
MetaFac: Community Discovery via Relational Hypergraph

Factorization

Yu-Ru Lin
1
 Jimeng Sun

2
 Paul Castro

2
 Ravi Konuru

2
 Hari Sundaram

1
 Aisling Kelliher

1

1
Arts Media and Engineering

Program, Arizona State University,
Tempe, AZ 85281 USA

2
IBM T.J. Watson Research Center,

Hawthorne, NY 10532 USA

{yu-ru.lin, hari.sundaram, aisling.kelliher}@asu.edu, {jimeng, castrop,rkonuru}@us.ibm.com

ABSTRACT
This paper aims at discovering community structure in rich media

social networks, through analysis of time-varying, multi-relational

data. Community structure represents the latent social context of

user actions. It has important applications in information tasks

such as search and recommendation. Social media has several

unique challenges. (a) In social media, the context of user actions

is constantly changing and co-evolving; hence the social context

contains time-evolving multi-dimensional relations. (b) The social

context is determined by the available system features and is

unique in each social media website. In this paper we propose

MetaFac (MetaGraph Factorization), a framework that extracts

community structures from various social contexts and

interactions. Our work has three key contributions: (1) metagraph,

a novel relational hypergraph representation for modeling multi-

relational and multi-dimensional social data; (2) an efficient

factorization method for community extraction on a given

metagraph; (3) an on-line method to handle time-varying relations

through incremental metagraph factorization. Extensive

experiments on real-world social data collected from the Digg

social media website suggest that our technique is scalable and is

able to extract meaningful communities based on the social media

contexts. We illustrate the usefulness of our framework through

prediction tasks. We outperform baseline methods (including

aspect model and tensor analysis) by an order of magnitude.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—Data

mining; H.3.3 [Information Storage and Retrieval]: Information

Search and Retrieval—Information filtering; I.5.3 [Pattern

Recognition]: Clustering; J.4 [Computer Applications]: Social

and Behavioral Sciences—Economics

General Terms

Algorithms, Experimentation, Measurement, Theory

Keywords

MetaFac, metagraph factorization, relational hypergraph, non-

negative tensor factorization, community discovery, dynamic

social network analysis

1. INTRODUCTION
This paper aims at discovering community structure in rich media

social networks, through analysis of the time-varying multi-

relational data from social media websites. Social media websites

such as Flickr, Digg and Facebook allow a wide array of actions

on media objects – e.g. uploading photos, submitting and

commenting on news stories, bookmarking and tagging, posting

documents, creating web-links, as well as actions with respect to

other users (e.g. sharing media and links with a friend). The key to

social media information tasks such as media recommendation

relies in understanding the context of these actions – how they

relate to other actions, users and media objects. For example, a

user might be motivated to search a story after viewing her

friend’s bookmarks.

The problem has two challenges: (1) in social media, the context

of user actions is constantly changing and co-evolving, e.g. with

respect to other users’ actions, emergent concepts and users’

historic preferences. Hence the social context contains time-

evolving multi-dimensional relations; (2) the social context is

determined by the available system features that allow interactions

on media objects and among people. Hence the social context is

unique in each social media website. For example, Figure 1 shows

the main actions available in Digg and Flickr, as well as related

media objects. In Digg, users might submit / vote (digg) /

comment on a story, reply to a comment, reply to a reply, etc.

Flickr users might post, tag and comment on a photo, make friend

Figure 1: The social context of user actions vary across social

media websites – we propose a metagraph representation to

model various social context; (a) primary actions and related

media objects in Diggs; (b) primary actions and related

objects in Flickr; (c) a metagraph representation for Digg; (c)

a metagraph for Flickr.

(c)

(d)

(a)

(b)

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
KDD’09, June 28– July 1, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-495-9/09/06...$5.00.

527

contacts, label a photo as a favorite, join a photo sharing group

(pool), etc. There are some common actions, but more site-

specific actions cater to the purpose of each site. The discovery of

social context needs to deal with the diverse and dynamic nature

of actions in social media.

In this paper we propose MetaGraph Factorization (MetaFac), a

framework that extracts community structures (i.e. the latent

social context) from various social interactions. Our work has

three key contributions: (1) metagraph, a novel relational

hypergraph representation for modeling multi-relational and

multi-dimensional social data; (2) an efficient factorization

method for community extraction on a given metagraph; (3) an

on-line method to handle time-varying relations through

incremental metagraph factorization.

Extensive experiments on real-world social media data suggest

that our technique is scalable and is able to extract meaningful

communities based on social media context. We illustrate the

usefulness of our framework through prediction tasks – to predict

users’ future interests on voting or commenting on Digg stories.

Our prediction significantly outperforms baseline methods

(frequency counts, tensor analysis, etc.), suggesting the utility of

leveraging metagraphs to handle time-varying social relational

contexts.

The rest of the paper is organized as follows. Section 2 reviews

the related work. Section 3 introduces preliminaries and section 4

formalizes the problem. Section 5 and 6 presents our community

extraction method on both static and dynamic multi-relational

data. Section 7 presents experiments and section 8 concludes.

2. RELATED WORK
Community discovery in rich media social networks deals with a

constantly changing ―mishmash‖ of interrelated users and media

objects. The problem has three aspects: (1) evolutionary

characterization of communities in time-varying social networks,

(2) analysis of multi-dimensional data, and (3) relational learning

adaptable to different social contexts. To the best of our

knowledge, our work is the first unified attempt to address all

three aspects within a single problem.

Evolutionary community characterization. Social interactions

among people have been studied through a unipartite or bipartite

graph, in which the community structure can be characterized by

clustering methods [14], and the evolution of community

structure is captured in terms of various criteria. Kumar et al. [9]

study the evolution of the blogosphere in terms of the change of

graph statistics and the burstiness of extracted communities. Sun

et al. [14] use the Minimum Description Length principle to

extract communities and to detect their changes. Lin et al. [11]

use an evolutionary clustering criterion [4] to extract community

structures based on both observed networked data and historic

community structure. All these works restrict themselves to pair-

wise relations between entities (e.g. user-user or user-paper). In

rich online social media, networked data consists of multiple co-

evolving dimensions, e.g. users, tags, feeds, comments, etc.

