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ABSTRACT 
This paper aims at discovering community structure in rich media 

social networks, through analysis of time-varying, multi-relational 

data. Community structure represents the latent social context of 

user actions. It has important applications in information tasks 

such as search and recommendation. Social media has several 

unique challenges. (a) In social media, the context of user actions 

is constantly changing and co-evolving; hence the social context 

contains time-evolving multi-dimensional relations. (b) The social 

context is determined by the available system features and is 

unique in each social media website. In this paper we propose 

MetaFac (MetaGraph Factorization), a framework that extracts 

community structures from various social contexts and 

interactions. Our work has three key contributions: (1) metagraph, 

a novel relational hypergraph representation for modeling multi-

relational and multi-dimensional social data; (2) an efficient 

factorization method for community extraction on a given 

metagraph; (3) an on-line method to handle time-varying relations 

through incremental metagraph factorization. Extensive 

experiments on real-world social data collected from the Digg 

social media website suggest that our technique is scalable and is 

able to extract meaningful communities based on the social media 

contexts. We illustrate the usefulness of our framework through 

prediction tasks. We outperform baseline methods (including 

aspect model and tensor analysis) by an order of magnitude.  

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications—Data 

mining; H.3.3 [Information Storage and Retrieval]: Information 

Search and Retrieval—Information filtering; I.5.3 [Pattern 

Recognition]: Clustering; J.4 [Computer Applications]: Social 

and Behavioral Sciences—Economics 

General Terms 

Algorithms, Experimentation, Measurement, Theory 

Keywords 

MetaFac, metagraph factorization, relational hypergraph, non-

negative tensor factorization, community discovery, dynamic 

social network analysis  

1. INTRODUCTION 
This paper aims at discovering community structure in rich media 

social networks, through analysis of the time-varying multi-

relational data from social media websites. Social media websites 

such as Flickr, Digg and Facebook allow a wide array of actions 

on media objects – e.g. uploading photos, submitting and 

commenting on news stories, bookmarking and tagging, posting 

documents, creating web-links, as well as actions with respect to 

other users (e.g. sharing media and links with a friend). The key to 

social media information tasks such as media recommendation 

relies in understanding the context of these actions – how they 

relate to other actions, users and media objects. For example, a 

user might be motivated to search a story after viewing her 

friend’s bookmarks.  

The problem has two challenges: (1) in social media, the context 

of user actions is constantly changing and co-evolving, e.g. with 

respect to other users’ actions, emergent concepts and users’ 

historic preferences. Hence the social context contains time-

evolving multi-dimensional relations; (2) the social context is 

determined by the available system features that allow interactions 

on media objects and among people. Hence the social context is 

unique in each social media website. For example, Figure 1 shows 

the main actions available in Digg and Flickr, as well as related 

media objects. In Digg, users might submit / vote (digg) / 

comment on a story, reply to a comment, reply to a reply, etc. 

Flickr users might post, tag and comment on a photo, make friend 

Figure 1: The social context of user actions vary across social 

media websites – we propose a metagraph representation to 

model various social context; (a) primary actions and related 

media objects in Diggs; (b) primary actions and related 

objects in Flickr; (c) a metagraph representation for Digg; (c) 

a metagraph for Flickr. 
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contacts, label a photo as a favorite, join a photo sharing group 

(pool), etc.  There are some common actions, but more site-

specific actions cater to the purpose of each site. The discovery of 

social context needs to deal with the diverse and dynamic nature 

of actions in social media. 

In this paper we propose MetaGraph Factorization (MetaFac), a 

framework that extracts community structures (i.e. the latent 

social context) from various social interactions. Our work has 

three key contributions: (1) metagraph, a novel relational 

hypergraph representation for modeling multi-relational and 

multi-dimensional social data; (2) an efficient factorization 

method for community extraction on a given metagraph; (3) an 

on-line method to handle time-varying relations through 

incremental metagraph factorization. 

Extensive experiments on real-world social media data suggest 

that our technique is scalable and is able to extract meaningful 

communities based on social media context. We illustrate the 

usefulness of our framework through prediction tasks – to predict 

users’ future interests on voting or commenting on Digg stories. 

Our prediction significantly outperforms baseline methods 

(frequency counts, tensor analysis, etc.), suggesting the utility of 

leveraging metagraphs to handle time-varying social relational 

contexts. 

The rest of the paper is organized as follows. Section 2 reviews 

the related work. Section 3 introduces preliminaries and section 4 

formalizes the problem. Section 5 and 6 presents our community 

extraction method on both static and dynamic multi-relational 

data. Section 7 presents experiments and section 8 concludes. 

2. RELATED WORK 
Community discovery in rich media social networks deals with a 

constantly changing ―mishmash‖ of interrelated users and media 

objects. The problem has three aspects: (1) evolutionary 

characterization of communities in time-varying social networks, 

(2) analysis of multi-dimensional data, and (3) relational learning 

adaptable to different social contexts. To the best of our 

knowledge, our work is the first unified attempt to address all 

three aspects within a single problem. 

Evolutionary community characterization. Social interactions 

among people have been studied through a unipartite or bipartite 

graph, in which the community structure can be characterized by 

clustering methods [14], and the evolution of community 

structure is captured in terms of various criteria. Kumar et al. [9] 

study the evolution of the blogosphere in terms of the change of 

graph statistics and the burstiness of extracted communities. Sun 

et al. [14] use the Minimum Description Length principle to 

extract communities and to detect their changes. Lin et al. [11] 

use an evolutionary clustering criterion [4] to extract community 

structures based on both observed networked data and historic 

community structure. All these works restrict themselves to pair-

wise relations between entities (e.g. user-user or user-paper). In 

rich online social media, networked data consists of multiple co-

evolving dimensions, e.g. users, tags, feeds, comments, etc. 

