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This work aims at discovering community structure in rich media social networks through analysis of time-
varying, multirelational data. Community structure represents the latent social context of user actions. It
has important applications such as search and recommendation. The problem is particularly useful in the
enterprise domain, where extracting emergent community structure on enterprise social media can help in
forming new collaborative teams, in expertise discovery, and in the long term reorganization of enterprises
based on collaboration patterns. There are several unique challenges: (a) In social media, the context of
user actions is constantly changing and coevolving; hence the social context contains time-evolving multi-
dimensional relations. (b) The social context is determined by the available system features and is unique
in each social media platform; hence the analysis of such data needs to flexibly incorporate various system
features. In this article we propose MetaFac (MetaGraph Factorization), a framework that extracts commu-
nity structures from dynamic, multidimensional social contexts and interactions. Our work has three key
contributions: (1) metagraph, a novel relational hypergraph representation for modeling multirelational
and multidimensional social data; (2) an efficient multirelational factorization method for community ex-
traction on a given metagraph; (3) an online method to handle time-varying relations through incremental
metagraph factorization. Extensive experiments on real-world social data collected from an enterprise and
the public Digg social media Web site suggest that our technique is scalable and is able to extract mean-
ingful communities from social media contexts. We illustrate the usefulness of our framework through two
prediction tasks: (1) in the enterprise dataset, the task is to predict users’ future interests on tag usage, and
(2) in the Digg dataset, the task is to predict users’ future interests in voting and commenting on Digg stories.
Our prediction significantly outperforms baseline methods (including aspect model and tensor analysis),
indicating the promising direction of using metagraphs for handling time-varying social relational contexts.
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1. INTRODUCTION

This work aims at discovering community structure in rich media social networks
through analysis of time-varying multirelational data. Today, users routinely produce
and consume media (e.g. blogs, YouTube, Digg) as well as interact with each other on
social media platforms (e.g. Flickr, Facebook). These platforms allow a wide array of
actions for managing and sharing media objects such as uploading photos, submitting
and commenting on news stories, bookmarking and tagging, posting documents and
creating Web links. These social media Web sites additionally support actions for in-
teracting directly and indirectly with others, for example by sharing media and links
with friends or commenting on photos uploaded by other users. These sites enable rich
interactions between media and users, as well as complex social interactions among
users. Some of the interactions can be implicit—two users may share similar tags, be
interested in the same media themes, or even read a common member’s posts. Under-
standing the context of these interactions—how they relate to other actions, users, and
media objects, can lead to improved functionality of the social media platforms as well
as provide insight into the design of future online collaborative services for system
developers.

As a motivating application, let us consider the use of social media in enterprises,
which have increasingly embraced social media applications in an attempt to promote
workplace collaboration. Such social media, including wikis, blogs, bookmark shar-
ing, instant messaging, emails, and calendar sharing, can foster dynamic collaboration
patterns that deviate from the formal organizational structure (e.g. cooperate depart-
ments, geographical places, etc.). As illustrated in Figure 1, people who are close in
the formal organizational structure might be far apart in the instant messaging net-
work (e.g. Sen and Moore). On the other hand, users’ document access patterns might
be related to their corporate roles as well as personal interests. The complex and dy-
namic interplay of various social relations and interactions in an enterprise reflects
the day-to-day practice of collaboration. This process requires consideration of multi-
ple aspects, including how people assemble to tackle a task, how ideas are shared, what
communication means are deployed, how task experts are identified, or how relevant
information is found.

Understanding the latent community structure in an enterprise can have significant
impact. Some examples are the following.

— Context-sensitive document search and recommendation. Communities can reflect
clustering phenomena in the dynamic heterogeneous social relations involving peo-
ple and different types of information pieces, e.g. engineers may routinely access
technical documents, while sales people may frequently read news about competi-
tors. The clustering structures can be augmented in a search or recommendation
system, e.g. when recommending a document, the document’s rank can be boosted
if the document has been recently viewed by people working closely with the given
user.

— Context-sensitive expert identification. A main challenge in organizational learning
is to leverage expertise across organizational or even divisional boundaries, in an
accurate and timely fashion [Newman and Girvan 2004; Powell et al. 1996]. This
requires one to be able to find someone who has relevant expertise and can be easily
reached, e.g. through various effective communication channels [Borgatti and Cross
2003]. The community structure extracted by our method, from multirelational data
such as organizational structure, daily communications, and document access, can
help identify experts located within the community of the information seeker.

— Organizational study and reform. Human organizations have been studied exten-
sively through qualitative fieldwork (e.g. interviews) and quantitative participant
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Fig. 1. An example of various social relations in an enterprise. (a) formal organizational structure, (b)
network of instant messaging, and (c) network of document sharing via bookmarking system.

surveys [Scandura and Williams 2000; Simsek and Veiga 2000; Stanton and
Rogelberg 2001]. In such studies, the data is expensive to collect and the self-
reported information may be inaccurate or biased by the participants’ perceptions.
In data-driven community discovery, the data is collected from social media, which
capture more fine-grained human interactions and temporal information. Hence,
the detected structures can be considered as patterns naturally arising from day-
to-day communication means. These patterns can be used to simplify the amount
of data in the heterogeneous social relations, for further organizational analysis
including the functions and performance of suborganizations. Such analysis can
guide enterprise reorganization consistent with collaboration practice.

Discovering community structure from social media data presents several chal-
lenges. First, in social media, the context of user actions is constantly changing and
coevolving with respect to other users’ actions, emergent concepts and users’ historic
preferences. Hence the social context contains time-evolving multidimensional rela-
tions. Second, the social context is determined by the available system features that
allow interactions on media objects and among people. Hence the social context is
unique in each of the social media and the analysis of such data needs to flexibly incor-
porate various system features. When dealing with social media networks, there are
very few studies (e.g. Banerjee et al. [2007] and Kemp et al. [2006]) that consider such
data characteristics arising from social media.

In the following section, we give an overview of the problem and our solution ap-
proach.

1.1 Overview of the Problem

We are interested in the problem of discovering latent community structure in time-
varying multirelational social network data. This has three technical challenges.

(1) Relational learning adaptable to different social media contexts. A user’s social me-
dia context is determined by the available system features that allow interactions
on media objects and among people. The system features can vary across social
media platforms (e.g. Digg vs. Facebook) or change with time, which requires the
analysis of social media data to flexibly incorporate various combinations of re-
lations. Most social network studies only consider fixed network modes, e.g. an
author-paper network.

(2) Evolutionary characterization of communities in time-varying social networks.
Given the time-varying network data, the extracted community structure needs
to be able to explain the longitudinal human interaction patterns as well as
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significant changes at certain times. Community evolution and dynamic social
networks have not been studied in depth until recently (e.g. Chi et al. [2007], Lin
et al. [2008], Tantipathananandh et al. [2007], and Yang et al. [2009]).

(3) Analysis of multidimensional data. Social media platforms usually archive action
records consisting of different types of objects, e.g. a bookmarking record contains
a user, a bookmarked URL, one or more tags, and a timestamp. Such records can
be used to infer implicit interactions among people, provided the analysis can deal
with multidimensional networked data. Existing high dimensional data mining
techniques are usually computationaly intensive and not suitable for dealing with
large scale social networked data.

1.1.1 Notions of Community. There are different notions of a community. At the
conceptual level, examples include communities of scientists working on similar areas
of research [Girvan and Newman 2002] or authors of home pages who have some
common interests [Adamic and Adar 2003]. At the operational level, community detec-
tion considers identifying the modular structure of a network, where nodes represent
individuals and links represent the interaction or similarity between individuals.
Modules or communities are subsets of nodes within which the links are dense, and
between which the links are sparse. Based on such a definition, many community
detection algorithms have been proposed (see Section 2.1 for a brief survey).

We note that the prior definitions of a community are often too restrictive for
analyzing rich-context social networks. First, people are observed as related to each
other, explicitly (e.g. direct collaborations or emails between people) and implicitly,
(e.g. having access to common Web pages) at the same time. With multiple relations,
it is unlikely to completely partition people into nonoverlapping subsets. In this work,
a community refers to a group of people who interact with objects (e.g. bookmarks) as
well as with each other in a coherent manner—community members (including people
and objects) are more likely to link to nodes also linked to by members within the
community, and the links represent multiple relations. The main distinction between
our definition and previous notions is that, in prior work, community identifications
are based on a specific characteristic and rely on structures existing in a single type
of relation (either interaction, common interests, or similarity between individuals,
e.g. Adamic and Adar [2003] and Girvan and Newman [2002]), while in our work,
communities are identified based on structures across multiple types of relations. Our
definition is motivated by social embeddedness [Granovetter 1985], which indicates
the choices of individuals depend on how they are integrated in dense clusters or
multiplex relations of social networks.