Collapsing such multi-way networks into pairwise networks

results in the loss of valuable information, and the analysis of

temporal correlation among multi-dimensions is difficult.

Multi-dimensional mining. In multi-dimensional network

analysis, networks have more than two types of entities. Existing

techniques include tensor based analysis [5,14] or multi-graph

mining. Tensor factorization is a generalized approach for

analyzing multi-way interactions among entities. Note that a

tensor represents complete interactions among all involved

entities, which is a very strong assumption in social media since

there might be events involving some but not all dimensions.

Multi-graph mining considers joint factorization over two or more

matrices. The combination of such matrices is domain-specific,

e.g. in text mining, Zhu et al. [15] propose a joint matrix

factorization combining both linkage and document-term matrices

to improve the hypertext classification. In social media, relations

depend on the system features, which might vary across websites.

Moreover, the system features may change over time in a social

media website, which requires flexible relational learning.

Relational learning. Relational techniques such as PRMs [6]

extend generative models to deal with various combinations of

probabilistic dependency among entities. Such techniques can be

computationally expensive, and may not scale to the large amount

of data typically collected by social media websites. There have

been relational learning techniques through pairwise relationships

among entities, e.g. [3,12], which involve loss of information

when data has higher-order interactions. Our work shares the

same advantages as Kemp el at. [8] and Banerjee et al. [2], which

deal with multiple tensors, but their static settings are different

from our problem.

In sum, social media analysis requires a flexible and scalable

framework that exploits relational context defined by the system

features of individual social media sites. Such relational context is

multi-dimensional, sparse (not all dimensions are involved in an

event), specific, and evolving over time. We propose a unified

approach to analyze the dynamics of rich media social networks.

3. PRELIMINARIES ON TENSOR
This section provides notations and minimal background on

tensors and some basic operations used in this work. We refer

readers to [1] for a more comprehensive review on tensors.

3.1 Tensors
A tensor is a mathematical representation of a multi-way array.

The order of a tensor is the number of modes (or ways). A first-

order tensor is a vector, a second-order tensor is a matrix, and a

higher-order tensor has three or more modes. We use x as a vector,

X as a matrix, and as a tensor. The dimensionality of a mode is

the number of elements in that mode. We use Iq to denote the

dimensionality of mode q. E.g., the tensor 1 2 3

I I I has 3

modes with dimensionalities of I1, I2 and I3, respectively. +

indicates all elements of the tensor have nonnegative values,

which is usually the case for a data tensor. The (i1,i2,i3)-element of

a third-order tensor is denoted by
1 2 3i i ix . Indices typically range

from 1 to their capital version, e.g. i1=1,…,I1.

3.2 Basic Operations
Mode-d matricization or unfolding: Matricization is the process of

reordering the elements of an M-way array into a matrix. The

mode-d matricization of a tensor 1 MI I is denoted by X(d),

i.e. {1,.., },

()(,)

d qq M q d

I I

dunfold d X . Unfolding a tensor on

mode d results in a matrix with height Id and its width is the

product of dimensionalities of all other modes.

The inverse operation is denoted as 1

()() MI I

dfold X .

In general the unfolding operation can be defined on multiple

modes. For example, we can define mode-(c,d) unfolding as

528

 {1,.., }, ,

(,)(,(,))

c d qq M q c d

I I I

c dunfold c d . Unfolding a

tensor on two modes c and d results in a cube (three-way tensor).

Similarly, we can define a vectorization operation x=vec(),

which linearizes the tensor into a vector.

Mode-d product: The mode-d matrix product of a tensor

1 MI I with a matrix
 dJ I

U is denoted by dU and

results in a tensor of size I1…Id-1J Id+1…IM. Elementwise,

we have
1 1 1 1 21

()

d

d d M M dd

I

d i i ji i i i i jii
x uU .

Mode-d accumulation: A mode-d accumulation or summation is

defined as ()(,) dI

dacc d X 1 . The operation sums up all

entries across all modes except for mode d, which results in a

vector of length Id. Accumulating a tensor on mode d can be

obtained by unfolding the tensor on mode d into a matrix and then

multiplying the matrix with an all-one vector. Like unfolding

operation, accumulation can be defined on multiple modes, e.g. a

mode-(c,d) accumulation (,) 3(,(,))

 c dI I

c dacc c d 1 . This

will result in a matrix of size IcId.

Tensor decomposition or factorization is a form of higher-order

principal component analysis. It decomposes a tensor into a core

tensor multiplied by a matrix along each mode. Thus, in the three-

way case where IJK, we have 1A2B3C, which

means each element of the tensor is the product of the

corresponding matrix elements multiplied by weight zpqr, i.e.

1 1 1

P Q R

ijk pqr ip jq krp q r
x z a b c . Here, AIP, BJQ and

CKR are called factor matrices or factors and can be thought

of as the principal components of the original tensor along each

mode. The tensor PQR is called the core tensor and its

elements show the level of interaction between different

components. A special case of tensor decomposition is referred as

CP or PARAFAC decomposition [1], where the core tensor is

superdiagonal and P=Q=R. (A tensor 1 MI I is diagonal if

1
0 Mi ix only if i1=…=iM.) The CP decomposition of a third-

order tensor is then simplified as
1

R

ijk r ir jr krr
x z a b c , as

illustrated in Figure 2. We use [z] to denote a superdiagonal

tensor, where the operation [·] transforms a vector z to a

superdiagonal tensor by setting tensor element zk…k=zk and other

elements as 0. Thus the CP decomposition of a three-way tensor

can be written as [z]1A2B3C, where [z] denotes a

corresponding superdiagonal core tensor.

4. PROBLEM FORMULATION
This section defines the problem of discovering latent community

structure that represents the context of user actions in social

networks. The problem has three parts: (1) how to represent

multi-relational social data (section 4.1), (2) how to reveal the

latent communities consistently across multiple relations, and (3)

how to track the communities over time (section 4.2).