Collapsing such multi-way networks into pairwise networks 

results in the loss of valuable information, and the analysis of 

temporal correlation among multi-dimensions is difficult.  

Multi-dimensional mining. In multi-dimensional network 

analysis, networks have more than two types of entities. Existing 

techniques include tensor based analysis [5,14] or multi-graph 

mining. Tensor factorization is a generalized approach for 

analyzing multi-way interactions among entities. Note that a 

tensor represents complete interactions among all involved 

entities, which is a very strong assumption in social media since 

there might be events involving some but not all dimensions. 

Multi-graph mining considers joint factorization over two or more 

matrices. The combination of such matrices is domain-specific, 

e.g. in text mining, Zhu et al. [15] propose a joint matrix 

factorization combining both linkage and document-term matrices 

to improve the hypertext classification. In social media, relations 

depend on the system features, which might vary across websites. 

Moreover, the system features may change over time in a social 

media website, which requires flexible relational learning. 

Relational learning. Relational techniques such as PRMs [6] 

extend generative models to deal with various combinations of 

probabilistic dependency among entities. Such techniques can be 

computationally expensive, and may not scale to the large amount 

of data typically collected by social media websites. There have 

been relational learning techniques through pairwise relationships 

among entities, e.g. [3,12], which involve loss of information 

when data has higher-order interactions. Our work shares the 

same advantages as Kemp el at. [8] and Banerjee et al. [2], which 

deal with multiple tensors, but their static settings are different 

from our problem. 

In sum, social media analysis requires a flexible and scalable 

framework that exploits relational context defined by the system 

features of individual social media sites. Such relational context is 

multi-dimensional, sparse (not all dimensions are involved in an 

event), specific, and evolving over time. We propose a unified 

approach to analyze the dynamics of rich media social networks. 

3. PRELIMINARIES ON TENSOR 
This section provides notations and minimal background on 

tensors and some basic operations used in this work. We refer 

readers to [1] for a more comprehensive review on tensors. 

3.1 Tensors 
A tensor is a mathematical representation of a multi-way array. 

The order of a tensor is the number of modes (or ways). A first-

order tensor is a vector, a second-order tensor is a matrix, and a 

higher-order tensor has three or more modes. We use x as a vector, 

X as a matrix, and  as a tensor. The dimensionality of a mode is 

the number of elements in that mode. We use Iq to denote the 

dimensionality of mode q. E.g., the tensor 1 2 3 


I I I has 3 

modes with dimensionalities of I1, I2 and I3, respectively. + 

indicates all elements of the tensor  have nonnegative values, 

which is usually the case for a data tensor. The (i1,i2,i3)-element of 

a third-order tensor is denoted by 
1 2 3i i ix . Indices typically range 

from 1 to their capital version, e.g. i1=1,…,I1. 

3.2 Basic Operations 
Mode-d matricization or unfolding: Matricization is the process of 

reordering the elements of an M-way array into a matrix. The 

mode-d matricization of a tensor 1   MI I  is denoted by X(d), 

i.e. {1,.., },

( )( , )  


 
d qq M q d

I I

dunfold d X . Unfolding a tensor on 

mode d results in a matrix with height Id and its width is the 

product of dimensionalities of all other modes.  

The inverse operation is denoted as 1

( )( )     MI I

dfold X . 

In general the unfolding operation can be defined on multiple 

modes. For example, we can define mode-(c,d) unfolding as 
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   {1,.., }, ,

( , )( ,( , ))  
 

 
c d qq M q c d

I I I

c dunfold c d  . Unfolding a 

tensor on two modes c and d results in a cube (three-way tensor). 

Similarly, we can define a vectorization operation x=vec(), 

which linearizes the tensor into a vector.  

Mode-d product: The mode-d matrix product of a tensor 

1   MI I  with a matrix 
 dJ I

U  is denoted by dU and 

results in a tensor of size I1…Id-1J Id+1…IM. Elementwise, 

we have 
1 1 1 1 21

( )
  

   

d

d d M M dd

I

d i i ji i i i i jii
x uU . 

Mode-d accumulation: A mode-d accumulation or summation is 

defined as ( )( , )   dI

dacc d X 1 . The operation sums up all 

entries across all modes except for mode d, which results in a 

vector of length Id. Accumulating a tensor on mode d can be 

obtained by unfolding the tensor on mode d into a matrix and then 

multiplying the matrix with an all-one vector. Like unfolding 

operation, accumulation can be defined on multiple modes, e.g. a 

mode-(c,d) accumulation ( , ) 3( ,( , ))


   c dI I

c dacc c d 1  . This 

will result in a matrix of size IcId. 

Tensor decomposition or factorization is a form of higher-order 

principal component analysis. It decomposes a tensor into a core 

tensor multiplied by a matrix along each mode. Thus, in the three-

way case where IJK, we have 1A2B3C, which 

means each element of the tensor  is the product of the 

corresponding matrix elements multiplied by weight zpqr, i.e. 

1 1 1  
  

P Q R

ijk pqr ip jq krp q r
x z a b c . Here, AIP, BJQ and 

CKR are called factor matrices or factors and can be thought 

of as the principal components of the original tensor along each 

mode. The tensor PQR is called the core tensor and its 

elements show the level of interaction between different 

components. A special case of tensor decomposition is referred as 

CP or PARAFAC decomposition [1], where the core tensor is 

superdiagonal and P=Q=R. (A tensor 1   MI I  is diagonal if 

1
0 Mi ix  only if i1=…=iM.) The CP decomposition of a third-

order tensor is then simplified as 
1


R

ijk r ir jr krr
x z a b c , as 

illustrated in Figure 2. We use [z] to denote a superdiagonal 

tensor, where the operation [·] transforms a vector z to a 

superdiagonal tensor by setting tensor element zk…k=zk and other 

elements as 0. Thus the CP decomposition of a three-way tensor 

can be written as [z]1A2B3C, where [z] denotes a 

corresponding superdiagonal core tensor. 