Our goal is to discover such communities from time-varying multirelational social
data. Based on the technical challenges we have discussed, we identify three research
questions addressed in this work.

(1) How to model such multirelational social data?
(2) How to reveal the underlying communities that are consistent across multiple

relations?
(3) How to track those communities over time?

1.2 Our Approach

We propose MetaGraph Factorization (MetaFac), a framework that extracts latent
community structures from various social interactions. There are three key ideas in
our framework.

(1) We propose metagraph (see Figure 2), a novel relational hypergraph representa-
tion for modeling multirelational and multidimensional social data. A metagraph

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 3, Article 17, Publication date: August 2011.



Community Discovery via Metagraph Factorization 17:5

Fig. 2. We propose a metagraph representation to model various social contexts. (a) Users and related ob-
jects in a collaborative environment; (b) a metagraph representation for (a); (c) latent community structure
in (a), where C1 and C2 are two clusters we want to discover.

is a multirelational hypergraph where each vertex represents a facet (i.e. a set of
objects or entities of the same type), and each hyperedge represents the relation
among facets. We use a metagraph to configure the relational context (a particular
combination of facets and relations), which is the key to making our community
analysis adaptable to various social contexts.

(2) We propose an efficient multirelational factorization method for latent community
extraction on a given metagraph. Given a social context, we represent multirela-
tional data as multiple conjunct data tensors, where the conjunction is defined by
a metagraph (e.g. based on the metagraph shown in Figure 2(b), the data tensor
representing the “bookmark” relation is in conjunction with another data tensor
representing the “join-project” relation due to the shared user facet). We formalize
the latent community extraction as an optimization problem where the goal is to
factorize the conjunct data tensors into a nonnegative superdiagonal core tensor
multiplied by a nonnegative factor matrix along each facet. The optimization
objective is defined as a function of the metagraph and the metagraph defines a
combination of generalized KL-divergences, each of which corresponds to a rela-
tion represented by a data tensor on the given metagraph. The latent communities
are determined by the factorization, while the core tensor indicates the prior
probability of each community, and the factor matrices indicate the probability of
each facet element, given a community. We provide an efficient iterative algorithm
that guarantees convergence to a local optimal solution, with the time complexity
per iteration linear in the number of nonzero elements in all data tensors.

(3) We provide an online method to handle time-varying relations through incremen-
tal metagraph factorization. We incorporate an evolutionary clustering criterion in
our metagraph-based optimization function so that the new community structure
(of time t) to be extracted is consistent with prior community structure (of time
t-1) and new observations (of time t). We introduce an additional cost to indicate
how the new community structure deviates from the previous structure in terms
of the generalized KL-divergence, and we provide an efficient iterative algorithm
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to search new community structures that do not significantly deviate from prior
community structures.

We have conducted extensive experiments on real-world social media data collected
from an enterprise (denoted as “ENTERPRISE” data) and the public Digg social me-
dia Web site. The results suggest that our technique is scalable and is able to ex-
tract meaningful communities based on the given social media context. We have found
meaningful communities from the ENTERPRISE dataset. The communities exhibit
distinct behavior corresponding to the engineering and sales subcultures within the
enterprise. From the Digg data, we have found communities with distinct topical in-
terests (e.g. gaming industry news, election news, world news, etc.) and their dynamics
correspond to significant world or political events, such as the 2008 Summer Olympics
and the Russia-Georgia conflict.

We further illustrate the usefulness of our framework through prediction tasks—to
predict users’ future interests in using specific bookmarking tags, as well as voting
and commenting on Digg stories. The prediction performance is evaluated in terms
of P@10 (the precision of the top 10 results) and NDCG (Normalized Discount Cu-
mulative Gain), and we compare the prediction given by our community discovery
framework with several baseline methods suitable for individual prediction tasks, in-
cluding a widely adopted collective filtering method (the probabilistic latent semantic
analysis [Hofmann 1999] or pLSA) and a higher-order tensor decomposition method
(PARAFAC). Our tag prediction in the ENTERPRISE dataset outperforms the baseline
methods by 43–81% (P@10) or 27–72% (NDCG) on average. We found that by leverag-
ing cooperative relations (the department and directory of an employee), 19.46% of the
users’ future interests can be predicted by our method. Our voting and commenting
prediction results in the Digg data outperforms the baseline methods by an order of
magnitude. Our method outperforms the best baseline by 43% (P@10), 45% (NDCG),
73% (P@10), and 89% (NDCG). We further show that our predictions in both datasets
can be further improved by incorporating historic community structure through incre-
mental metagraph factorization and leveraging other relations through a metagraph.
Although the experimental results indicate predicting users’ future interests based on
historic data is nontrivial, these results still suggest the utility of leveraging meta-
graphs to handle time-varying social relational contexts.

This article is a significant extension of our prior work [Lin et al. 2009b] and is
our first comprehensive discussion on this subject. In this article, we include new
experimental results, detailed algorithms and proofs. In particular there are several
major extensions over prior work [Lin et al. 2009b].

(1) Extended discussion on the problem. In Section 1, we use the proliferation of social
media in enterprises to motivate the problem—how new collaborative structures
can emerge through the use of social media and why extracting the emergent latent
structures is important and challenging. In the problem formulation (Section 4),
we use an extended enterprise example to illustrate how diverse social contexts
are modeled through the metagraph representation.

(2) Details and proof of the algorithms. In Section 5, we formulate the community
discovery on metagraph (metagraph factorization) as an optimization problem and
provide an example to explain the formulation. We provide an iterative algorithm
for solving the metagraph factorization problem and provide the proof of the con-
vergence of this algorithm. In addition, we provide a pictorial view for illustrating
the steps of finding a solution to the example problem and further discuss the prob-
ability interpretation of the solution.
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(3) New and extensive experiment results. In Section 7, we provide more experimental
results from a real world enterprise dataset. We examine the effectiveness of our
method on this dataset by using case studies and a prediction task. We further
employ a forward-feature selection approach to select the best combination of re-
lations for prediction. The results suggest the applicability of our algorithm for
extracting latent collaborative structures from dynamic social contexts.

This work is also related to our recent published work [Lin et al. 2009a], in which
we propose the first generative model to extract communities based on both observed
networked data and historic community structure. This work adopts a similar evo-
lutionary clustering criterion to develop an online algorithm for extracting smoothly
evolving community structures. The novel idea in this work is that we leverage the
social embeddedness theory [Granovetter 1985] in sociology and develop a framework
to deal with the multiplex relations of social networks, which results in richer analyt-
ics and applications. This work extends the prior work [Lin et al. 2009a] in three new
aspects.

(a) Multirelations. Unlike our prior work [Lin et al. 2009a] that focuses on the pair-
wise relations between entities, this work considers more general multirelational
networked data observed in rich-context social media. By introducing the meta-
graph representation, the algorithms proposed in this work can deal with multiple
relations when they share the same set of entities.

(b) Multidimensions. By using tensor (multilinear) algebra rather than matrix rep-
resentation, the algorithms proposed in this work can handle arbitrarily many
dimensions in a relation.

(c) Rich analytics. Instead of using a symmetric matrix factorization, we extract
community structures as a core tensor and a set of facet factor matrices that
summarize communities from various dimensions (such as users, tags, feeds, and
comments) via different facet factors.

The facet factors obtained across time can be used to detect community changes
in different dimensions. They also allow an estimation of interactions between data
entities in any two dimensions. We have employed this feature to predict users’
potential interests in media objects such as tags and stories.

The experiments for this work focus on examining the proposed method in multire-
lational network cases. Detecting communities in dynamic, unirelational networks
has been extensively discussed in our prior work [Lin et al. 2009a], where, by using
synthetic datasets, we illustrate that our algorithm is capable of assigning meaningful
community membership to a node to indicate the level of the node belonging to a com-
munity. We compare our algorithm with nonevolutionary as well as evolutionary algo-
rithms in different noise conditions and show that our algorithm clearly outperforms
baseline algorithms. For more results in unirelational networks, we refer readers to
our prior work [Lin et al. 2009a].

The rest of the article is organized as follows. Section 2 reviews related work. Sec-
tion 3 introduces preliminaries and Section 4 formalizes the problem. Sections 5 and 6
present our community extraction method on both static and dynamic multirelational
data. Section 7 describes experiments. Section 8 discusses the open issues of the pre-
sented approach and Section 9 concludes.