4.1 Metagraph Representation
We introduce metagraph, a relational hypergraph for representing

multi-relational and multi-dimensional social data. We use a

metagraph to configure the relational context specific to the

system features – this is the key to making our community

analysis adaptable to various social media contexts, e.g. Digg and

Flickr (Figure 1). We shall use the Digg example to illustrate

three concepts: facet, relation, and relational hypergraph.

As shown in Figure 1(a), Digg allows various actions for news

sharing – users might submit (indicated by the line labeled ―S‖) a

news story associated with a particular topic. They might vote (or

digg, line ―D‖) or comment (line ―C‖) on the submitted story,

reply (line ―R‖) to a comment created by other users, or even

reply to a reply (not shown in the figure), etc. To describe the

context of actions, we call a set of objects or entities of the same

type a facet, e.g. a user facet is a set of users, a story facet is a set

of stories, etc. We call the interactions among facets a relation; a

relation can involve two (i.e. binary relation) or more facets, e.g.

the ―digg‖ relation involves two facets (user, story), and the

―make-comment‖ is a 3-way relation (user, story, comment). A

facet can be implicit, depending on whether the facet entities

interact with other facets, e.g. the set of digg objects might be

omitted due to no interactions with other facets.

Formally, we denote the q-th facet as v(q) and the set of all facets

as V. A set of instantiations of an M-way relation e on facets v(1),

v(2),…, v(M) is a subset of the Cartesian product v(1)…v(M). We

denote a particular relation by e(r) where r is the relation index.

The observations of an M-way relation e(r) is represented as an M-

way data tensor (r).

Now we introduce a multi-relational hypergraph (denoted as

metagraph in this paper) to describe the combination of relations

and facets in a social media context. A hypergraph is a graph

where edges, called hyperedges, connect to any number of

vertices. The idea is to use an M-way hyperedge to represent the

interactions of M facets: each facet as a vertex and each relation as

a hyperedge on a hypergraph. A metagraph defines a particular

structure of interactions among facets, not among facet elements.

Formally, for a set of facets V={v(q)} and a set of relations

E={e(r)}, we construct a metagraph G=(V,E). To reduce notational

complexity, V and E also represent the set of all vertex and edge

indices respectively. A hyperedge/relation e(r) is said to be

incident to a facet/vertex v(q) if v(q)e(r), which is represented by

v(q)~e(r) or e(r)~v(q). E.g., in Figure 1(c) v(1) represents the user

facet, e(5)={v(1),v(2),v(3)} represents the ―make-comment‖ relation.

We summarize our notations in Table 1.

Symbol Description

x a vector (boldface lower-case letter)

X a matrix (boldface capital letter)

 a tensor (boldface Euler script letter)

I1,…,IM the dimensionality of mode 1, …, M

v(q) a vertex v(q)V represents the facet v(q)

e(r) a hyperedge e(r)V represents the relation e(r)

V the set of all facets V={v(q)}, or the set of all vertex indices

E the set of all relations E={e(r)} or all hyperedge indices

G
a metagraph G=(V,E), where V is a set of facets/vertices and E

is a set of relations/hyperedges

K, L constants

Table 1: Description of notations.

Figure 2: CP decomposition of a three-way tensor.

529

4.2 Community Discovery on Metagraph
We formalize the community discovery problem as latent space

extraction from multi-relational social data represented by a

metagraph. Our goal is to discover latent community structures

that represent the context of user actions in social media

networks. We are interested in clusters of people who interact

with each other in a coherent manner. Some of the interaction can

be implicit, e.g. two users may comment on the same stories, and

the interactions can be further enhanced by other interactions.

Hence we consider a community as a latent space of consistent

interactions or relations among users and objects.

By assuming consistent interactions in a community, the

interaction between any two entities (users or media objects) i and

j in a community k, written as xij, can be viewed as a function of

the relationships between community k with entity i, and k with j.

If we consider the function to be stochastic, i.e. let pki indicate

how likely an interaction in the k-th community involves the i-th

entity and pk is the probability of an interaction in the k-th

community, we can express xij by xijk pkipkjpk. Likewise a

3-way interaction among entity i1, i2 and i3 is

1 2 3 1 2 3 i i i k k i k i k ik
x p p p p . A set of such interactions

among entities in facet v(1), v(2) and v(3) can be written by:
3

(1) (2) (3) ()

1 1

[] ,

K

m

k k k k m

k m

p u u u z U <1>

where 1 2 3

I I I is the data tensor representing the observed

three-way interactions among facet v(1), v(2) and v(3). qk ip is

written as an (iq,k)-element of U(q) for q=1,2,3. U(q) is a IqK

matrix, where Iq is the size of v(q). The probabilities of

communities are elements of z, i.e. pk=zk. This is similar to the CP

decomposition of a tensor (section 3.2), except that the core

tensor [z] and the factor matrices {U(q)} are constrained to contain

nonnegative probability values. Under the nonnegative constraints,

the 3-way tensor factorization is equivalent to the three-way

aspect model in a three-dimensional co-occurrence data [13].

The nonnegative tensor decomposition can be viewed as

community discovery in a single relation. The interactions in

social media networks are more complex – usually involving

multiple two- or multi-way relations. By using metagraphs, we

represent a diverse set of relational contexts in the same form and

define the community discovery problem on a metagraph, with the

following two technical issues.

The first issue is how to extract community structure as coherent

interaction latent spaces from observed social data defined on a

metagraph, which is formally stated as follows.

Problem (Metagraph Factorization, or MF): given a metagraph

G=(V,E) and a set of observed data tensors {(r)}rE defined on G,

find a nonnegative core tensor [z] and factors {U(q)}qV for

corresponding facets V={v(q)}. (Since E also represents the set of

all edge indices, the notations rE and e(r)E are exchangeable.

Likewise, qV and v(q)V are exchangeable.)

The second issue concerns the dynamic nature of human activities

– those interactions might be consistent during a short time period

but are unlikely to be consistent all the time. The problem, how to

extract community structure as coherent interaction latent spaces

from time evolving data given a metagraph, is defined as follows.