4. PROBLEM FORMULATION 
This section defines the problem of discovering latent community 

structure that represents the context of user actions in social 

networks. The problem has three parts: (1) how to represent 

multi-relational social data (section 4.1), (2) how to reveal the 

latent communities consistently across multiple relations, and (3) 

how to track the communities over time (section 4.2).  

4.1 Metagraph Representation 
We introduce metagraph, a relational hypergraph for representing 

multi-relational and multi-dimensional social data. We use a 

metagraph to configure the relational context specific to the 

system features – this is the key to making our community 

analysis adaptable to various social media contexts, e.g. Digg and 

Flickr (Figure 1). We shall use the Digg example to illustrate 

three concepts: facet, relation, and relational hypergraph.  

As shown in Figure 1(a), Digg allows various actions for news 

sharing – users might submit (indicated by the line labeled ―S‖) a 

news story associated with a particular topic. They might vote (or 

digg, line ―D‖) or comment (line ―C‖) on the submitted story, 

reply (line ―R‖) to a comment created by other users, or even 

reply to a reply (not shown in the figure), etc. To describe the 

context of actions, we call a set of objects or entities of the same 

type a facet, e.g. a user facet is a set of users, a story facet is a set 

of stories, etc. We call the interactions among facets a relation; a 

relation can involve two (i.e. binary relation) or more facets, e.g. 

the ―digg‖ relation involves two facets (user, story), and the 

―make-comment‖ is a 3-way relation (user, story, comment). A 

facet can be implicit, depending on whether the facet entities 

interact with other facets, e.g. the set of digg objects might be 

omitted due to no interactions with other facets. 

Formally, we denote the q-th facet as v(q) and the set of all facets 

as V. A set of instantiations of an M-way relation e on facets v(1), 

v(2),…, v(M) is a subset of the Cartesian product v(1)…v(M). We 

denote a particular relation by e(r) where r is the relation index. 

The observations of an M-way relation e(r) is represented as an M-

way data tensor (r).  

Now we introduce a multi-relational hypergraph (denoted as 

metagraph in this paper) to describe the combination of relations 

and facets in a social media context. A hypergraph is a graph 

where edges, called hyperedges, connect to any number of 

vertices. The idea is to use an M-way hyperedge to represent the 

interactions of M facets: each facet as a vertex and each relation as 

a hyperedge on a hypergraph. A metagraph defines a particular 

structure of interactions among facets, not among facet elements. 

Formally, for a set of facets V={v(q)} and a set of relations 

E={e(r)}, we construct a metagraph G=(V,E). To reduce notational 

complexity, V and E also represent the set of all vertex and edge 

indices respectively. A hyperedge/relation e(r) is said to be 

incident to a facet/vertex v(q) if v(q)e(r), which is represented by 

v(q)~e(r) or e(r)~v(q). E.g., in Figure 1(c) v(1) represents the user 

facet, e(5)={v(1),v(2),v(3)} represents the ―make-comment‖ relation. 

We summarize our notations in Table 1. 

Symbol Description 

x a vector (boldface lower-case letter) 

X a matrix (boldface capital letter) 

 a tensor (boldface Euler script letter) 

I1,…,IM the dimensionality of mode 1, …, M 

v(q) a vertex v(q)V represents the facet v(q) 

e(r) a hyperedge e(r)V represents the relation e(r) 

V the set of all facets V={v(q)}, or the set of all vertex indices  

E the set of all relations E={e(r)} or all hyperedge indices 

G 
a metagraph G=(V,E), where V is a set of facets/vertices and E 

is a set of relations/hyperedges 

K, L constants 

Table 1: Description of notations. 

Figure 2: CP decomposition of a three-way tensor. 
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4.2 Community Discovery on Metagraph 
We formalize the community discovery problem as latent space 

extraction from multi-relational social data represented by a 

metagraph. Our goal is to discover latent community structures 

that represent the context of user actions in social media 

networks. We are interested in clusters of people who interact 

with each other in a coherent manner. Some of the interaction can 

be implicit, e.g. two users may comment on the same stories, and 

the interactions can be further enhanced by other interactions. 

Hence we consider a community as a latent space of consistent 

interactions or relations among users and objects. 

By assuming consistent interactions in a community, the 

interaction between any two entities (users or media objects) i and 

j in a community k, written as xij, can be viewed as a function of 

the relationships between community k with entity i, and k with j. 

If we consider the function to be stochastic, i.e. let pki indicate 

how likely an interaction in the k-th community involves the i-th 

entity and pk is the probability of an interaction in the k-th 

community, we can express xij by xijk pkipkjpk. Likewise a 

3-way interaction among entity i1, i2 and i3 is 

1 2 3 1 2 3     i i i k k i k i k ik
x p p p p . A set of such interactions 

among entities in facet v(1), v(2) and v(3) can be written by: 
3

(1) (2) (3) ( )

1 1

[ ] ,
 

    
K

m

k k k k m

k m

p u u u z U   <1> 

where 1 2 3 


I I I  is the data tensor representing the observed 

three-way interactions among facet v(1), v(2) and v(3).  qk ip  is 

written as an (iq,k)-element of U(q) for q=1,2,3. U(q) is a IqK 

matrix, where Iq is the size of v(q). The probabilities of 

communities are elements of z, i.e. pk=zk. This is similar to the CP 

decomposition of a tensor (section 3.2), except that the core 

tensor [z] and the factor matrices {U(q)} are constrained to contain 

nonnegative probability values. Under the nonnegative constraints, 

the 3-way tensor factorization is equivalent to the three-way 

aspect model in a three-dimensional co-occurrence data [13]. 

The nonnegative tensor decomposition can be viewed as 

community discovery in a single relation. The interactions in 

social media networks are more complex – usually involving 

multiple two- or multi-way relations. By using metagraphs, we 

represent a diverse set of relational contexts in the same form and 

define the community discovery problem on a metagraph, with the 

following two technical issues.  

