and factors {U
(q)

}qV for corresponding facets V={v
(q)

}. (Since E also 

represents the set of all edge indices, the notations rE and e
(r)
E are exchangea-

ble. Likewise, qV and v
(q)
V are exchangeable.) 
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Definition 4 (Metagraph Factorization for Time evolving data, or MFT): given a 

metagraph G=(V,E) and a sequential set of observed data tensors {𝒳t
(r)

}rE defined 

on G for time t=1,2,…, find nonnegative core tensor [zt] and factors {Ut
(q)

}qV for 

corresponding facets V={v
(q)

}. 

 

We will present our method in two steps: (1) present a solution to MF (next sec-

tion); (2) extend the solution to solve MFT (Section 4.2.3). 

 

4.2.2 Metagraph Factorization 

The MF problem can be stated in terms of optimization. Let us first consider a 

simple metagraph case. Assume we are given a metagraph G=(V,E) with three ver-

tices V={v
(1)

, v
(2)

, v
(3)

} and two 2-way hyperedges E={e
(a)

,e
(b)

} that describe the in-

teractions among these three facets, as shown in Figure 10. The observed data cor-

responding to the hyperedges are two second-order data tensors (i.e. matrices) 

{𝒳(a)
, 𝒳(b)

} with facets {v
(1)

, v
(2)

} and {v
(2)

, v
(3)

} respectively. The facet v
(2)

 is 

shared by both tensors.  

 
The goal is to extract community structure from data tensors, through finding a 

nonnegative core tensor [z] and factors {U
(1)

, U
(2)

, U
(3)

} corresponding to the three 

facets. The core tensor and factors need to consistently explain the data, i.e. we 

can approximately express the data by 𝒳(a)
[z]1U

(1)
2U

(2)
 and 

𝒳(b)
[z]2U

(2)
3U

(3)
, as illustrated in Figure 10. The core tensor [z] and facet U

(2)
 

are shared by the two approximations, and the length of z is determined by the 

number of latent spaces (communities) to be extracted. Since both the left- and the 

right-hand side of the approximation are probability distributions, it is natural to 

use the KL-divergence (denoted as D(||)) as a measure of approximation cost.  

 

Figure 10: An example of the metagraph factorization (MF). Given observed 

data tensors {(a)
,(b)

} and a metagraph G that describes the interaction 

among facets {v
(1)

, v
(2)

, v
(3)

}, find consistent community structure expressed by 

core tensor [z] and facet factors {U
(1)

, U
(2)

, U
(3)

}. 

( )a
( )b

I1

I2

I3

U
(2)

U
(1)

U
(3)z

K

K

≈ ≈
I2

v(2)

v(1) v(3)e(a) e(b)G

I1 I3

I2

data data

K
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We can generalize Figure 10 to any metagraph G, as: given a metagraph G=(V,E), 

the objective is to factorize all data tensors such that all tensors can be approx-

imated by a common nonnegative core tensor [z] and a shared set of nonnegative 

factors {U
(q)

}, i.e. to minimize the following cost function: 

 
𝐽 𝐺 = min𝐳,{𝐔(𝑞)}  𝐷(𝓧(𝑟)||[𝐳]  ×𝑚 𝐔(𝑚)

𝑚 :𝑣(𝑚 )~𝑒 (𝑟) )𝑟∈𝐸   

s.t. 𝐳 ∈ ℜ+
1×𝐾 , 𝐔(𝑞) ∈ ℜ+

𝐼𝑞×𝐾
 ∀𝑞,  𝐔𝑖𝑘

(𝑞)
= 1 ∀𝑞∀𝑘𝑖  

(12) 

where K is the number of communities, and D(||) is the KL-divergence as de-

scribed above. The constraint that each column of {U
(q)

} must sum to one is added 

due to the modeling assumption that the probability of an occurrence of a relation 

on an entity is independent of other entities in a community. This equation can be 

easily extended to incorporate weights on relations. 