Problem (Metagraph Factorization for Time evolving data, or

MFT): given a metagraph G=(V,E) and a sequential set of

observed data tensors {t
(r)}rE defined on G for time t=1,2,…,

find a nonnegative core tensor [zt] and factors {Ut
(q)}qV

corresponding to facets V={v(q)} for each time t.

We will present our method in two steps: (1) present a solution to

MF (section 5); (2) extend the solution to solve MFT (section 6).

5. METAGRAPH FACTORIZATION
This section presents our solution to the metagraph factorization

problem (MF). Our method relies on formulating MF as an

optimization problem (section 5.1). We then provide an algorithm

to solve the optimization objective (section 5.2) and discuss its

computational complexity (section 5.3).

5.1 Optimization Objective
The MF problem can be stated in terms of optimization. Let us

first consider a simple metagraph case. Assume we are given a

metagraph G=(V,E) with three vertices V={v(1), v(2), v(3)} and two

2-way hyperedges E={e(a),e(b)} that describe the interactions

among these three facets, as shown in Figure 3. The observed data

corresponding to the hyperedges are two second-order data

tensors (i.e. matrices) {(a),(b)} with facets {v(1), v(2)} and {v(2),

v(3)} respectively. The facet v(2) is shared by both tensors.

The goal is to extract community structure from data tensors,

through finding a nonnegative core tensor [z] and factors {U(1),

U(2), U(3)} corresponding to the three facets. The core tensor and

factors need to consistently explain the data, i.e. we can

approximately express the data by (a)[z]1U
(1)2U

(2) and

(b)[z]2U
(2)3U

(3), as in eq<1>. The core tensor [z] and facet

U(2) are shared by the two approximations, and the length of z is

determined by the number of latent spaces (communities) to be

extracted. Since both the left- and the right-hand side of the

approximation are probability distributions, it is natural to use the

KL-divergence (denoted as D(||)) as a measure of approximation

cost. To simultaneously reduce two approximation costs we can

define a cost function as:

() (1) (2) () (2) (3)

1 2 2 3(|| []) (|| []) a bD Dz U U z U U , <2>

where D(||)=i (ai log ai/bi – ai + bi) is the KL-divergence

between tensor and and a = vec(), b = vec().

The solution to eq.<2> will be an MF solution for the metagraph

in Figure 3. We observe three things in this example: In eq.<2>,

each D(||) correspond to a hyperedge, each tensor product

corresponds to how facets are incident to an hyperedge and the

summation corresponds to all hyperedges on the graph. We can

generalize eq.<2> to any metagraph G, as follows.

Figure 3: An example of the metagraph factorization (MF).

Given observed data tensors {(a),(b)} and a metagraph G

that describes the interaction among facets {v(1), v(2), v(3)},

find a consistent community structure expressed by core

tensor [z] and facet factors {U(1), U(2), U(3)}.

530

Given a metagraph G=(V,E), the objective is to factorize all data

tensors such that all tensors can be approximated by a common

nonnegative core tensor [z] and a shared set of nonnegative

factors {U(q)}, i.e. to minimize the following cost function:

()
() ()

() ()

,{ }
: ~

1 () ()

() min (|| [])

. , , 1

q
m r

q

r m

m

r E m v e

I KK q q

iki

J G D

s t q q k

z U

z U

z U U

 <3>

where K is the number of communities, and D(||) is the KL-

divergence as described above. The constraint that each column of

{U(q)} must sum to one is added due to the modeling assumption

that the probability of an occurrence of a relation on an entity is

independent of other entities in a community. Eq.<3> can be

easily extended to incorporate weights on relations.

5.2 Algorithm
We provide a solution to the objective function defined in eq.<3>.

It is difficult to guarantee a global minima solution, as eq.<3> is

not convex in all variables. By employing the concavity of the log

function (in the KL-divergence), we derive a local minima

solution to eq.<3>. The solution can be found by the following

updating algorithm:

1 1

1

() ()

... ...

...

1

 M Mr r

Mr

r r

k i i i i k

r E i iL
z , <4>

1 1
() ()

1 1 1

() () ()

... ...

... ...: ~

1

 q M Ml l
l q

q q Ml

q l l

i k i i i i k

i i i il e vqL
U , <5>

where z is a length K vector, L=|E| denotes the total number of

hyperedges on G, Lq=|{l:e(l)~v(q)}| denotes the number of

hyperedges incident to v(q), and

()

() ()

1

() ()
1

() : ~

()

: ~
([])

m

m r
m

Mr
m r

Mr

k i kr m v e
i i k m

m i im v e

z U

z U
. <6>

After updates, each column of U(q) are normalized to sum to one.

Because of this normalization step, we can omit dividing by Lq in

eq.<5>. This iterative update algorithm is a generalization of the

algorithm proposed by Lee et al. [10] for solving the single

nonnegative matrix factorization problem. In metagraph

factorization, the update for core tensor [z] depends on all

hyperedges on the metagraph, and the update for each facet factor

U(q) depends on the hyperedges incident to the facet. The proof

for the convergence of our algorithm is omitted due to space limit.

The computation in eq.<4>–<6> can be time-consuming due to

the high dimensionalities of tensors. We now discuss an efficient

implementation of the update rules. In eq.<4>–<6>,
1

() Mr

r

i i k is an

element of a 1
rMI I K tensor. Let (r)

+ denote this

tensor, where denotes the dimensionalities 1
rMI I K in

short. Because (r) is expensive to compute and operate, we

want to reduce computation that involves (r). By observing the

shared part for updating the core tensor and all facet factors in

eq.<4> and <5>, we can use the following strategy to achieve

efficient computation: Instead of computing (r) explicitly, we

compute an intermediate tensor (r) of the same dimensionalities

as (r). (r) will save the repeating part of multiplication of (r)

with {U(q)} and z in eq.<4> and <5>. Thus, the above update rules

can be rewritten as follows. First, for each e(r), compute a tensor

(r)
+ by:

() ()

() () ()

: ~
(([])) m r

r r m

mm v e
vecμ z U <7>

()() () (1) T(()) rMr rfold μ z U U <8>

where denotes the element-wise division, and denotes the

Khatri-Rao product. The Khatri-Rao product of two matrices A

and B, denoted by AB, is defined by

 1 1 2 2 K KA B a b a b a b , where ak and bk are

the kth column vectors of A and B respectively, and where ab is

the Kronecker product of a and b.