The first issue is how to extract community structure as coherent 

interaction latent spaces from observed social data defined on a 

metagraph, which is formally stated as follows. 

Problem (Metagraph Factorization, or MF): given a metagraph 

G=(V,E) and a set of observed data tensors {(r)}rE defined on G, 

find a nonnegative core tensor [z] and factors {U(q)}qV for 

corresponding facets V={v(q)}. (Since E also represents the set of 

all edge indices, the notations rE and e(r)E are exchangeable. 

Likewise, qV and v(q)V are exchangeable.) 

The second issue concerns the dynamic nature of human activities 

– those interactions might be consistent during a short time period 

but are unlikely to be consistent all the time. The problem, how to 

extract community structure as coherent interaction latent spaces 

from time evolving data given a metagraph, is defined as follows. 

Problem (Metagraph Factorization for Time evolving data, or 

MFT): given a metagraph G=(V,E) and a sequential set of 

observed data tensors {t
(r)}rE defined on G for time t=1,2,…, 

find a nonnegative core tensor [zt] and factors {Ut
(q)}qV 

corresponding to facets V={v(q)} for each time t. 

We will present our method in two steps: (1) present a solution to 

MF (section 5); (2) extend the solution to solve MFT (section 6). 

5. METAGRAPH FACTORIZATION 
This section presents our solution to the metagraph factorization 

problem (MF). Our method relies on formulating MF as an 

optimization problem (section 5.1). We then provide an algorithm 

to solve the optimization objective (section 5.2) and discuss its 

computational complexity (section 5.3). 

5.1 Optimization Objective 
The MF problem can be stated in terms of optimization. Let us 

first consider a simple metagraph case. Assume we are given a 

metagraph G=(V,E) with three vertices V={v(1), v(2), v(3)} and two 

2-way hyperedges E={e(a),e(b)} that describe the interactions 

among these three facets, as shown in Figure 3. The observed data 

corresponding to the hyperedges are two second-order data 

tensors (i.e. matrices) {(a),(b)} with facets {v(1), v(2)} and {v(2), 

v(3)} respectively. The facet v(2) is shared by both tensors.  

The goal is to extract community structure from data tensors, 

through finding a nonnegative core tensor [z] and factors {U(1), 

U(2), U(3)} corresponding to the three facets. The core tensor and 

factors need to consistently explain the data, i.e. we can 

approximately express the data by (a)[z]1U
(1)2U

(2) and 

(b)[z]2U
(2)3U

(3), as in eq<1>. The core tensor [z] and facet 

U(2) are shared by the two approximations, and the length of z is 

determined by the number of latent spaces (communities) to be 

extracted. Since both the left- and the right-hand side of the 

approximation are probability distributions, it is natural to use the 

KL-divergence (denoted as D(||)) as a measure of approximation 

cost. To simultaneously reduce two approximation costs we can 

define a cost function as:  

( ) (1) (2) ( ) (2) (3)

1 2 2 3( || [ ] ) ( || [ ] )    a bD Dz U U z U U  , <2> 

where D(||)=i (ai log ai/bi – ai + bi) is the KL-divergence 

between tensor  and  and a = vec(), b = vec(). 

The solution to eq.<2> will be an MF solution for the metagraph 

in Figure 3. We observe three things in this example: In eq.<2>, 

each D(||) correspond to a hyperedge, each tensor product 

corresponds to how facets are incident to an hyperedge and the 

summation corresponds to all hyperedges on the graph. We can 

generalize eq.<2> to any metagraph G, as follows. 

Figure 3: An example of the metagraph factorization (MF). 

Given observed data tensors {(a),(b)} and a metagraph G 

that describes the interaction among facets {v(1), v(2), v(3)}, 

find a consistent community structure expressed by core 

tensor [z] and facet factors {U(1), U(2), U(3)}. 
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Given a metagraph G=(V,E), the objective is to factorize all data 

tensors such that all tensors can be approximated by a common 

nonnegative core tensor [z] and a shared set of nonnegative 

factors {U(q)}, i.e. to minimize the following cost function: 

( )
( ) ( )

( ) ( )

,{ }
: ~

1 ( ) ( )

( ) min ( || [ ] )

.  ,  , 1 





 

 

     

 



q
m r

q

r m

m

r E m v e

I KK q q

iki

J G D

s t q q k

z U

z U

z U U


 <3> 

where K is the number of communities, and D(||) is the KL-

divergence as described above. The constraint that each column of 

{U(q)} must sum to one is added due to the modeling assumption 

that the probability of an occurrence of a relation on an entity is 

independent of other entities in a community. Eq.<3> can be 

easily extended to incorporate weights on relations. 

5.2 Algorithm 
We provide a solution to the objective function defined in eq.<3>. 

It is difficult to guarantee a global minima solution, as eq.<3> is 

not convex in all variables. By employing the concavity of the log 

function (in the KL-divergence), we derive a local minima 

solution to eq.<3>. The solution can be found by the following 

updating algorithm: 

1 1

1

( ) ( )

... ...

...

1




   M Mr r

Mr

r r

k i i i i k

r E i iL
z  ,  <4> 

1 1
( ) ( )

1 1 1

( ) ( ) ( )

... ...

... ...: ~

1


 

  q M Ml l
l q

q q Ml

q l l

i k i i i i k

i i i il e vqL
U  , <5> 

where z is a length K vector, L=|E| denotes the total number of 

hyperedges on G, Lq=|{l:e(l)~v(q)}| denotes the number of 

hyperedges incident to v(q), and 

( )

( ) ( )

1

( ) ( )
1

( ) : ~

( )

: ~
([ ] )

 









m

m r
m

Mr
m r

Mr

k i kr m v e
i i k m

m i im v e

z U

z U
. <6> 

After updates, each column of U(q) are normalized to sum to one. 