 

Solution. By employing the concavity of the log function (in the KL-divergence), 

we derive a local minima solution to Eq. (12). The solution can be found by the 

following updating algorithm: 

 

𝐳𝑘 ←   𝓧𝑖1⋯𝑖𝑀𝑟

(𝑟)
𝜇𝑖1⋯𝑖𝑀𝑟𝑘

(𝑟)
𝑖1⋯𝑖𝑀𝑟𝑟∈𝐸   

𝑈𝑖𝑞𝑘
(𝑞)

←   𝓧𝑖1⋯𝑖𝑀𝑙

(𝑙)
𝜇𝑖1⋯𝑖𝑀𝑙

𝑘
(𝑙)

𝑖1⋯𝑖𝑞−1𝑖𝑞+1⋯𝑖𝑀𝑙𝑙 :𝑒 (𝑙)~𝑣(𝑞)   

where 𝜇𝑖1⋯𝑖𝑀𝑟𝑘
(𝑟)

←
𝐳𝑘  ×𝑚𝐔𝑖𝑚 𝑘

(𝑚 )

𝑚 :𝑣(𝑚 )~𝑒(𝑟)

([𝐳]  ×𝑚𝐔(𝑚 )
𝑚 :𝑣(𝑚 )~𝑒(𝑟) )𝑖1⋯𝑖𝑀𝑟

 

(13) 

where z is a length K vector, L=|E| denotes the total number of hyperedges on G. 

After updates, each column of U
(q)

 and the vector z are normalized to sum to one. 

Because of this normalization step, we have omitted the scaling constant for up-

dating z and U
(q)

. This iterative update algorithm is a generalization of the algo-

rithm proposed by Lee et al. [24] for solving the single nonnegative matrix facto-

rization problem. In metagraph factorization, the update for core tensor [z] 

depends on all hyperedges on the metagraph, and the update for each facet factor 

U
(q)

 depends on the hyperedges incident to the facet. The details of this algorithm 

can be found in [30]. 

 

4.2.3 Time Evolving Extension 

In the MFT problem, the relational data is constantly changing as evolving tensor 

sequences. We propose an online version of MF to handle dynamic data. Since 

historic information is contained in the community model extracted based on pre-

viously observed data, the new community structure to be extracted should be 

consistent with previous community model and new observations, which is similar 

to evolutionary clustering discussed in Section 3. To achieve this, we extend the 

objective in Eq. (12) as follows. 

 

A community model for a particular time t is defined uniquely by the factors 

{Ut
(q)

} and core tensor [zt]. (To avoid notation clutter, we omit the time indices for 

t.) For each time t, the objective is to factorize the observed data into the nonnega-
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tive factors {U

(q)
} and core tensor [z] which are close to the prior community 

model, [zt-1] and {Ut-1
(q)

}. We introduce a cost lprior to indicate how the new com-

munity structure deviates from the previous structure in terms of the KL-

divergence. The new objective is defined as follows: 

 

𝐽2 𝐺 = min𝐳, 𝐔 𝑞  
 1 − 𝛼  𝐷(𝓧 𝑟 ||[𝐳]  ×𝑚 𝐔 𝑚 

𝑚 :𝑣 𝑚  ~𝑒  𝑟 )𝑟∈𝐸 +

𝛼𝑙𝑝𝑟𝑖𝑜𝑟   

with 𝑙𝑝𝑟𝑖𝑜𝑟 = 𝐷 𝐳𝑡−1||𝐳 +  𝐷(𝐔𝑡−1
(𝑞)

||𝐔 𝑞 )𝑞   

s.t. 𝐳 ∈ ℜ+
1×𝐾 , 𝐔(𝑞) ∈ ℜ+

𝐼𝑞×𝐾
 ∀𝑞,  𝐔𝑖𝑘

(𝑞)
= 1 ∀𝑞∀𝑘𝑖  

(14) 

where α is a real positive number between 0 and 1 to specify how much the prior 

community model contributes to the new community structure. lprior is a regulariz-

er used to find similar pair of core tensors and pairs of facet factors for consecu-

tive time. The new community structure will be a solution incrementally updated 

based on a prior community model. 

 

Solution. Based on a derivation similar to the discussion in Section 4.2.2, we pro-

vide a solution to Eq. (14) as follows: 

 
𝐳𝑘 ←  1 − 𝛼   𝓧𝑖1⋯𝑖𝑀𝑟

 𝑟 𝜇𝑖1⋯𝑖𝑀𝑟𝑘
 𝑟 

𝑖1⋯𝑖𝑀𝑟𝑟∈𝐸 + 𝛼𝐳𝑘 ;𝑡−1  

𝑈𝑖𝑞𝑘
(𝑞)

← (1 − 𝛼)   𝓧𝑖1⋯𝑖𝑀𝑙

(𝑙)
𝜇𝑖1⋯𝑖𝑀𝑙

𝑘
(𝑙)

𝑖1⋯𝑖𝑞−1𝑖𝑞+1⋯𝑖𝑀𝑙𝑙 :𝑒 (𝑙)~𝑣(𝑞) + 𝛼𝑈𝑖𝑞𝑘 ;𝑡−1
(𝑞)

  
(15) 

where z is a length K vector, 𝜇𝑖1⋯𝑖𝑀𝑙
𝑘

(𝑙)
 is defined as in eq. (13). After updates, each 

column of U
(q)

 and the vector z are normalized to sum to one. Because of this 

normalization step, we have dropped the scaling constant for updating z and U
(q)

. 