2. RELATED WORK

Community discovery in rich media social networks deals with a constantly chang-
ing mishmash of interrelated users and media objects, which involves three aspects:
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(1) evolutionary characterization of communities in time-varying social networks
(Section 2.1), (2) analysis of multidimensional data (Section 2.2), and (3) relational
learning adaptable to different social contexts (Section 2.3). To the best of our knowl-
edge, our work is the first unified attempt to address all three aspects within a single
problem.

2.1 Evolutionary Community Characterization

2.1.1 Communities in Static Networks. Community discovery has been extensively stud-
ied in social network analysis and other research areas. Many approaches, such as
clique-based, degree-based and matrix-perturbation-based, have been proposed to ex-
tract cohesive subgroups from social networks [Wasserman and Faust 1994]. Recently,
many effective algorithms have been proposed to find clustering structures from net-
worked data, including spectral clustering algorithms [Chung 1997; Shi and Malik
2000] based on the eigenvectors of certain normalized similarity matrices. Newman
and Girvan [2004] propose community extraction algorithms based on a modularity
measure that quantifies the strength of community structure in a network. Yu et al.
[2005] propose a soft clustering algorithm on graphs where the cluster memberships
are assigned in a probabilistic way. This algorithm is closely related to the mixture
model proposed by Newman and Leicht [2007] and the stochastic block model pro-
posed by Holland and Leinhardt [1981]. Researchers have extended the stochastic
block model in different ways. Airoldi et al. [2008] proposed a mixed-membership sto-
chastic block model. Kemp et al. [2004] proposed a model that allows an unbounded
number of clusters. Hofman and Wiggins [2008] proposed a Bayesian approach based
on the stochastic block model to infer module assignments and to identify the optimal
number of modules. Besides monopartite graphs, there is a growing body of work on
community detection in bipartite graphs [Barber et al. 2008; Grujic et al. 2009; Harada
et al. 2007]. A comprehensive review of community detection has been provided by
Fortunato [2010].

2.1.2 Evolutionary Communities. Recent research based on the statistical properties of
online social networks provides important insight regarding the structure and evolu-
tion of social behavior [Backstrom et al. 2006; Leskovec et al. 2008]. The structure
of social interactions among people has been studied through unipartite or bipartite
graphs, in which the community structure can be characterized by clustering methods
[Sun et al. 2007] or a latent space model [Sarkar and Moore 2005], and the evolution
of community structure is captured in terms of various criteria.

Kumar et al. [2006] studied the evolution of the blogosphere in terms of the change
of graph statistics and the “burstiness” of extracted communities. Aggarwal and Yu
[2005] discuss an online approach to detect community changes in graph streams
based on the changes of edges (surrounding a set of seeded nodes) over a predefined
time period. Berger-Wolf and Saia [2006] propose “metagroup statistics” to quantify
the dynamics of social network structures based on interactions between groups of
nodes over time. Spiliopoulou et al. [2006] propose a framework, MONIC, to monitor
cluster transitions over time. They defined a set of external transitions such as sur-
vive, split, and disappear, to model transactions among different clusters and a set of
internal transitions such as size and location transitions, to model changes within a
community. Asur et al. [2007] introduce a family of events on both communities and
individuals to characterize evolution of communities. Palla et al. [2007] and Falkowski
et al. [2006] use a two-step approach that extracts groups per time slice and then
quantifies their evolution based on membership differences.

Sarkar and Moore [2005] propose a method that embeds nodes into latent spaces,
where the node coordinates at consecutive timesteps are regularized to avoid dramatic
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changes. Sun et al. [2007] use the Minimum Description Length principle to extract
communities and to detect their changes. Tantipathananandh et al. [2007] propose
an optimization-based approach for modeling dynamic community structure such that
individuals do not change their “home community” too frequently and tend to interact
with the home community most of the time, with a condition that only transitive in-
teractions (across time) are allowed. Chi et al. [2007] use an evolutionary clustering
criterion [Chakrabarti et al. 2006] and proposed the first evolutionary spectral clus-
tering algorithms for extracting clusters that smoothly evolve over time. They used
graph cut as a metric for measuring community structures and community evolutions.
[Lin et al. 2009b] use a similar idea to extract community structures based on both
observed networked data and historic community structure. They propose the first
generative model to extract communities and their evolutions in a unified process.
Yang et al. [2009] extend the generative model in the work of Lin et al. [2009b] and
model the changes in community memberships over time explicitly by transition pa-
rameters, and a Bayesian treatment of parameter estimation is employed to improve
point estimation results.

All these works restrict themselves to pairwise relations between entities (e.g. user-
user or user-document). In rich-context online social media, networked data consists of
multiple coevolving dimensions, e.g. users, tags, feeds, comments, and so on. Collaps-
ing such multiway networks into pairwise networks results in the loss of valuable in-
formation, and the analysis of temporal correlation among multidimensions is difficult.

2.2 Multidimensional Mining

Existing techniques include tensor-based analysis [Bader et al. 2006; Chi et al. 2008;
Sun et al. 2007] or multigraph mining [Zhu et al. 2007] Tensor factorization is a
generalized approach for analyzing multiway interactions among entities. Note
that a tensor represents complete interactions among all involved entities, which
is a very strong assumption in social media since there might be events involving
some but not all dimensions. Multigraph mining considers joint factorization over
two or more matrices. The combination of such matrices is domain-specific, e.g. in
text mining, Zhu et al. [2007] propose a joint matrix factorization combining both
linkage and document-term matrices to improve the hypertext classification. In social
media, relations depend on the system features, which might consist of heterogeneous
relations. Moreover, these relations may change over time in a social media Web site,
which requires a more flexible relational model.

2.3 Relational Learning

Relational techniques such as Probabilistic Relational Models (PRMs) [Friedman et al.
1999] or Relational Markov Networks (RMNs) [Taskar et al. 2002] extend graph mod-
els to deal with various combinations of probabilistic dependency among entities. Such
techniques can be computationally expensive, and may not scale to the large amount
of data present in social media platforms. There have been relational learning tech-
niques through pairwise relationships among entities [Bekkerman et al. 2005; Long
et al. 2007; Singh and Gordon 2008; Tang et al. 2008; Wang et al. 2006]. For example,
Singh and Gordon [2008] present a collective matrix factorization model that simulta-
neously factors several matrices, sharing factor parameters for entities participating in
multiple pairwise relations. It shows that collective matrix factorization, by exploiting
the correlations between relations, can achieve higher prediction accuracy than factor-
ing each matrix separately. The idea of exploiting correlation among multiple relations
is similar to our work. However, one issue in their model is that each data matrix is
factorized by two factors shared among relations. The stochastic constraint that each

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 3, Article 17, Publication date: August 2011.



17:10 Y.-R. Lin et al.

row of the factor matrices sums to one, usually leads to inconsistent interpretation for
the cluster posterior derived from the shared factors of matrix factorization (the same
factor may be interpreted as prior or posterior probability depending on whether it is
the left or right factor of a matrix). In contrast, consistent cluster posterior can be
derived from our model in a straightforward manner. Another common issue in such a
matrix factorization approach is that, when data has higher order interactions, trans-
forming the data into matrices incurs loss of information. Our work shares the same
advantages as Kemp et al. [2006] and Banerjee et al. [2007], which can handle multiple
higher order relations via tensor algebra, but their settings are different from ours.

2.3.1 Our Unique Contribution. In sum, social media analysis requires a flexible and
scalable framework that exploits relational context defined by the system features of
individual social media platforms. Such relational context is multidimensional, sparse
(not all dimensions are involved in an event), and evolving over time. We propose the
first graph-based tensor factorization algorithm to analyze the dynamics of heteroge-
neous social networks. Our method involves a novel metagraph representation based
on hypergraphs [Berge 1976].

A hypergraph [Berge 1976] is a graph in which more than two vertices are linked
by the same edge, hence allowing for the manipulation of ”sets of different types of
objects.” The theory of hypergraphs has been used to analyze data structures in several
areas [Rugg 1984; Seidman 1981]. The term “metagraph” has been used in a different
context [Basu and Blanning 2007]. Basu and Blanning [2007]introduce metagraphs
to depict the process of decision support systems and workflow management systems.
The principal difference between their definition of a metagraph and ours is that their
metagraph is defined to be a set of elements, along with a set of pairwise directed
edges, and the manipulation of their metagraph is based on matrix algebra. By our
definition, a metagraph is a hypergraph (with undirected hyperedges; see Section 4.2
for a precise definition) and the formulation is based on tensor algebra. We use the
term metagraph because of the following reason. In our metagraph, nodes are facets,
and hyperedges refer to relations between the facets. In the traditional use of the term
hypergraph, a hyperedge refers to a relation between specific instances (nodes refer to
a certain facet instance, not a facet). So in our metagraph, there can be a hyperedge
among, e.g., users, locations, and jobs, whereas in a more familiar hypergraph use,
there is an edge among specific things, e.g., John, New York, and secretary.