The second step is to update z and {U(q)} by:

()1
(, 1)

 r

r

r E

acc M
L

z <9>

() ()

() ()

: ~

(,(1,))
l q

q l

l

l e v

acc M qU <10>

where Mr+1 is the last mode of (r). The multiplication of (r)

and (r) in eq.<4> and <5> is now pre-computed in eq.<7> and

<8> by utilizing the Khatri-Rao product. To obtain z and {U(q)},

we only need to accumulate (r) on the corresponding modes.

{U(q)} obtained from eq.<10> will be equivalent to those from

eq.<5> after normalization. Eq.<7>–<10> yield exactly the same

results as eq.<4>–<6>. The algorithm shares the same form of the

expectation-maximization algorithm, where eq.<7> and <8>

correspond to the E-step and eq.<9> and <10> correspond to the

M-step. Note that the information contained in each data tensor

with respect to a hyperedge is aggregated through the E-step and

is shared by the core tensor and all facet factors in the M-step,

thus the extracted communities will be coherent latent spaces.

Table 2 summarizes the whole process to solve an MF problem.

Algorithm 1: MF

Input: metagraph G = (V,E) and data tensors {(r)} on G

Output: z and {U(q)}

Method: Initialize z, {U(q)}

 Repeat until convergence

 For each rE, compute (r) by eq.<7> and <8>

 update z by eq. <9>

 For each qV, update U(q) by eq. <10>

Table 2: The MF (metagraph factorization) algorithm.

We refer the solution core tensor and facet matrices as a

community model, from which we infer the probabilistic (soft)

membership of entities in each facet. As described in section 4.2,

each (i,k)-element of a facet matrix U is p(i|k) (i.e. pki, how likely

an interaction in the community k involves entity i), and each

element zk=p(k) (i.e. pk, the probability of an interaction in

community k). Thus we compute the conditional probability p(k|i)

to indicate the soft membership of entity i with respect to

community k by p(i|k)p(k)/p(i), where p(i)=k’p(i|k’)p(k’) is the

probability of an interaction involving entity i.

5.3 Computational Complexity
We now discuss the time complexity for the updates. The most

time-consuming step in the algorithm is to compute (r) for each

hyperedge e(r). As can be seen in eq.<7>, we can take advantage

of the sparseness of the data tensor (r) and compute only the

531

non-zero elements (total number of tuples) in (r). Let n denote

the largest number of non-zero elements of the involved data

tensors. This step has time complexity O(nKML), where K is the

number of clusters, M is the maximal number of incident facets of

a relation, and L is the total number of input relations. Usually, K,

M, L are much smaller than n. If we consider K, M and L are

bounded by some constants, the time complexity per iteration is

linear in O(n), the number of non-zero elements in all data tensors.

6. TIME EVOLVING EXTENSION
This section presents our solution to the problem of metagraph

factorization with time evolving data (MFT).

6.1 Optimization Objective
In the MFT problem, the relational data is constantly changing as

evolving tensor sequences. We propose an online version of MF

to handle dynamic data. Since historic information is contained in

the community model extracted based on previously observed

data, the new community structure to be extracted should be

consistent with previous community model and new observations,

which is similar to the evolutionary clustering discussed in [11].

To achieve this, we extend the objective in eq.<3> as follows.

A community model for a particular time t is defined uniquely by

the factors {Ut
(q)} and core tensor [zt]. (To avoid notation clutter,

we omit the time indices for t.) For each time t, the objective is to

factorize the observed data into the nonnegative factors {U(q)} and

core tensor [z] which are close to the prior community model, [zt-1]

and {Ut-1
(q)}. We introduce a cost lprior to indicate how the new

community structure deviates from the previous structure in terms

of the KL-divergence. The new objective is defined as follows:

()
() ()

() ()

2
,{ }

: ~

() ()

1 1

1 () ()

() min (1) (|| [])

(||) (||)

. , , 1

q
m r

q

r m

m prior

r E m v e

q q

prior t t

q

I KK q q

iki

J G D l

l D D

s t q q k

z U

z U

z z U U

z U U

 <11>

where α is a real positive number between 0 and 1 to specify how

much the prior community model contributes to the new

community structure. lprior is a regularizer used to find similar

pairs of core tensors and pairs of facet factors for consecutive

times. The new community structure will be a solution

incrementally updated based on a prior community model.

6.2 Algorithm
Based on a derivation similar to the discussion in section 5, we

provide a solution to eq. <11> as follows:

1 1

1

() ()

... ... ; 1

...

(1)

 M Mr r

Mr

r r

k i i i i k k t

r E i i

z z , <12>

1 1
() ()

1 1 1

() () () ()

... ... ; 1

... ...: ~

(1)

 q M M ql l
l q

q q Ml

q l l q

i k i i i i k i k t

i i i il e v

U U , <13>

where
1

() Mr

r

i i k is defined as in eq.<6>. After updates, each

column of U(q) and the vector z are normalized to sum to one.

Because of this normalization step, we have dropped the scaling

constant for updating z and U(q).

It can be shown that the parameters in the previous model (zt-1 and

{Ut-1
(q)}) act as Dirichlet prior distribution to inform the solution

search (ref. [11]), thus the solution is consistent with previous

community structure. The update rules can be rewritten as the

following operations with (r) pre-computed by eq.<7> and <8>:

()

1(1) (, 1)

 r

r t

r E

acc Mz z <14>

() ()

() () ()

1

: ~

(1) (,(1,))
l q

q l q

l t

l e v

acc M qU U <15>

where Mr+1 is the last mode of (r). The whole process of finding

solutions to the MFT problem is summarized in Table 3.