Because of this normalization step, we can omit dividing by Lq in 

eq.<5>. This iterative update algorithm is a generalization of the 

algorithm proposed by Lee et al. [10] for solving the single 

nonnegative matrix factorization problem. In metagraph 

factorization, the update for core tensor [z] depends on all 

hyperedges on the metagraph, and the update for each facet factor 

U(q) depends on the hyperedges incident to the facet. The proof 

for the convergence of our algorithm is omitted due to space limit. 

The computation in eq.<4>–<6> can be time-consuming due to 

the high dimensionalities of tensors. We now discuss an efficient 

implementation of the update rules. In eq.<4>–<6>,
1

( )  Mr

r

i i k  is an 

element of a 1  
rMI I K  tensor. Let (r) 

+ denote this 

tensor, where  denotes the dimensionalities 1  
rMI I K in 

short. Because (r) is expensive to compute and operate, we 

want to reduce computation that involves (r). By observing the 

shared part for updating the core tensor and all facet factors in 

eq.<4> and <5>, we can use the following strategy to achieve 

efficient computation: Instead of computing (r) explicitly, we 

compute an intermediate tensor (r) of the same dimensionalities 

as (r). (r) will save the repeating part of multiplication of (r) 

with {U(q)} and z in eq.<4> and <5>. Thus, the above update rules 

can be rewritten as follows. First, for each e(r), compute a tensor 

(r) 
+ by: 

( ) ( )

( ) ( ) ( )

: ~
( ([ ] ))  m r

r r m

mm v e
vecμ z U   <7> 

( )( ) ( ) (1) T( ( ) )    rMr rfold μ z U U   <8> 

where  denotes the element-wise division, and  denotes the 

Khatri-Rao product. The Khatri-Rao product of two matrices A 

and B, denoted by AB, is defined by 

 1 1 2 2     K KA B a b a b a b , where ak and bk are 

the kth column vectors of A and B respectively, and where ab is 

the Kronecker product of a and b. 

The second step is to update z and {U(q)} by: 

( )1
( , 1)



  r

r

r E

acc M
L

z    <9> 

( ) ( )

( ) ( )

: ~

( ,( 1, )) 
l q

q l

l
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where Mr+1 is the last mode of (r). The multiplication of (r) 

and (r) in eq.<4> and <5> is now pre-computed in eq.<7> and 

<8> by utilizing the Khatri-Rao product. To obtain z and {U(q)}, 

we only need to accumulate (r) on the corresponding modes. 

{U(q)} obtained from eq.<10> will be equivalent to those from 

eq.<5> after normalization. Eq.<7>–<10> yield exactly the same 

results as eq.<4>–<6>. The algorithm shares the same form of the 

expectation-maximization algorithm, where eq.<7> and <8> 

correspond to the E-step and  eq.<9> and <10> correspond to the 

M-step. Note that the information contained in each data tensor 

with respect to a hyperedge is aggregated through the E-step and 

is shared by the core tensor and all facet factors in the M-step, 

thus the extracted communities will be coherent latent spaces. 

Table 2 summarizes the whole process to solve an MF problem.  

Algorithm 1: MF 

Input: metagraph G = (V,E) and data tensors {(r)} on G 

Output: z and {U(q)} 

Method:       Initialize z, {U(q)} 

    Repeat until convergence 

        For each rE, compute (r) by eq.<7> and <8> 

        update z by eq. <9> 

        For each qV, update U(q) by eq. <10> 

Table 2: The MF (metagraph factorization) algorithm. 

We refer the solution core tensor and facet matrices as a 

community model, from which we infer the probabilistic (soft) 

membership of entities in each facet. As described in section 4.2, 

each (i,k)-element of a facet matrix U is p(i|k) (i.e. pki, how likely 

an interaction in the community k involves entity i), and each 

element zk=p(k) (i.e. pk, the probability of an interaction in 

community k). Thus we compute the conditional probability p(k|i) 

to indicate the soft membership of entity i with respect to 

community k by p(i|k)p(k)/p(i), where p(i)=k’p(i|k’)p(k’) is the 

probability of an interaction involving entity i.  

5.3 Computational Complexity 
We now discuss the time complexity for the updates. The most 

time-consuming step in the algorithm is to compute (r) for each 

hyperedge e(r). As can be seen in eq.<7>, we can take advantage 

of the sparseness of the data tensor (r) and compute only the 
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non-zero elements (total number of tuples) in (r). Let n denote 

the largest number of non-zero elements of the involved data 

tensors. This step has time complexity O(nKML), where K is the 

number of clusters, M is the maximal number of incident facets of 

a relation, and L is the total number of input relations. Usually, K, 

M, L are much smaller than n. If we consider K, M and L are 

bounded by some constants, the time complexity per iteration is 

linear in O(n), the number of non-zero elements in all data tensors. 

6. TIME EVOLVING EXTENSION 
This section presents our solution to the problem of metagraph 

factorization with time evolving data (MFT). 

6.1 Optimization Objective 
In the MFT problem, the relational data is constantly changing as 

evolving tensor sequences. We propose an online version of MF 

to handle dynamic data. Since historic information is contained in 

the community model extracted based on previously observed 

data, the new community structure to be extracted should be 

consistent with previous community model and new observations, 

which is similar to the evolutionary clustering discussed in [11]. 

To achieve this, we extend the objective in eq.<3> as follows. 