In the next section, we provide background on tensors.

3. PRELIMINARIES ON TENSORS

This section provides notations and essential background on tensors (Section 3.1) and
some basic operations (Section 3.2). Tensor notations and operations provide a com-
pact language that allows us to derive a formal representation of heterogeneous social
networks. For a more comprehensive discussion of tensors, we refer readers to Kolda’s
[2006] review.

3.1 Tensors

A tensor is a mathematical representation of a multiway array. The order of a tensor
is the number of modes (or ways). A first-order tensor is a vector, a second-order tensor
is a matrix, and a higher-order tensor has three or more modes. We use x as a vector,
X as a matrix, and XXX as a tensor. The dimensionality of a mode is the number of
elements in that mode. We use Iq to denote the dimensionality of mode q. E.g., the
tensor X ∈ �I1×I2×I3

+ has 3 modes with dimensionalities of I1, I2, and I3, respectively. �+
indicates that all elements of the tensor X have nonnegative values, which is usually
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the case for a data tensor. The (i1, i2, i3)-element of a third-order tensor is denoted by
xi1i2i3 . Indices range from 1 to their capital version, e.g. i1 = 1,. . . , I1.

3.2 Basic Operations

Mode-d matricization or unfolding. Matricization is the process of reordering the el-
ements of an M-way array into a matrix. The mode-d matricization of a tensor
X ∈ �I1×···×IM is denoted by X(d), i.e., unfold(X,d) = X(d) ∈ �Id×∏

q∈{1,..,M},q�=d Iq. Unfold-
ing a tensor on mode d results in a matrix with height Id and width that is the product
of dimensionalities of all other modes.

The inverse operation is denoted as X = f old(X(d)) ∈ �I1×···×IM.
In general the unfolding operation can be defined on multiple modes. For example,

we can define mode-(c,d) unfolding as unfold(X, (c,d)) = X(c,d) ∈ �(Ic×Id)×
(∏

q∈{1,..,M},q�=c,d Iq

)
.

Unfolding a tensor on two modes, c and d, results in a three-way tensor. Similarly,
we can define a vectorization operation x = vec(XXX ), which linearizes the tensor into a
vector.

Mode-d product. The mode-d matrix product of a tensor X ∈ �I1×···×IM with a ma-
trix U ∈ �J×Id is denoted by XXX×dU and results in a tensor of size I1×. . .×Id−1 × J×
Id+1×. . .×IM. Elementwise, we have (X×d U)i1···id−1 jid+1 ···iM =

∑Id
id=1 xi1i2···iMujid .

Mode-d accumulation. A mode-d accumulation or summation is defined as acc(X,d) =
X(d)1 ∈ �Id. The operation sums up all entries across all modes except for mode d,
which results in a vector of length Id. Accumulating a tensor on mode d can be obtained
by unfolding the tensor on mode d into a matrix and then multiplying the matrix
with an all-one vector. Like the unfolding operation, accumulation can be defined on
multiple modes, e.g. a mode-(c, d) accumulation acc(X, (c,d)) = X(c,d)×31 ∈ �Ic×Id, which
will result in a matrix of size Ic × Id.

The Kronecker product of matrices A ∈ �I×J and B ∈ �K×L is denoted by A⊗B. The
result is a matrix of size (IK)×(JL) and defined by

A ⊗ B =

⎡
⎢⎢⎢⎢⎣

a11B a12B · · · a1JB
a21B a22B · · · a2JB
...

...
. . .

...
aI1B aI2B · · · aI JB

⎤
⎥⎥⎥⎥⎦ .

The Khatri-Rao product is the matching columnwise Kronecker product. The
Khatri-Rao product of matrices A ∈ �I×K and B ∈ �J×K is denoted by A∗B and de-
fined by A ∗B =

[
a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK

]
, where ak and bk are the kth column

vectors of A and B respectively.
Tensor decomposition or factorization decomposes a tensor into a core tensor mul-

tiplied by a matrix along each mode. Thus, in the three-way case, where XXX ∈
�I×J×K, we have XXX ≈ZZZ×1A×2B×3C, which means each element of the tensor XXX
is the product of the corresponding matrix elements multiplied by weight zpqr, i.e.
xijk ≈ ∑P

p=1
∑Q

q=1
∑R

r=1 zpqraipbjqckr. Here, A ∈ �I×P, B ∈ �J×Q, and C ∈ �K×R are
called factor matrices or factors. The tensor ZZZ ∈ �P×Q×R is called the core tensor and
its elements show the level of interaction between different components. A special
case of tensor decomposition is referred as CP/PARAFAC decomposition [Carroll and
Chang 1970; Harshman 1970; Hitchcock 1927], where the core tensor is superdiag-
onal and P = Q = R. (A tensor X ∈ �I1×···×IM is called superdiagonal if xi1 ···iM �= 0
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Fig. 3. CP decomposition of a three-way tensor.

only if i1=. . . =iM.) The CP decomposition of a third-order tensor is then simplified as
xijk ≈ ∑R

r=1 zrairbjrckr, as illustrated in Figure 3. We use [z] to denote a superdiagonal
tensor, where the operation [·] transforms a vector z to a superdiagonal tensor by set-
ting tensor element zk...k = zk and other elements as 0. Thus the CP decomposition of
a three-way tensor can be written as XXX ≈ [z]×1A×2B×3C.

4. PROBLEM FORMULATION

This section defines the problem of discovering latent community structure that rep-
resents the context of user actions in social networks. We discuss the community dis-
covery problem and the issues involved in Section 4.1. In Section 4.2, we propose
metagraph—a representation of multirelational social context. In Section 4.3, we for-
mally state the technical problems of community discovery from multirelational social
data represented by a metagraph.

4.1 Community Discovery

We formalize the community discovery problem as latent space extraction from mul-
tirelational social data. Our goal is to discover latent community structures that repre-
sent the context of user actions in social media networks. We are interested in clusters
of people who interact with each other in a coherent manner. Some of the interaction
can be implicit, as when two users bookmark the same document, and the interactions
can be further enhanced by other interactions. Hence we consider a community as a
latent space of consistent interactions or relations among users and objects. In other
words, interactions most likely occur when the involved users or objects belong to the
same community.

As discussed in Section 1.1, the following issues are involved in community
discovery.

(1) How to represent multi-relational social data;
(2) how to reveal the latent communities consistently across multiple relations; and
(3) how to track the communities over time.

We address the first issue in the next section. The second and the third issues will
be formalized as optimization problems (Section 4.3) and the solutions are given in
Sections 5 and 6.

4.2 Metagraph Representation

We introduce metagraph, a relational hypergraph for representing multirelational
and multidimensional social data. We use a metagraph to configure the relational
context—this is the key that makes our community analysis adaptable to various so-
cial contexts, for example, an enterprise or a social media platform like Digg. We shall
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use an enterprise example to illustrate three concepts: facet, relation, and relational
hypergraph.

As illustrated in Figure 4(a), assume we observe a set of users in an enterprise.
These users might collaborate through different working projects, e.g., users u1 and u2
work for a project j1, and user u2 belongs to two projects, j1 and j2 at the same time.
Collaboration can occur implicitly with the aid of social media. For example, these
users can interact with each other through instant messenger or email, e.g., users u3
frequently “IMs” with u1 and u2.

Some users might use a bookmarking system to share information (Web pages or
documents) that is relevant to their work. A typical bookmarking system allows a user
to annotate shared documents with tags. A bookmarking activity involves a user, a
document, and one or more tags simultaneously, and it can be described as a tuple,
e.g., 〈u1, r1, x4〉 represents a user u1, bookmarks a document r1, with a tag x4.

To represent such a social context, let us assemble the same type of objects or en-
tities, as in Figure 4(b). We denote a set of objects or entities of the same type as a
facet, e.g., a user facet is a set of users, a project facet is a set of projects. We denote
the interactions among facets as a relation; a relation can involve two (binary relation)
or more facets, e.g., the join-project relation involves two facets 〈user, project〉, and the
bookmark relation involves three facets 〈user, document, tag〉. A facet may be removed
from a metagraph if the facet entities do not interact with other facets, e.g., the set of
bookmark entities might be omitted due to no interaction with other facets.

Formally, we denote the q-th facet as v (q) and the set of all facets as V. A set of
instantiations of an M-way relation e on facets v (1), v (2),. . . , v (M) is a subset of the
Cartesian product v (1)×. . .×v (M). We denote a particular relation by e(r), where r is the
relation index. The observation of an M-way relation e(r) is represented as an M-way
data tensor XXX (r).