It can be shown that the parameters in the previous model (zt-1 and {Ut-1
(q)

}) act as 

Dirichlet prior distribution to inform the solution search (ref. [28]), thus the solu-

tion is consistent with previous community structure. 

 
4.3 Application: Context-sensitive Prediction in Enterprise 

We design a prediction task to illustrate how our community tracking algorithm 

can be utilized to predict users’ future interests based on the multi-relational social 

data.  Specifically, given data Dt at time t, we extract communities to predict us-

ers’ future use of tags, and compare the prediction with the ground truth in data 

Dt+1. We collected collaboration relationships from the employee profiles and so-

cial media (e.g. bookmarks, wiki, etc.) in an enterprise. We then construct multiple 

relations from the different data sources. 

 

In our experiment, the time interval is one month. The overall prediction perfor-

mance is obtained by taking average prediction performance over 10-month data. 

We compare our method with two baseline methods: (1) recurring interests – pre-

dicting future tags (at t+1) as the tags mostly frequently used by the user at t.  (2) 

collective interests (pLSA) – predicting future tags by using a well-known collec-
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tive filtering method (probabilistic latent semantic analysis [19] or pLSA) on the 

user-tag matrix. 

 

We generate predictions base on the community structure extracted by our me-

thod, denoted by MF and MFT. The MF algorithm outputs community structure 

from relational data of each time slot t-1. The MFT algorithm uses the same data 

as MF, with an aid of prior community model extracted for time t-2 as an informa-

tive prior. Hence MFT gives results incrementally. From an extracted community 

model we obtain the probability of a community k, i.e. p(k), and the probability of 

a user u and a tag q, given community k, i.e. p(u|k) and p(q|k). Then a prediction is 

made based on the condition probability p(q|u)p(u,q)k’p(k)p(u|k’)p(q|k’). The 

detailed experiment setting can be found in [30]. Our method can also be applied 

to a cold-start setting by incorporating a folding-in technique (ref. e.g. [33]) to 

overcome the situation where p(q|k) may not be directly available from the model 

parameters (e.g. q is a new tag which has not been used before t). 

Figure 11 shows the relevant improvement compared with the first baseline me-

thod, i.e. the recurring interests. The results indicate the prediction given by our 

community tracking algorithms outperform the baseline methods by 36-250% on 

the average, which suggest that our method can better capture the cohesive struc-

tures of the contexts around users’ interests. 

 
Summary. We proposed the MetaFac framework to extract community structures 

from various social contexts and interactions. There were three key ideas: (1) me-

wiki

R1

user

tag

resource 
(URL)

R4

country

department

directory

R5

R3 R2

P@10 NDCG

1

1.2

1.4

1.6

1.8

2

re
la

ti
ve

 im
p

ro
ve

m
en

t

 

 

recurring pLSA MF MFT

Figure 11: (a) IBM dataset: R1, ..., R5 are different relations among the 7 fa-

cets, e.g. bookmark (R1), join-wiki (R2), etc. The sizes of these relational data 

from R1~R5 are: 3K×12K×61K, 3K×1K, 3K×2K, 3K×90 and 3K×42. (b) Pre-

diction performance: Our framework improves the prediction of users’ future 

tag use. 

(a) IBM dataset (b) Prediction performance 
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tagraph, a relational hypergraph for representing multi-relational social data; (2) 

MF algorithm, an efficient non-negative multi-tensor factorization method for 

community extraction on a given metagraph; (3) MFT, an on-line factorization 

method to handle time-varying relations. To illustrate the utility of our method, we 

design a tag prediction task in an enterprise context. We generated the predictions 

based on the extracted community models and compare results with baselines. Our 

method outperformed baselines up to an order of magnitude. We show significant 

improvement of our method due to (a) incorporating a historic model and (b) leve-

raging diverse relations through a metagraph.  