A community model for a particular time t is defined uniquely by 

the factors {Ut
(q)} and core tensor [zt]. (To avoid notation clutter, 

we omit the time indices for t.) For each time t, the objective is to 

factorize the observed data into the nonnegative factors {U(q)} and 

core tensor [z] which are close to the prior community model, [zt-1] 

and {Ut-1
(q)}. We introduce a cost lprior to indicate how the new 

community structure deviates from the previous structure in terms 

of the KL-divergence. The new objective is defined as follows:  
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where α is a real positive number between 0 and 1 to specify how 

much the prior community model contributes to the new 

community structure. lprior is a regularizer used to find similar 

pairs of core tensors and pairs of facet factors for consecutive 

times. The new community structure will be a solution 

incrementally updated based on a prior community model. 

6.2 Algorithm 
Based on a derivation similar to the discussion in section 5, we 

provide a solution to eq. <11> as follows: 
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where 
1

( )  Mr

r

i i k  is defined as in eq.<6>. After updates, each 

column of U(q) and the vector z are normalized to sum to one. 

Because of this normalization step, we have dropped the scaling 

constant for updating z and U(q).  

It can be shown that the parameters in the previous model (zt-1 and 

{Ut-1
(q)}) act as Dirichlet prior distribution to inform the solution 

search (ref. [11]), thus the solution is consistent with previous 

community structure. The update rules can be rewritten as the 

following operations with (r) pre-computed by eq.<7> and <8>: 
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where Mr+1 is the last mode of (r). The whole process of finding 

solutions to the MFT problem is summarized in Table 3. 

Algorithm 2: MFT 

Input: hypergraph G = (V,E), the data tensors
 
{(r)} on G observed at 

time t, previous model zt-1, and {Ut-1
(q)} Output: new model z and {U(q)} 

Method:       Initialize z,{U(q)} 

    Repeat until convergence 

        For each rE, compute (r) by eq.<7> and <8> 

        update z by eq. <14> 

        For each qV, update U(q) by eq. <15> 

Table 3: The MFT algorithm. 

For time evolving social data, changes might happen in 

interactions among entities, or even in interactions among facets 

(e.g. due to the evolution of system features) which lead to 

changes in metagraph. One advantage of our MFT algorithm is it 

only requires new observed data defined on any given metagraph, 

so it is straightforward to incorporate the changes of a metagraph.  

7. EXPERIMENTS 
This section reports our experimental study on a real-world social 

media dataset collected from Digg. We first describe the dataset 

(section 7.1) and present the extracted communities (section 7.2). 

We evaluate our technique through prediction tasks (section 7.3). 

Finally, we evaluate the scalability of our factorization method on 

synthetic datasets (section 7.4).  

7.1 Digg Dataset 
We have collected data from a large set of user actions from Digg. 

Digg is a popular social news aggregator that allows users to 

submit, vote (i.e. digg) and comment on news stories. It also 

allows users to create social networks by designating other users 

as friends and tracking friends’ activities. The dataset used in our 

experiments include stories, users and their actions (submit, digg, 

comment and reply) with respect to the stories, as well as the 

explicit friendship (contact) relation among these users. To 

analyze users’ topical interests, we also retrieve the topics of the 

stories and extract keywords from the stories’ titles.  

Relation Tensor / incident facets #Tuples 

(R1) content dynamic (story, keyword, topic) 151,779 

(R2) contact static (user, user) 56,440 

(R3) submit dynamic (user, story) 44,005 

(R4) digg dynamic (user, story) 1,157,529 

(R5) comment dynamic (user, story, comment) 241,800 

(R6) reply dynamic (user, comment) 94,551 

Table 4: Summary of the relations in Digg dataset. 

From this dataset, we select 5 facets (user, story, comment, 

keyword and topic) and build 6 relations among them. The 

relations are summarized in Table 4, which correspond to the 

metagraph shown in Figure 1(c). Except for the contact relation, 

all relations have timestamps. We assume the contact relation is 

static and consider the other relations as dynamic. For dynamic 

relations, we extract tuples with timestamps ranging from August 

1 to August 27, 2008. To study the data evolution, we segment 

the duration into 9 time slots (i.e. every three days), and construct 

a sequence of data tensors for each dynamic relation. In the 
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following we shall use t[1,9] to denote a time slot index. The 

total number of tuples in each tensor sequence per relation is 

listed in Table 4. Our dataset and code are available online 

(http://www.public.asu.edu/~ylin56/kdd09sup.html). 

7.2 Community Analysis  
We present a qualitative analysis of the communities extracted by 

our method, which demonstrates an advantage of probabilistic 

interpretation given by our method. We first show all 

communities extracted for a particular time and then examine the 

community evolution within two of these communities. 

To illustrate what kinds of stories are ―dugg‖ by what kind of 

communities, we track the latent communities based on the 

digging activities which involve relation R1 and R4. Figure 6(a) 

and (e) shows the corresponding metagraph and the number of 

tuples in the two relations. In our factorization algorithm, we 

assume that the number of communities, K, is given beforehand. 

Here we show communities extracted given K=2, 4 and 12. 

Based on relation R1 and R4, four facets are involved: user, story, 

keyword and topic. We present the keyword and topic facets 

because they are more informative to the readers than other facets. 

Figure 4 shows the most likely keywords and topics in each 

community. We present the results of t=3 (August 6-9, 2008). We 

project those keyword and topic (shown within brackets) terms 

onto a 2D plane. The location of the i-th keyword or topic term 

indicates its relative proximity to other terms and is computed 

based on its soft membership p(k|i). (The position is determined 

by standard multidimensional scaling with the soft membership as 

input.) The size of the i-th term indicates how likely the term 

appears in a story and is determined based on the probability p(i). 

Each term is colored based on its most likely community, i.e. by 

choosing k with maximal p(k|i). In the figure we can see the 

communities based on users’ digging activities have coherent 

topical preference, as the terms with the same colors are located 

closely. The 2-, 4- and 12-community results show the 

communities at different resolution. The 2-community result 

distinguishes political interests from the Olympics news (Figure 

4(a)). The 4-community shows four topical interests in 

communities: C1: gaming industry news, C2: US election news, 

C3: world news, and C4: general political news (Figure 4(b)). The 

two major topics (―olympics‖ and ―georgia‖) in C3 are further 

split in the 12-community result (Figure 4(c)). 