Now we introduce a multirelational hypergraph, denoted as metagraph, as shown
in Figure 4(c), to describe the combination of relations and facets in a specific social
context. A hypergraph is a graph where edges, called hyperedges, connect to any num-
ber of vertices. The idea is to draw a hypergraph such that each vertex represents a
facet, and an M-way hyperedge represents the set of interactions of M facets. Such a
hypergraph is a graph about graphs because a hyperedge on a metagraph represents
many instance hyperedges and a vertex on a metagraph represents many data enti-
ties in the observed networks. By using a metagraph, we can represent a diverse set
of relational contexts in social networks. Note that a metagraph defines a particular
structure of interactions among facets, as opposed to specific interactions among facet
elements.

Formally, for a set of facets V = {v (q)} and a set of relations E = {e(r)}, we construct
a metagraph G = (V, E). To reduce notational complexity, V and E also represent
the set of all vertex and edge indices respectively. A hyperedge/relation e(r) is a tu-
ple consisting of vertices as its elements; e(r) is said to be incident to a facet/vertex
v (q)if v (q) is an element in e(r), which is represented by v (q) ∼ e(r) or e(r) ∼ v (q). E.g., in
Figure 4(c), the vertex v (1) represents the user facet, and the hyperedge e(1) = 〈v (1),
v (2), v (3)〉 represents the bookmark relation. Note that the three-way hyperedge e(1)

implies interactions between any two of the three facets, as shown in Figure 4(d).
However, the hyperedge representation is more informative than a complete subgraph
(a clique), e.g., the triangle in Figure 4(d), as it indicates all incident facets are in-
volved in the corresponding relation simultaneously. We summarize our notations in
Table I.

The concepts involved in a metagraph may also be related to Entity-Relationship
models (ERMs) [Chen 1976], which are abstract representations of data for database
modeling. The commonality is that both metagraphs and ERMs are used to represent
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Fig. 4. (a) A toy example that shows users and related objects in an enterprise. (b) Different types of objects
interact with one another through different relationships. (c) A metagraph represents the enterprise social
context. (d) A hyperedge indicates that the incident facets are involved simultaneously.
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Table I. Description of Notations

Symbol Description
x a vector (boldface lower-case letter)
X a matrix (boldface capital letter)
XXX a tensor (boldface Euler script letter)

I1,. . . ,IM the dimensionality of mode 1, . . . , M

v (q) a vertex v (q) ∈ V represents the facet v (q)

e(r) a hyperedge e(r) ⊆ V represents the relation e(r)

V the set of all facets V = {v (q)}, or the set of all vertex indices
E the set of all relations E = {e(r)}, or the set of all hyperedge indices
G a metagraph G = (V, E), where V is a set of facets and E is a set of relations

K, L Constants

the mathematical concepts about M-way relations. Although we could consider a facet
in a metagraph as an entity set, and a relation in a metagraph as a relationship set
in an ERM, a range of notions used in ERM modeling, such as attributes and key
constraints, do not have corresponding semantics in our mathematical representation.
To prevent misconceptions, we propose using a metagraph as a succinct representation
of our model instead of deriving terminologies from the ERMs. Besides, the metagraph
representation has a corresponding probabilistic interpretation about event spaces,
which will be discussed in Section 5.2.

4.3 Community Discovery Using Metagraphs

We assume consistent interactions in a community (ref. Section 4.1). Therefore, the
interaction between any two entities (users or media objects), i and j, in a community
k, written as xij, can be viewed as a function of the relationships between community
k, with entity i, and k with entity j. The function can be considered to be stochastic.
By letting pk→i indicate how likely an interaction in the k-th community involves the
i-th entity and pk be the probability of an interaction in the k-th community, we can
express xij by xij ≈ ∑

k pk · pk→i · pk→ j. Figure 5(a) illustrates how the interactions
in a user-document network are captured by two communities. In Figure 5(a), the
interaction between user u7 and document r6 is captured by community C1 and C2
in terms of pC1 · pC1→u7 · pC1→r6 + pC2 · pC2→u7 · pC2→r6 , where pC1 and pC2 represent
the probability of an interaction in C1 or C2 (visually indicated by the ellipse sizes),
and where pC1→u7, pC1→r6, pC2→u7 , pC2→r6 represents how likely the two communities
involve user u7 and document r6, respectively (visually indicated by the thickness of
the links connected to communities C1 and C2).

Likewise, xi1i2i3 is a three-way interaction among entities i1, i2, and i3 and is fac-
torized as follows: xi1i2i3 ≈

∑
k pk · pk→i1 · pk→i2 · pk→i3 . Figure 5(b) illustrates how the

three-way interaction among users, documents, and tags is captured by two commu-
nities, e.g., the interaction among user u7, document r6, and tag x4, is captured by
C1 and C2 in terms of pC1 · pC1→u7 · pC1→r6 · pC1→x4 + pC2 · pC2→u7 · pC2→r6 · pC2→x4 .
A set of such interactions among entities in facet v (1), v (2), and v (3) can be written as
follows.

X ≈
K∑

k=1

pku(1)
k ◦ u(2)

k ◦ u(3)
k = [z]

3∏
m=1

×m U(m), (1)
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Fig. 5. (a) An illustration of how two communities capture consistent interactions in a user-document net-
work, e.g., the interaction between user u7 and document r6 is captured by community C1 and C2 in terms
of their relationship with C1 and C2. (b) An illustration of how two communities capture the three-way in-
teraction among users, documents, and tags. (c) We seek to find communities that capture all the relations
shown in Figure 4.

where, X ∈ �I1×I2×I3
+ is the data tensor representing the observed three-way interac-

tions among facets v (1), v (2) and v (3), [z] is a nonnegative superdiagonal core tensor, and
where pk→iq is written as an (iq, k)-element of U(q) for q = 1, 2, 3. U(q) is a Iq×K matrix,
where Iq is the size of v (q). The probabilities of communitiesare elements of z: pk = zk.
This is similar to the CP decomposition of a tensor (ref. Section 3.2), except that the
core tensor [z] and the factor matrices {U(q)} are constrained to contain nonnegative
probability values. Under the nonnegative constraints, each column of {U(q)} must
sum to one, the 3-way tensor factorization is equivalent to the three-way aspect model
in three-dimensional cooccurrence data [Popescul et al. 2001].

The nonnegative tensor decomposition can be viewed as community discovery in a
single relation. The interactions in social media networks are more complex—usually
involving multiple two- or multi-way relations. In the enterprise example, we seek to
find communities that capture all the relations shown in Figure 4, as illustrated in
Figure 5(c). By using metagraphs, we represent a diverse set of relational contexts in
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the same form and define the community discovery problem on a metagraph, with the
following two technical issues.

The first issue is how to extract community structure as coherent interaction latent
spaces from observed social data defined on a metagraph, which is formally stated as
follows.

4.3.1 Problem (metagraph factorization, or MF). Given a metagraph G = (V, E) and a set
of observed data tensors {XXX (r)}r∈E defined on G, find a nonnegative superdiagonal core
tensor [z] and factors {U(q)}q∈V for corresponding facets V = {v (q)} so as to explain the
distribution of the observed data.1

The second issue concerns the dynamic nature of human activities—those interac-
tions might be consistent during a short time period but are unlikely to be stable all
the time. The problem, how to extract community structure as coherent interaction
latent spaces from time-evolving data given a metagraph, is defined below.

4.3.2 Problem (metagraph factorization for time-evolving data, or MFT). Given a metagraph
G = (V, E) and a sequential set of observed data tensors {XXX (r)

t }r∈E defined on G for time
t = 1, 2, . . . , find a nonnegative core tensor [zt] and factors {U(q)

t }q∈V corresponding to
facets V = {v (q)} for each time t so as to explain the distribution of the observed data.

We will present our method in two steps: (1) present a solution to MF (Section 5.1);
(2) extend the solution to solve MFT (Section 5.2).

5. METAGRAPH FACTORIZATION

This section presents our solution to the metagraph factorization problem (MF). Our
method relies on formulating MF as an optimization problem (Section 5.1). We then
provide an algorithm to find a solution to the optimization objective and discuss its
computational complexity (Section 5.2).

5.1 Optimization Objective

The MF problem can be stated in terms of optimization. Let us first consider a toy
example. Assume we are given a metagraph G = (V, E) with three vertices V = {v (1),
v (2), v (3)} and two 2-way hyperedges E = {e(a), e(b )} that describe the interactions among
these three facets, as shown in Figure 6. The observed data corresponding to the
hyperedges are two second-order data tensors (matrices) {XXX (a), XXX (b )} with facets {v (1),
v (2)} and {v (2), v (3)} respectively. The facet v (2) is shared by both tensors.