 

There are some open issues in this work. For example, there are different aspects 

of community evolution, including change in the community size, change in the 

number of communities and change in the community content or features (what 

the community is about). To study the evolution within communities, our method 

has assumed the number of communities does not change across time (i.e. we do 

not consider the second aspect). Learning and comprehending several evolution 

aspects in a unified process is a challenging issue. 

 

Nevertheless, our work can lead to several interesting directions. (1) As our algo-

rithm does not tie to a specific data schema, it can be easily extended to deal with 

schema changes. (2) By combining various social relations of data, it can be used 

to identify effective social relations based on model selection approaches. As a po-

tential extension of this framework, we are interested in utilizing the relational 

hypergraph to study the correlation between networks and the behavioral dynam-

ics of individuals. 

5. Conclusions and Future Directions 

In this article, we have discussed our current work on community analysis in dy-

namic, multi-relational social networks. Our work includes several key ideas: (1) 

We introduce mutual awareness, a fundamental property of communities in online 

social media, which is computationally defined based on observable individual ac-

tions within the social media context. The effectiveness of mutual awareness fea-

tures is empirically verified on large-scale real-world blog datasets. We propose 

an efficient iterative mutual awareness expansion algorithm for community extrac-

tion using a random walk based distance measure that quantifying the amount of 

mutual awareness expanding on the entire network. The community evolution 

with respect to a query reveals interesting community dynamics. (2) We propose 

FacetNet framework, the first probabilistic generative model that simultaneously 

analyzes communities and their evolutions. The results obtained from our method 

allow us to assign soft community memberships to individual nodes, to analyze 

the strength of ties among various communities, to study how the affiliations of an 

individual to different communities change over time, as well as to reveal how 

communities evolve over time. Extensive experimental studies demonstrated that 
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by using our FacetNet framework, we are able to discover many interesting in-

sights in dynamic networks that are not directly obtainable from existing methods, 

such as the evolution of individuals' contribution to different communities. (3) We 

propose MetaFac, the first graph-based tensor factorization framework for analyz-

ing the dynamics of heterogeneous social networks. We introduce metagraph for 

modeling multi-relational and multi-dimensional social data. Then we propose an 

efficient non-negative multi-tensor factorization method for community extraction 

on a given metagraph. In addition, we provide an on-line extension of this method 

to handle time-varying multi-relations. Extensive experiments on enterprise and 

large-scale social media data suggest that our technique is scalable and can help 

predict users’ future interests based on the cohesive structure of contexts extracted 

by our method. 

 

Our current work has led to several interesting research directions. In social media 

like Facebook, users often experience overload of online social connections, 

shared interests and information, as well as the interplay of people and subject 

matter. For people who are interested in certain topics, it is difficult to understand 

how the topics (or media items) are, and have been, shared and discussed by dif-

ferent people. This leads to important technical questions on how to disentangle 

and display the complex dynamic relationships between people and subjects over 

time. Our methods can be used to support interactive visualization that allows us-

ers to explore and query multiple aspects of community activities, such as relevant 

topics, representative users and artifacts (e.g. tweets, photos) of the communities, 

as well as their relationships and evolutions. 

 

Our work can also contribute to research in social science. For example, anthro-

pologists are interested in material cultural transition based on artifacts and their 

association with time and space. Our work on community analysis has identified 

several relevant structural elements from large scale observable interpersonal ac-

tivities in social media, including community awareness (mutual and transitive 

awareness), community composition (degree of individuals’ participation in com-

munities), community inter-structure (the relationship among communities and 

how it changes over time), community context (e.g. time and location associated 

with community activities) and community artifacts (e.g. tags and photos generat-

ed by communities). We have used these structural elements to discover interest-

ing cultural patterns among communities, e.g. the interaction of right-wing and 

left-wing communities in blog data. We plan to extend the current approach to 

discover the structural changes of a community as well as the context where the 

changes occur, to support the search and detection of emergent or transitional cul-

tural patterns. Ethnographic investigation is needed in order to reveal finer-grained 

patterns of human interactions as well as qualitative understanding of the extracted 

structures. Extracting the evolution of inter-structure among different communities 
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will help understand the condition and impact of social media as a new commu-

nicative practice.  
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Community dynamics 

Dynamic networks 

FacetNet 

Graph mining 
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Multi-relational mining 

Mutual awareness 
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