Community Evolution. We select the 4-community result and 

examine its evolution. Figure 5(a) shows the probabilities of the 

four communities over time, and Figure 5(b) shows the keyword 

dissimilarity across time where the dissimilarity is computed 

based on the cosine similarity of keyword distribution in each 

community of consecutive timestamps. (We use a cosine 

similarity measure in order to emphasize the differences at the 

―head‖ of the distributions.) We observe two critical times in 

Figure 5(b): for community C2 and C3, the keywords distribution 

change drastically at t=3 (August 6-9) and t=8 (August 21-24). To 

examine the events occurring during these times, we look at the 

keyword distributions of the two communities. Table 5 lists the 

top 10 keywords that are mostly likely to appear in C3 and C2, at 

t=2,3 and t=7,8 respectively. At t=3, the new popped keywords 

―olympics‖ and ―georgia‖ reflect users’ attention to two 

significant world news items: the 2008 Summer Olympics began 

on August 8 and the 2008 Russia-Georgia conflict started on 

August 7. At t=8, the new popped keywords ―joe‖, ―biden‖, ―vp‖ 

correspond to the time when presidential candidate Barack Obama 

announced that Joe Biden would be his running mate (on August 

22). Another critical time is captured by the change in community 

size. In Figure 5(a), we see the community C3 keeps growing 

until t=6, when the Russia-Georgia conflict ended with a ceasefire 

agreement signed on August 15 and 16. 

 

Table 5: The keyword distribution of community C2 and C3 

during two critical times, t=3 and t=8. 

C2 

 

C4 

 

C3 

 

C1 

 

(a) 2-community 

 

(b) 4-community 

 

(c) 12-community 

 

Figure 4: Community extracted based on user digging activities, for time t=3 (August 6-9, 2008) and number of communities K=2, 4 

and 12. The most likely keyword and topic terms (shown within brackets) in each community are projected based on their soft 

membership. The size of each term indicates its probability and each term is colored based on its most likely community. The results 

show coherent topical preference in communities, as the terms with the same colors are located closely. 

 (a) community popularity 

 

(b) concept evolution 

 

Figure 5: The community evolution characterized based on 

(a) change in size of communities, and (b) change in keyword 

distribution in each community. 
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The characterization of community evolution based on change in 

the probability of a cluster and on change in the distribution of 

entities such as keywords (Figure 5 and Table 5) demonstrates the 

advantage of our soft clustering method. The presented case study 

suggests that our method is able to generate meaningful mining 

results from dynamic multi-relational social networks. 

7.3 Evaluation via Prediction 
We use a prediction task to demonstrate the utility of our 

techniques. Based on the Digg scenario, we design two prediction 

tasks – to predict users’ future interests on digging (i.e. voting) 

and commenting on Digg stories. We study three aspects of our 

method through the prediction tasks: (1) How does our 

community discovery framework help predict users’ future 

interests? (2) How much historic information do we need? (3) 

Which relation is relevant to the prediction? 

Prediction setting. There are two tasks: (a) digg prediction – 

what stories a user will digg, and (b) comment prediction – what 

stories a user will comment on. Both tasks are evaluated on data 

from each time slot. We use stories that have digging or 

commenting events in time slot ts[2,9] as testing sets and the 

available relational data (ref. Table 4) in time slot ts-1 as training 

sets. The prediction results are compared with the actual diggs 

and comments occurring in slot ts. This is a constrained setting 

because there might be more digging or commenting activities 

occurring after ts. In our prediction experiments we only consider 

diggs and comments in each single slot ts as ground truth. 

Evaluation metrics. We use two metrics adopted in Information 

Retrieval: (1) ―P@10‖ (the precision of the top 10 results): For 

each user we compute the precision based on the top 10 stories 

retrieved for the user. The overall P@10 for the set of users is 

computed by taking the mean of P@10 per user, per time slot. (2) 

―NDCG‖ (Normalized Discount Cumulative Gain [7]): One 

advantage of the measure is its sensitivity to the prediction order. 

The NDCG is proportional to i(i)/log(1+i), where i is the rank 

of predicted stories, δ(i)=1 if the prediction of the rank-i story is 

correct and 0 otherwise. 

Our prediction method. We generate predictions based on the 

community structure extracted by our method, denoted by MF and 

MFT. The MF algorithm outputs community structure from 

relational data of each time slot ts-1. The MFT algorithm uses the 

same data as MF, with the aid of a community model extracted for 

time ts-2 as an informative prior. Hence MFT gives results 

incrementally. From an extracted community model we obtain the 

probability of a community k, p(k), and the probability of a user u, 

a keyword w and a topic j, given community k, i.e. p(u|k), p(w|k) 

and p(j|k). To predict if a user u will digg or comment on a story r, 

we first use a folding-in technique (ref. e.g. [13]) to compute 

p(r|k), the probability of a story given each community k, based on 

the story topic and keywords. Then a prediction is made based on 

the condition probability p(r|u)p(u,r)k’p(k)p(u|k’)p(r|k’).  

Baseline methods. Three baseline methods are used:  (1) 

Frequency based heuristics (FREQ) – predicting stories based on 

the frequencies of story topic and keywords at ts-1. (2) Standard 

tensor analysis (PARAFAC) – predicting stories by using the 

CP/PARAFAC tensor decomposition [1] for data in slot ts-1. The 

stories to be predicted are first projected on the latent spaces, and 

the prediction is made based on the dot product of the user and 

story projected vectors. (3) Multi-way aspect model (MWA) – 

predicting stories by using the multi-way aspect model [13], a 

special case of our model (ref. section 4.2).  