Algorithm 2: MFT

Input: hypergraph G = (V,E), the data tensors

{(r)} on G observed at

time t, previous model zt-1, and {Ut-1
(q)} Output: new model z and {U(q)}

Method: Initialize z,{U(q)}

 Repeat until convergence

 For each rE, compute (r) by eq.<7> and <8>

 update z by eq. <14>

 For each qV, update U(q) by eq. <15>

Table 3: The MFT algorithm.

For time evolving social data, changes might happen in

interactions among entities, or even in interactions among facets

(e.g. due to the evolution of system features) which lead to

changes in metagraph. One advantage of our MFT algorithm is it

only requires new observed data defined on any given metagraph,

so it is straightforward to incorporate the changes of a metagraph.

7. EXPERIMENTS
This section reports our experimental study on a real-world social

media dataset collected from Digg. We first describe the dataset

(section 7.1) and present the extracted communities (section 7.2).

We evaluate our technique through prediction tasks (section 7.3).

Finally, we evaluate the scalability of our factorization method on

synthetic datasets (section 7.4).

7.1 Digg Dataset
We have collected data from a large set of user actions from Digg.

Digg is a popular social news aggregator that allows users to

submit, vote (i.e. digg) and comment on news stories. It also

allows users to create social networks by designating other users

as friends and tracking friends’ activities. The dataset used in our

experiments include stories, users and their actions (submit, digg,

comment and reply) with respect to the stories, as well as the

explicit friendship (contact) relation among these users. To

analyze users’ topical interests, we also retrieve the topics of the

stories and extract keywords from the stories’ titles.

Relation Tensor / incident facets #Tuples

(R1) content dynamic (story, keyword, topic) 151,779

(R2) contact static (user, user) 56,440

(R3) submit dynamic (user, story) 44,005

(R4) digg dynamic (user, story) 1,157,529

(R5) comment dynamic (user, story, comment) 241,800

(R6) reply dynamic (user, comment) 94,551

Table 4: Summary of the relations in Digg dataset.

From this dataset, we select 5 facets (user, story, comment,

keyword and topic) and build 6 relations among them. The

relations are summarized in Table 4, which correspond to the

metagraph shown in Figure 1(c). Except for the contact relation,

all relations have timestamps. We assume the contact relation is

static and consider the other relations as dynamic. For dynamic

relations, we extract tuples with timestamps ranging from August

1 to August 27, 2008. To study the data evolution, we segment

the duration into 9 time slots (i.e. every three days), and construct

a sequence of data tensors for each dynamic relation. In the

532

following we shall use t[1,9] to denote a time slot index. The

total number of tuples in each tensor sequence per relation is

listed in Table 4. Our dataset and code are available online

(http://www.public.asu.edu/~ylin56/kdd09sup.html).

7.2 Community Analysis
We present a qualitative analysis of the communities extracted by

our method, which demonstrates an advantage of probabilistic

interpretation given by our method. We first show all

communities extracted for a particular time and then examine the

community evolution within two of these communities.

To illustrate what kinds of stories are ―dugg‖ by what kind of

communities, we track the latent communities based on the

digging activities which involve relation R1 and R4. Figure 6(a)

and (e) shows the corresponding metagraph and the number of

tuples in the two relations. In our factorization algorithm, we

assume that the number of communities, K, is given beforehand.

Here we show communities extracted given K=2, 4 and 12.

Based on relation R1 and R4, four facets are involved: user, story,

keyword and topic. We present the keyword and topic facets

because they are more informative to the readers than other facets.

Figure 4 shows the most likely keywords and topics in each

community. We present the results of t=3 (August 6-9, 2008). We

project those keyword and topic (shown within brackets) terms

onto a 2D plane. The location of the i-th keyword or topic term

indicates its relative proximity to other terms and is computed

based on its soft membership p(k|i). (The position is determined

by standard multidimensional scaling with the soft membership as

input.) The size of the i-th term indicates how likely the term

appears in a story and is determined based on the probability p(i).

Each term is colored based on its most likely community, i.e. by

choosing k with maximal p(k|i). In the figure we can see the

communities based on users’ digging activities have coherent

topical preference, as the terms with the same colors are located

closely. The 2-, 4- and 12-community results show the

communities at different resolution. The 2-community result

distinguishes political interests from the Olympics news (Figure

4(a)). The 4-community shows four topical interests in

communities: C1: gaming industry news, C2: US election news,

C3: world news, and C4: general political news (Figure 4(b)). The

two major topics (―olympics‖ and ―georgia‖) in C3 are further

split in the 12-community result (Figure 4(c)).

Community Evolution. We select the 4-community result and

examine its evolution. Figure 5(a) shows the probabilities of the

four communities over time, and Figure 5(b) shows the keyword

dissimilarity across time where the dissimilarity is computed

based on the cosine similarity of keyword distribution in each

community of consecutive timestamps. (We use a cosine

similarity measure in order to emphasize the differences at the

―head‖ of the distributions.) We observe two critical times in

Figure 5(b): for community C2 and C3, the keywords distribution

change drastically at t=3 (August 6-9) and t=8 (August 21-24). To

examine the events occurring during these times, we look at the

keyword distributions of the two communities. Table 5 lists the

top 10 keywords that are mostly likely to appear in C3 and C2, at

t=2,3 and t=7,8 respectively. At t=3, the new popped keywords

―olympics‖ and ―georgia‖ reflect users’ attention to two

significant world news items: the 2008 Summer Olympics began

on August 8 and the 2008 Russia-Georgia conflict started on

August 7. At t=8, the new popped keywords ―joe‖, ―biden‖, ―vp‖

correspond to the time when presidential candidate Barack Obama

announced that Joe Biden would be his running mate (on August

22). Another critical time is captured by the change in community

size. In Figure 5(a), we see the community C3 keeps growing

until t=6, when the Russia-Georgia conflict ended with a ceasefire

agreement signed on August 15 and 16.

Table 5: The keyword distribution of community C2 and C3

during two critical times, t=3 and t=8.