The goal is to extract community structure from data tensors through finding a non-
negative core tensor [z] and factors {U(1), U(2), U(3)} corresponding to the three facets.
The core tensor and factors need to consistently explain the data, i.e., we can approx-
imately express the data by XXX (a) ≈ [z]×1U(1)×2U(2) and XXX (b ) ≈ [z]×2U(2)×3U(3), as in
Equation (1). The core tensor [z] and facet U(2) are shared by the two approximations,
and the length of z is determined by the number of latent spaces (communities) to
be extracted. Since both the left- and the right-hand sides of the approximation are
probability distributions, it is natural to use the KL-divergence (denoted as D(·||·)) as
a measure of approximation cost. To simultaneously reduce two approximation costs
we can define a cost function as:

D(X(a)||[z]×1 U(1) ×2 U(2)) + D(X(b )||[z]×2 U(2) ×3 U(3)), (2)

1Since E also represents the set of all edge indices, the notations r ∈ E and e(r) ∈ E are interchangeable.
Likewise, q ∈ V and v (q) ∈ V are interchangeable.
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Fig. 6. A toy example of the metagraph factorization (MF). Given observed data tensors XXX (a), XXX (b )} and a
metagraph G that describes the interaction among facets {v (1), v (2)} and {v (2), v (3)}, find consistent commu-
nity structure expressed by core tensor [z] and facet factors {U(1), U(2), U(3)}.

where D(AAA||BBB) =
∑

i(ai log ai/bi – ai + bi) is the generalized KL-divergence (also called
I-divergence) between tensor AAA and BBB and a = vec(AAA), b = vec(BBB),

∑
iai =

∑
ibi = 1.

The solution to Equation (2) will be an MF solution for the metagraph in Figure 6.
We observe three things in this example. In Equation (2), each D(·||·) corresponds to a
hyperedge, each tensor product operation corresponds to how facets are incident to a
hyperedge, and the summation operation corresponds to all hyperedges on the graph.
We then generalize Equation (2) to any metagraph G, as follows.

Given a metagraph G = (V, E), the objective is to factorize all data tensors such
that all tensors can be approximated by a common nonnegative superdiagonal core
tensor [z] and a shared set of nonnegative factors {U(q)} to minimize the following cost
function.

J(G) =
∑
r∈E

D(X(r)||[z]
∏

m:v (m)∼e(r)

×m U(m))

s.t z ∈ �1×K
+ ,U(q) ∈ �Iq×K

+ ∀q,∑i U(q)
ik = 1 ∀q∀k,

(3)

where K is the number of communities, and D(·||·) is the generalized KL-divergence.
The constraint that each column of {U(q)} must sum to one is added due to the condi-
tionally independent assumption, that is, the probability of an occurrence of a relation
on an entity is independent of other entities in a community.

Without loss of generality, we have assumed the elements in each of the data tensors
are nonnegative and sum to one such that each data tensor represents a distribution
over all possible cooccurrences of elements in incident facets. With this normalization,
we can balance different types of relations in the objective, since the amount of data in
each relation can vary. Equation (3) can be easily extended to incorporate weights on
relations (to encode the importance of different relations).

5.2 Algorithm

We now present an algorithm for identifying K communities from data tensors by
finding a solution to the objective function defined in Eq. (3). From Eq. (3), it is difficult
to guarantee a global minimum solution,2 as Eq. (3) is not convex in all variables. In
the following we derive a local minimum solution to Eq. (3) by employing the concavity
of the log function in the generalized KL-divergence.

2The NP-hardness results for nonnegative matrix factorization established by Vavasis [2007] suggest that
solving the nonnegative tensor factorization to optimality may also be a difficult problem.
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THEOREM 1. The cost defined in Eq. (3) is nonincreasing under the following update
rules and therefore converges to a (local) optimal solution to the MF problem.

zk ← 1
L

∑
r∈E

∑
i1...iMr

X(r)
i1 ...iMr

μ(r)
i1 ...iMrk, (4)

U(q)
iqk ←

1
Lq

∑
l:e(l)∼v (q)

∑
i1 ...iq−1iq+1...iMl

X(l)
i1...iMl

μ(l)
i1 ...iMl k

, (5)

then normlize such that each column o f U(q) sums to one,

where z is a length K vector, L = |E| denotes the total number of hyperedges on G,
Lq = |{l:e(l) ∼ v (q)}| denotes the number of hyperedges incident to v (q), and

μ(r)
i1 ···iMr k←

zk
∏

m:v (m)∼e(r) U
(m)

imk

([z]
∏

m:v (m)∼e(r) ×mU(m))i1···iMr

. (6)

The proof of Theorem 1 is provided in the appendix. Because of the column nor-
malization step of U(q), we can omit dividing by Lq in Equation (5). The initial values
of z and {U(q)} can be drawn from a uniform distribution. This iterative update algo-
rithm is a generalization of the algorithm proposed by Lee and Seung [2001] for solving
the single nonnegative matrix factorization problem. In metagraph factorization, the
update for the core tensor [z] depends on all hyperedges on the metagraph, and the
update for each facet factor U(q) depends on the hyperedges incident to the facet.

The computation in Equations (4)–(6) can be time consuming due to the high di-
mensionalities of tensors. We now discuss an efficient implementation of the update
rules. In Equations (4)–(6), μ(r)

i1···iMrk is an element of an I1 × · · · × IMr × K tensor. Let

MMM(r) ∈ �ψ+ denote this tensor, where ψ denotes the dimensionalities I1×· · ·× IMr×K, in
short. Because MMM(r) is expensive to compute and operate, we want to reduce computa-
tion that involves MMM(r). By observing the shared part for updating the core tensor and
all facet factors in Equations (4) and (5), we can use the following strategy to achieve
efficient computation. Instead of computing MMM(r) explicitly, we compute an intermedi-
ate tensor SSS (r) of the same dimensionalities as MMM(r). SSS (r), which will save the repeating
part of multiplication of MMM(r) with {U(q)} and z in Equations (4) and (5). Thus, the
update rules can be rewritten as follows.

First, for each e(r), compute a tensor SSS (r) ∈ �ψ+ by:

μμμ(r) ← vec(X(r) � ([z]
∏

m:v (m)∼e(r)
×m U(m))) (7)

S(r) = f old(µ(r) ∗ (z ∗U(Mr) ∗ · · · ∗U(1))T), (8)

where � denotes the element-wise division, and ∗ denotes the Khatri-Rao product.
The second step is to update z and {U(q)} by:

z ← 1
L

∑
r∈E

acc(S(r),Mr + 1) (9)

U(q) ←
∑

l:e(l)∼v (q)

acc(S(l), (q,Ml + 1)), (10)
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Table II. The MF (Metagraph Factorization) Algorithm

Algorithm: MF
Input: metagraph G = (V, E) and data tensors {XXX (r)} on G
Output: z and {U(q)}

Method:
Initialize z, {U(q)}
Repeat until convergence

For each r ∈ E, compute SSS(r) by Eqs. (7) and (8)
update z by Eq. (9)
For each q ∈ V, update U(q) by Eq. (10)

where Mr + 1 is the last mode of SSS(r). The multiplication of MMM(r) and XXX (r) in
Equations (4) and (5) is now precomputed in Equations (7) and (8) by utilizing the
Khatri-Rao product. To obtain z and {U(q)}, we only need to accumulate SSS(r) on the
corresponding modes. {U(q)} obtained from Eq. (10) will be equivalent to those from
Eq. (5) after normalization. Equations (7)–(10) yield exactly the same results as Equa-
tions (4)–(6). The algorithm shares the same form of the expectation-maximization
algorithm, where Equations (7) and (8) correspond to the E-step and Equations (9) and
(10) correspond to the M-step. Note that the information contained in each data tensor
with respect to a hyperedge is aggregated through the E-step and is shared by the core
tensor and all facet factors in the M-step: thus the extracted communities will be co-
herent latent spaces. Table II summarizes the whole process to solve an MF problem.
We illustrate the process in Figure 7 for solving the problem shown in Figure 6.