The ability to handle relational contexts is the key to our 

comparison. We choose specific relations to illustrate the utility of 

leveraging a specific context by a metagraph – relation R1 and R4 

for digg prediction and R1 and R5 for comment prediction (ref. 

Figure 6(a) and (b)), and we shall evaluate the effect of other 

relations later in this section. Since PARAFAC and MWA only 

deal with a single high dimensional relation, we construct two 4-

way tensors per time that contains digg actions and comment 

actions with respect to stories. The two tensors, denoted by TD 

and TC are shown in Figure 6(c) and (d). Figure 6(e) shows the 

number of non-zero entries (tuples) of these data tensors over time. 

The number of tuples in an R5 tensor corresponds to the number 

of stories per time. 

Except for the FREQ method, all methods are tested with number 

of clusters or latent spaces K=4… 20. For MFT, we use α=0.2. 

       metric 

method 

digg prediction comment prediction 

P@10 NDCG P@10 NDCG 

FREQ 0.1750.061 0.0350.016 0.0150.007 0.0040.002 

PARAFAC 0.3690.004 0.1450.002 0.0490.002 0.0180.001 

MWA 0.1950.002 0.0690.001 0.0670.001 0.0200.000 

MF 0.5290.008 0.2120.002 0.1170.001 0.0380.000 

MFT 0.5430.007 0.2150.004 0.1350.001 0.0430.000 

Table 6: The average prediction performance for digg and 

comment prediction, evaluated by P@10 and NDCG metrics. 

Results and Discussion. The overall prediction performance is 

obtained by taking the average of prediction performance on data 

for each time slot (t=1…8 for training and t=2…9 for testing) 

over different K values. The results (mean and standard deviation) 

are given in Table 6. There are several observations. First, our 

method significantly outperforms all baseline methods. In digg 

prediction, our MF method outperforms the baselines by 43% to 

5X on the average. In comment prediction, the MF method 

outperforms the baselines by 73% to 10X. Second, the MFT 

performs the best. It slightly outperforms MF in digg prediction 

and improves MF by 15% in comment prediction. Next we show 

how our prediction can be further improved by (a) incorporating a 

historic model and (b) leveraging other relations through a 

metagraph. 

Effect of historic information. We vary the weight of the prior 

model in MFT and report the average P@10 over α values (Figure 

7(a)). The results suggest that incorporating historic information 

as prior knowledge works better than no prior (α=0). Note for 

comment prediction, the performance increases until α0.8. This 

suggests that the comment activities are more consistent with the 

historic community structure than the digg activities. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 6: Relations used by different methods for digg and 

comment prediction: (a) R1 and R4 used in our method for 

digg prediction; (b) R1 and R5 used in our method for 

comment prediction; (c) TD tensors used in PARAFAC and 

MWA for digg prediction; (d) TC tensors used in PARAFAC 

and MWA for comment prediction; (e) number of tuples in 

each relation over time. 

 

(e) 
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Effect of various relational context. For comment prediction, we 

evaluate the prediction performance over different relational 

contexts. Figure 7(b) shows the average prediction results. The 

label R* indicates which relations are used in the training set, e.g. 

R125 denotes relation R1, R2 and R5. We observe that different 

combinations of the relations affect the prediction performance. 

For example, incorporating the contact relation R2 with R1 and 

R5 significantly helps predict users’ comment activities.  

7.4 Scalability Evaluation 
We use synthetic datasets to illustrate the scalability of our 

algorithms. We study how the computational time of our 

algorithm increases with four variables, including different types 

of data growth – (a) non-zero elements in a data tensor, (b) 

number of tensor modes (dimensions), (c) number of relations 

(tensors) on a given metagraph, as well as (d) the algorithm 

parameter, i.e. number of clusters. In the simulation we randomly 

generate tensors by varying one of the above variables (e.g. the 

number of non-zero elements) and fixing all remaining variables. 

Figure 8 shows the simulation results, indicating that the running 

time per iteration scales linearly with the data size, the number of 

tensor modes, the total number of relations and the number of 

clusters. Note that the slope for increasing tensor modes is steeper 

than increasing relations. Empirically the non-zero elements in a 

higher mode tensor are usually much more than lower mode 

tensors (as in Figure 6(e)). Therefore by leveraging a metagraph 

we can efficiently combine multiple low-dimensional relations 

instead of constructing a high-dimensional tensor. The 

experimental results on the synthetic datasets correspond to our 

analysis in section 5.3 and suggest that our algorithm can 

efficiently deal with large sparse multi-relational data. 

8. CONCLUSION 
We proposed the MetaFac framework to extract community 

structures from various social contexts and interactions. There 

were three key ideas: (1) metagraph, a relational hypergraph for 

representing multi-relational social data; (2) MF algorithm, an 

efficient non-negative multi-tensor factorization method for 

community extraction on a given metagraph; (3) MFT, an on-line 

factorization method to handle time-varying relations. We 

conducted extensive experiments on real-world data collected 

from Digg. Our case study demonstrated that meaningful mining 

results can be generated by our method. We evaluated our method 

by predicting digg / comment actions on stories. We generated the 

predictions based on the extracted community models and 

compare results with baselines. Our method outperformed 

baseline measures up to an order of magnitude. Our method can 

be further improved by (a) incorporating a historic model and (b) 

leveraging other relations through a metagraph. As part of our 

future work, we plan to investigate the following open issues: (1) 

the resolution (including number of communities) of community 

structures; (2) kernel based representation of facet relationships. 
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(a) 
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Figure 7: Effect of (a) prior community model (historic 

information) and (b) different input relations. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 8: Running time per iteration (sec.) for different types 

of data growth (let n denote the value on the x-axis of each 

plot): (a) number of non-zero elements (one 3-way tensor 

with n non-zero elements), (b) number of tensor modes (one 

n-way tensor), (c) number of relations (n 3-way tensors) in a 

metagraph, and (d) for different algorithm parameter, the 

number of clusters (K). 
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