C2

C4

C3

C1

(a) 2-community

(b) 4-community

(c) 12-community

Figure 4: Community extracted based on user digging activities, for time t=3 (August 6-9, 2008) and number of communities K=2, 4

and 12. The most likely keyword and topic terms (shown within brackets) in each community are projected based on their soft

membership. The size of each term indicates its probability and each term is colored based on its most likely community. The results

show coherent topical preference in communities, as the terms with the same colors are located closely.

 (a) community popularity

(b) concept evolution

Figure 5: The community evolution characterized based on

(a) change in size of communities, and (b) change in keyword

distribution in each community.

533

The characterization of community evolution based on change in

the probability of a cluster and on change in the distribution of

entities such as keywords (Figure 5 and Table 5) demonstrates the

advantage of our soft clustering method. The presented case study

suggests that our method is able to generate meaningful mining

results from dynamic multi-relational social networks.

7.3 Evaluation via Prediction
We use a prediction task to demonstrate the utility of our

techniques. Based on the Digg scenario, we design two prediction

tasks – to predict users’ future interests on digging (i.e. voting)

and commenting on Digg stories. We study three aspects of our

method through the prediction tasks: (1) How does our

community discovery framework help predict users’ future

interests? (2) How much historic information do we need? (3)

Which relation is relevant to the prediction?

Prediction setting. There are two tasks: (a) digg prediction –

what stories a user will digg, and (b) comment prediction – what

stories a user will comment on. Both tasks are evaluated on data

from each time slot. We use stories that have digging or

commenting events in time slot ts[2,9] as testing sets and the

available relational data (ref. Table 4) in time slot ts-1 as training

sets. The prediction results are compared with the actual diggs

and comments occurring in slot ts. This is a constrained setting

because there might be more digging or commenting activities

occurring after ts. In our prediction experiments we only consider

diggs and comments in each single slot ts as ground truth.

Evaluation metrics. We use two metrics adopted in Information

Retrieval: (1) ―P@10‖ (the precision of the top 10 results): For

each user we compute the precision based on the top 10 stories

retrieved for the user. The overall P@10 for the set of users is

computed by taking the mean of P@10 per user, per time slot. (2)

―NDCG‖ (Normalized Discount Cumulative Gain [7]): One

advantage of the measure is its sensitivity to the prediction order.

The NDCG is proportional to i(i)/log(1+i), where i is the rank

of predicted stories, δ(i)=1 if the prediction of the rank-i story is

correct and 0 otherwise.

Our prediction method. We generate predictions based on the

community structure extracted by our method, denoted by MF and

MFT. The MF algorithm outputs community structure from

relational data of each time slot ts-1. The MFT algorithm uses the

same data as MF, with the aid of a community model extracted for

time ts-2 as an informative prior. Hence MFT gives results

incrementally. From an extracted community model we obtain the

probability of a community k, p(k), and the probability of a user u,

a keyword w and a topic j, given community k, i.e. p(u|k), p(w|k)

and p(j|k). To predict if a user u will digg or comment on a story r,

we first use a folding-in technique (ref. e.g. [13]) to compute

p(r|k), the probability of a story given each community k, based on

the story topic and keywords. Then a prediction is made based on

the condition probability p(r|u)p(u,r)k’p(k)p(u|k’)p(r|k’).

Baseline methods. Three baseline methods are used: (1)

Frequency based heuristics (FREQ) – predicting stories based on

the frequencies of story topic and keywords at ts-1. (2) Standard

tensor analysis (PARAFAC) – predicting stories by using the

CP/PARAFAC tensor decomposition [1] for data in slot ts-1. The

stories to be predicted are first projected on the latent spaces, and

the prediction is made based on the dot product of the user and

story projected vectors. (3) Multi-way aspect model (MWA) –

predicting stories by using the multi-way aspect model [13], a

special case of our model (ref. section 4.2).

The ability to handle relational contexts is the key to our

comparison. We choose specific relations to illustrate the utility of

leveraging a specific context by a metagraph – relation R1 and R4

for digg prediction and R1 and R5 for comment prediction (ref.

Figure 6(a) and (b)), and we shall evaluate the effect of other

relations later in this section. Since PARAFAC and MWA only

deal with a single high dimensional relation, we construct two 4-

way tensors per time that contains digg actions and comment

actions with respect to stories. The two tensors, denoted by TD

and TC are shown in Figure 6(c) and (d). Figure 6(e) shows the

number of non-zero entries (tuples) of these data tensors over time.

The number of tuples in an R5 tensor corresponds to the number

of stories per time.

Except for the FREQ method, all methods are tested with number

of clusters or latent spaces K=4… 20. For MFT, we use α=0.2.

 metric

method

digg prediction comment prediction

P@10 NDCG P@10 NDCG

FREQ 0.1750.061 0.0350.016 0.0150.007 0.0040.002

PARAFAC 0.3690.004 0.1450.002 0.0490.002 0.0180.001

MWA 0.1950.002 0.0690.001 0.0670.001 0.0200.000

MF 0.5290.008 0.2120.002 0.1170.001 0.0380.000

MFT 0.5430.007 0.2150.004 0.1350.001 0.0430.000

Table 6: The average prediction performance for digg and

comment prediction, evaluated by P@10 and NDCG metrics.

Results and Discussion. The overall prediction performance is

obtained by taking the average of prediction performance on data

for each time slot (t=1…8 for training and t=2…9 for testing)

over different K values. The results (mean and standard deviation)

are given in Table 6. There are several observations. First, our

method significantly outperforms all baseline methods. In digg

prediction, our MF method outperforms the baselines by 43% to

5X on the average. In comment prediction, the MF method

outperforms the baselines by 73% to 10X. Second, the MFT

performs the best. It slightly outperforms MF in digg prediction

and improves MF by 15% in comment prediction. Next we show

how our prediction can be further improved by (a) incorporating a

historic model and (b) leveraging other relations through a

metagraph.

Effect of historic information. We vary the weight of the prior

model in MFT and report the average P@10 over α values (Figure

7(a)). The results suggest that incorporating historic information

as prior knowledge works better than no prior (α=0). Note for

comment prediction, the performance increases until α0.8. This

suggests that the comment activities are more consistent with the

historic community structure than the digg activities.