5.2.1 Probability Interpretation. The solution core tensor [z] and facet matrices {U(q)}
uniquely define the clustering structure. We refer to 〈z, {U(q)}〉 as a community model,
from which we infer the probabilistic, or soft, membership of entities in each facet. The
soft membership assumes that an entity (such as a user or a tag) can belong to multiple
communities, with membership weights that sum to one, indicating how likely the
entity belongs to those communities. As described in Section 4.3, each element zk of z
is p(k) (pk, the probability of an interaction in community k), which can be considered
as the popularity of the k-th community, and each (i, k)-element of a facet matrix U
is p(i|k) (pk→i, how likely an interaction in the community k involves entity i), which
can be considered as the contribution of entity i in the k-th community. We determine
the soft membership of entity i with respect to community k as p(k|i), the conditional
probability of a community given the entity i, which is computed by p(i|k)p(k)/p(i),
where p(i) =

∑
k’ p(i|k’)p(k’) is the marginal probability of an interaction involving

entity i.
The proposed community model can be interpreted as a generalization of mixed

event space models [Schein et al. 2001], which encode a generative process consisting
of multiple types of events. An example of a three-space model based on Figure 4(c) is
depicted in Figure 8(a), where E (1), E (2), and E (3) denote the “bookmark,” “joint-project,”
and “instant-message” event spaces. A random variable R determines the type of
event r ∈ R that will be generated. In the generative process we pick r and the latent
variable k independently. Each entity participating in a tuple is assumed independent
of other entities, given the knowledge of k. For example, in the “joint-project” E (2),
a user u chooses a latent variable k, which in turn determines the project j, to join.
Each event space E (r) corresponds to a hyperedge e(r) in a metagraph. The generalized
representation is shown in Figure 8(b). Once r is chosen, an entity in each of the
incident facets of the hyperedge e(r) is chosen according to the distribution of the
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Fig. 7. A pictorial view of the MF algorithm for solving the problem shown in Figure 6.

facet. In the example of Figure 8(a), if r = 1, a user u ∈ v (1) , a tag x ∈ v (2), and
a document d ∈ v (3) are chosen based on p(u|k), p(x|k), and p(d|k), respectively. If
r = 2, a user u ∈ v (1) and a project j ∈ v (4) are chosen based on p(u|k) and p( j|k)
respectively. If r = 3, two users are chosen to send each other messages, both using
p(u|k). Also if r = 1, the probability of choosing a project is zero. We consider that
the type r event occurs with probability β (r), where β (r) ∈ [0, 1] and

∑
r β

(r) = 1. In
our model, the mixing portion β (r) is assumed to be uniform, but it can be extended
with nonuniform weights on relations. However, determining an optimal weighting
function for different types of applications is an interesting question for future
research.

Note that in this example, we employ a user facet to model the same set of users
participating in the “instant-message” relation and the relation is encoded in a
pairwise symmetric matrix W = XXX (2) = WT . We can obtain the solution3 for the user
facet factor U(1) through the MF algorithm—the update of each facet factor is based
on {SSS(r)}, which in turn is based on the current solution of {U(q)}. The solution of
U(1) is interpreted as the distribution of a user participating in the relation without
differentiating the message sender and receiver. It is trivial to use two facet factors

3When there is only a single relation existing between entities in the same facet, such as a user-user relation,
the problem turns out to be symmetric NMF. Symmtric NMF has been studied in prior work [Catral et al.
2004; Ding et al. 2005] and similar algorithms can be derived for a tensor version, but it is not the focus of
this work.
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Fig. 8. (a) The corresponding generative model for the metagraph shown in Figure 4. (b) The generative
model for any given metagraph.

to model different distributions of message senders and receivers with respect to an
asymmetric sender-receiver matrix. The solution facet factors can be obtained in the
same way by the MF algorithm. However, determining the community membership
of each user in terms of his or her two different roles (as a message sender or as a
receiver) may be cumbersome.

5.2.2 Computational Complexity. We now discuss the time complexity for the updates.
The most time consuming step in the algorithm is to compute SSS (r) for each hyperedge
e(r). As can be seen in Eq. (7), we can take advantage of the sparseness of the data
tensor XXX (r) and compute only the nonzero elements (total number of tuples) in XXX (r).
Let n denote the maximum number of nonzero elements of the involved data tensors.
This step has time complexity O(nKML), where K is the number of clusters, M is the
maximal number of incident facets of a relation, and L is the total number of input
relations. Usually, K, M, and L are much smaller than n. If we consider K, M, and L
are bounded by some constants, the time complexity per iteration is linear in O(n), the
number of nonzero elements in all data tensors.

6. TIME EVOLVING EXTENSION

This section presents our solution to the problem of metagraph factorization with time
evolving data (MFT). We formulate a new optimization objective for MFT (Section 6.1)
and provide an algorithm to find a solution to it (Section 6.2).

6.1 Optimization Objective

In the MFT problem, the relational data is constantly changing as evolving tensor se-
quences. We propose an online version of MF to handle dynamic data. Since historic
information is contained in the community model extracted based on previously ob-
served data, the new community structure to be extracted should be consistent with
previous community models and new observations. The idea is similar to the evolution-
ary clustering discussed by Lin et al. [2008]. To achieve this, we extend the objective
in Equation (3) in this section.

A community model for a particular time t is defined uniquely by the factors {U(q)
t }

and core tensor [zt]. (To avoid notation clutter, we omit the time indices for t.) For each
time t, the objective is to factorize the observed data into the nonnegative factors {U(q)}
and core tensor [z], which are close to the prior community model, [zt−1] and {U(q)

t−1}.
We introduce a cost lprior to indicate how the new community structure deviates from
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the previous structure in terms of the KL-divergence. The new objective is defined as
follows.

J2(G) = (1− α)
∑
r∈E

D(X(r)||[z]
∏

m:v (m)∼e(r)

×m U(m)) + αlprior

lprior = D(zt−1||z) +
∑

q

D(U(q)
t−1||U(q)) (11)

s.t z ∈ �1×K
+ ,U(q) ∈ �Iq×K

+ ∀q,
∑

i
U(q)

ik = 1 ∀q∀k,
where α is a real positive number between 0 and 1 to specify how much the prior
community model contributes to the new community structure. lprior is a regularizer
used to find similar pairs of core tensors and pairs of facet factors for consecutive
times. The new community structure will be a solution incrementally updated based
on a prior community model. We shall discuss the semantics of the regularization term
in the next section.

6.2 Algorithm

We provide a solution to Equation (11) as follows.

THEOREM 2. The cost defined in Eq. (11) is nonincreasing under the following up-
date rules and therefore converge to a local optimal solution to the MFT problem.

zk← (1− α)
∑
r∈E

∑
i1 ...iMr

X(r)
i1...iMr

μ(r)
i1...iMrk + αzk;t−1 (12)

then normlize such that
∑

k
zk = 1,

U(q)
iqk ← (1− α)

∑
l:e(l)∼v (q)

∑
i1 ...iq−1iq+1...iMl

X(l)
i1...iMl

μ(l)
i1 ...iMl k

+ αU(q)
iqk;t−1 (13)

then normlize such that each column o f U(q) sum to one,

where μ(r)
i1 ···iMrk is defined as in Eq. (6).

Because of the normalization step, we have dropped the scaling constant for updating
z and U(q). The proof of Theorem 2 is similar to the proof of Theorem 1 and is omitted.

According to Eq. (11), α controls how much the current community structure 〈z,
{U(q)}〉 depends on the historic community structure 〈zt−1, {U(q)

t−1}〉, i.e. 〈z, {U(q)}〉 partly
depends on 〈zt−1, {U(q)

t−1}〉, which in turn partly depends on 〈zt−2, {U(q)
t−2}〉 and so on, and

the dependency is controlled by α. Hence we can consider α as a parameter that con-
trols how much historic information is considered in extracting the current community
structure.

In Eq. (11), lprior can be written as:⎧⎪⎨
⎪⎩

log(z) =
∑
k

zk;t−1 log zk + cz

log(U(q)) =
∑
ik

U(q)
ik;t−1 log U(q)

ik + cq,∀q′,

where cz is a value irrelevant to z, and cq is a value irrelevant to U(q). The para-
meters in the previous model 〈zt−1, {U(q)

t−1}〉 act as the Dirichlet prior distribution for
the parameters in the current model 〈z, {U(q)}〉. So 〈zt−1, {U(q)

t−1}〉 can be considered
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Table III. The MFT Algorithm

Algorithm: MFT
Input: metagraph G = (V, E),

the data tensors{XXX (r)} on G observed at time t,
previous model zt−1, and {U(q)

t−1}
Output: new model z and {U(q)}

Method:
Initialize z,{U(q)}
Repeat until convergence

For each r ∈ E, compute SSS(r) by Eqs. (7) and (8)
update z by Eq. (14)
For each q ∈ V, update U(q) by Eq. (15)

as hyperparameters that act as pseudocounts to augment observed community mem-
bership. This Dirichlet prior model provides a way to add smoothing to the observed
community membership. Such membership smoothing shares the idea of the “Pre-
serving Cluster Membership” (PCM) criterion as discussed by Chi et al. [2007], where
they use a spectral clustering approach. One issue with their work is that the clus-
ters at time t-1 are not explicitly mapped to those clusters at time tand therefore some
partition-matching algorithms (e.g., Lovasz and Plummer [1986]) must be used to ob-
tain the optimal cluster mapping between those at time t-1 and those at time t, where
the partition-matching is an NP-hard problem.