(a)

(b)

(c)

(d)

Figure 6: Relations used by different methods for digg and

comment prediction: (a) R1 and R4 used in our method for

digg prediction; (b) R1 and R5 used in our method for

comment prediction; (c) TD tensors used in PARAFAC and

MWA for digg prediction; (d) TC tensors used in PARAFAC

and MWA for comment prediction; (e) number of tuples in

each relation over time.

(e)

534

Effect of various relational context. For comment prediction, we

evaluate the prediction performance over different relational

contexts. Figure 7(b) shows the average prediction results. The

label R* indicates which relations are used in the training set, e.g.

R125 denotes relation R1, R2 and R5. We observe that different

combinations of the relations affect the prediction performance.

For example, incorporating the contact relation R2 with R1 and

R5 significantly helps predict users’ comment activities.

7.4 Scalability Evaluation
We use synthetic datasets to illustrate the scalability of our

algorithms. We study how the computational time of our

algorithm increases with four variables, including different types

of data growth – (a) non-zero elements in a data tensor, (b)

number of tensor modes (dimensions), (c) number of relations

(tensors) on a given metagraph, as well as (d) the algorithm

parameter, i.e. number of clusters. In the simulation we randomly

generate tensors by varying one of the above variables (e.g. the

number of non-zero elements) and fixing all remaining variables.

Figure 8 shows the simulation results, indicating that the running

time per iteration scales linearly with the data size, the number of

tensor modes, the total number of relations and the number of

clusters. Note that the slope for increasing tensor modes is steeper

than increasing relations. Empirically the non-zero elements in a

higher mode tensor are usually much more than lower mode

tensors (as in Figure 6(e)). Therefore by leveraging a metagraph

we can efficiently combine multiple low-dimensional relations

instead of constructing a high-dimensional tensor. The

experimental results on the synthetic datasets correspond to our

analysis in section 5.3 and suggest that our algorithm can

efficiently deal with large sparse multi-relational data.

8. CONCLUSION
We proposed the MetaFac framework to extract community

structures from various social contexts and interactions. There

were three key ideas: (1) metagraph, a relational hypergraph for

representing multi-relational social data; (2) MF algorithm, an

efficient non-negative multi-tensor factorization method for

community extraction on a given metagraph; (3) MFT, an on-line

factorization method to handle time-varying relations. We

conducted extensive experiments on real-world data collected

from Digg. Our case study demonstrated that meaningful mining

results can be generated by our method. We evaluated our method

by predicting digg / comment actions on stories. We generated the

predictions based on the extracted community models and

compare results with baselines. Our method outperformed

baseline measures up to an order of magnitude. Our method can

be further improved by (a) incorporating a historic model and (b)

leveraging other relations through a metagraph. As part of our

future work, we plan to investigate the following open issues: (1)

the resolution (including number of communities) of community

structures; (2) kernel based representation of facet relationships.

9. REFERENCES
[1] B. BADER and T. KOLDA (2006). Algorithm 862: MATLAB

tensor classes for fast algorithm prototyping. TOMS 32(4):

635-653.

[2] A. BANERJEE, S. BASU and S. MERUGU (2007). Multi-way

Clustering on Relation Graphs, SDM, 2007.

[3] R. BEKKERMAN, R. EL-YANIV and A. MCCALLUM (2005).

Multi-way distributional clustering via pairwise

interactions, ACM Intl. Conf. Proc. Series, 41-48,

[4] D. CHAKRABARTI, R. KUMAR and A. TOMKINS (2006).

Evolutionary clustering, SIGKDD, 554-560,

[5] Y. CHI, S. ZHU, Y. GONG and Y. ZHANG (2008).

Probabilistic Polyadic Factorization and Its Application to

Personalized Recommendation, CIKM, 2008.

[6] N. FRIEDMAN, L. GETOOR, D. KOLLER and A. PFEFFER

(1999). Learning probabilistic relational models, IJCAI,

1300-1309, 1999.

[7] K. JÄRVELIN and J. KEKÄLÄINEN (2000). IR evaluation

methods for retrieving highly relevant documents, SIGIR,

41-48, 2000.

[8] C. KEMP, J. TENENBAUM, T. GRIFFITHS, T. YAMADA and N.

UEDA (2006). Learning Systems of Concepts with an Infinite

Relational Model, Proc. of the Natl. Conf. on AI, 381,

[9] R. KUMAR, J. NOVAK and A. TOMKINS (2006). Structure and

evolution of online social networks, SIGKDD, 611-617,

2006.

[10] D. LEE and H. SEUNG (2001). Algorithms for non-negative

matrix factorization, NIPS, 556–562, 2001.

[11] Y. LIN, Y. CHI, S. ZHU, H. SUNDARAM and B. TSENG (2008).

Facetnet: a framework for analyzing communities and their

evolutions in dynamic networks, WWW, 2008.

[12] B. LONG, Z. ZHANG and P. YU (2007). A probabilistic

framework for relational clustering, SIGKDD, 470-479,

[13] A. POPESCUL, L. H. UNGAR, D. M. PENNOCK and S.

LAWRENCE (2001). Probabilistic Models for Unified

Collaborative and Content-Based Recommendation in

Sparse-Data Environments, UAI 2001, 437-444,

[14] J. SUN, C. FALOUTSOS, S. PAPADIMITRIOU and P. YU (2007).

GraphScope: parameter-free mining of large time-evolving

graphs, SIGKDD, 687-696, 2007.

[15] S. ZHU, K. YU, Y. CHI and Y. GONG (2007). Combining

content and link for classification using matrix

factorization, SIGIR, 487-494, 2007.

(a)

(b)

Figure 7: Effect of (a) prior community model (historic

information) and (b) different input relations.

(a)

(b)

(c)

(d)

Figure 8: Running time per iteration (sec.) for different types

of data growth (let n denote the value on the x-axis of each

plot): (a) number of non-zero elements (one 3-way tensor

with n non-zero elements), (b) number of tensor modes (one

n-way tensor), (c) number of relations (n 3-way tensors) in a

metagraph, and (d) for different algorithm parameter, the

number of clusters (K).

535