Chi et al. [2007] also discuss a “Preserving Cluster Quality” (PCQ) criterion, which
aims to find a community structure that explains both historic data and current data
well. In our case, we can formulate the PCQ as follows.
lprior =

∑
r∈E

D(X(r)
t−1||[z]

∏
m:v (m)∼e(r)

×mU(m)), which requires the current model 〈z, {U(q)}〉 to

also explain the data tensors observed at time t-1. However, large variation in mem-
bership is more likely in this formulation due to lack of membership regularization. In
our work, we focus on the PCM criterion defined in Eq. (11).

The update rules can be rewritten as the following operations with SSS(r) precomputed
by Equations (7) and (8).

z← (1− α)
∑
r∈E

acc(S(r),Mr + 1) + αzt−1 (14)

U(q)← (1− α)
∑

l:e(l)∼v (q)

acc(S(l), (Ml + 1,q)) + αU(q)
t−1, (15)

where Mr + 1 is the last mode of SSS (r). The whole process of finding solutions to the MFT
problem is summarized in Table III.

For time evolving social data, changes might happen in interactions among entities,
or even in interactions among facets (e.g. due to the evolution of system features),
which lead to changes in the metagraph. One advantage of our MFT algorithm is that
it only requires new observed data defined on any given metagraph, so it is straight-
forward to incorporate the changes of a metagraph (the algorithm can take different
input metagraph Gt).

6.2.1 Computational Complexity. For each time t, the time complexity of each iteration
in the MFT algorithm is of the same magnitude as that in the MF algorithm, since
both algorithms involve computing Eq. (7), where the time complexity is O(nKML).
Recall that n is the number of nonzero elements in all data tensors, K is the number
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Table IV. Summary of the Relations in ENTERPRISE Dataset

Relation Tensor / incident facets #Tuples
(R1) bookmark dynamic (user, tag, URL) 389,617
(R2) join-wiki static (user, wiki) 1322
(R3) department static (user, department) 2788
(R4) directory static (user, directory) 2788
(R5) country static (user, country) 2788

Fig. 9. The metagraph representation for, (a) ENTERPRISE dataset, and (b) Digg dataset. Nodes represent
facets and edges represent relations.

of clusters, M is the maximal number of incident facets of a relation, and L is the total
number of input relations. Hence with bounded K, M, and L, the time complexity per
iteration is linear in O(n).

7. EXPERIMENTS

This section reports our experimental study on two real-world social media datasets
collected from an enterprise and the public Digg social network site. We first describe
the datasets (Section 7.1) and present the extracted communities (Section 7.2). We
evaluate our technique through prediction tasks (Section 7.3). Finally, we evaluate the
scalability of our factorization method on synthetic datasets (Section 7.4).

7.1 Dataset Description

This section provides a brief description on two real-world data collections used in our
experiments. The first, denoted as “ENTERPRISE,” is an intranet dataset collected in
a corporation, and the second is an Internet dataset collected in Digg, a popular online
social media Web site. The Digg dataset and code are available online.4

7.1.1 ENTERPRISE Dataset. We have collected collaboration relationships from the
employee profiles and rich-context social/communication media. Data from different
sources represent different aspects of the relationships among users (i.e. employees).
This collection allows us to build five relations among seven facets. The relations
are summarized in Table IV; they correspond to the metagraph shown in Figure 9(a).
Based on the availability of the timestamps, we consider four static relations and one
dynamic relation.

Static relations. We collect data from two sources. First, we collect data from the IBM
Lotus R© communities service, which allows users to coauthor Wiki-like Web pages by

4http://www.public.asu.edu/∼ylin56/kdd09sup.html
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Table V. Summary of the Relations in Digg Dataset

Relation Tensor / incident facets #Tuples
(R1) content dynamic (story, keyword, topic) 151,779
(R2) contact static (user, user) 56,440
(R3) submit dynamic (user, story) 44,005
(R4) digg dynamic (user, story) 1,157,529
(R5) comment dynamic (user, story, comment) 241,800
(R6) reply dynamic (user, comment) 94,551

registering as community members. A “community-wiki” (or “wiki” for short) is often
organized based on users’ common interests in work or life, e.g. “Lotus Sales Commu-
nity,” “Mac Fans,” and so on. Second, we extract the formal collaboration relationships
from the corporate employee profiles, including their departments, directories, coun-
tries, and so on. These relations represent the stable context of users.

Dynamic relation. We collect bookmark data from the dogear service [Millen et al.
2006], a social bookmarking system hosted on the corporate intranet, which has
been widely adopted across the enterprise to index and share internal documenta-
tion as well as public Web resources. The collected dataset contains bookmarks with
timestamps ranging from January 2006 to June 2008. From the collection, we have
extracted users who have more than 3 bookmarks. Based on the timestamps, we con-
struct a sequence of three-way tensors for the facet users, tags, and Web page URLs.
Each tensor comprises the bookmark data generated in a month.

7.1.2 Digg Dataset. We have collected data from a large set of user actions from Digg.
Digg is a popular social news aggregator that allows users to submit, vote (digg) and
comment on news stories. It also allows users to create social networks by designating
other users as friends and tracking friends’ activities. The dataset used in our experi-
ments includes stories, users and their actions (submit, digg, comment, and reply) with
respect to the stories, as well as the explicit friendship (contact) relation among these
users. To analyze users’ topical interests, we also retrieve the topics of the stories and
extract keywords from the stories’ titles.

From this dataset, we select five facets (user, story, comment, keyword, and topic)
and build six relations among them. The relations are summarized in Table V, which
correspond to the metagraph shown in Figure 9(b). Except for the contact relation, all
relations have timestamps. We assume the contact relation is static and consider the
other relations as dynamic. For dynamic relations, we extract tuples with timestamps
ranging from August 1 to August 27, 2008. To study the data evolution, we segment
the duration into 9 time slots (every three days), and construct a sequence of data
tensors for each dynamic relation. In the following we shall use t ∈ [1, 9] to denote
a time slot index. The total number of tuples in each tensor sequence per relation is
listed in Table V.

7.2 Community Case Studies

We present a case study of the community extraction results for both the ENTER-
PRISE and Digg datasets. The communities are extracted using the MFT algorithm
with α = 0.2; the parameter settings will be specified otherwise.

7.2.1 ENTERPRISE Communities. We use our algorithm to extract and track two latent
communities from the ENTERPRISE collection, based on relations R1, R2, and R3 (ref.
Table IV). The number of communities chosen here is solely for ease of presentation
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Table VI. Summary of Two Communities Extracted from the ENTERPRISE Dataset

and does not necessarily correspond to the true number of latent communities in the
enterprise.

We summarize the extracted communities in Table VI. For each community, we
are able to extract entities in the five facets (users, tags, resources, departments, and
wikis) that are mostly likely to be involved in the communities. The entities are ex-
tracted based on their p(i|k) values (as interpreted in Section 5.2) aggregated over all
timesteps. We omit showing the department facet, as the department titles (e.g. “SMP
RL Rational Architect”) may not be informative to the readers. For privacy reasons
we have anonymized the user identities5; instead, we show the users’ job descriptions
rather than their identifiable names or electronic IDs/addresses. The users’ job de-
scriptions will still allow an investigation of certain characteristics of the extracted
communities.

As shown in Table VI, the two communities appear to have distinct profiles. In the
first community (or C1 for short), the likely members (users with high probability to be
involved in C1) come with engineering or services job titles, while in the second com-
munity (C2), many likely members come with sales or software integration/architect
job titles. It is interesting to note that “engineer” and “sales” play complementary
roles in a technical company, and the two extracted communities appear to correspond
to the two roles. The resource facet suggests the different information consumption
behaviors of the two communities—C1 tends to bookmark the implementation aspect
(how-to) of a technique, while C2 tends to bookmark the analytical or business aspects
of a technique (e.g. technical news relevant to the corporation). The two communi-
ties are also distinguishable in their popular bookmarks of specific search entries, e.g.
search entries of “research” and “travel” information in C1 and C2, respectively (ref.
Table VI “resources” facet).

Community Evolution. It might not be easy to understand the semantics of the tags,
so instead of comparing these tags, we compare the evolution of the likely tags within
each community. We quantify the evolution of tags within each community based on
the cosine similarity between consecutive tag distributions of a community. From our

5A more in-depth discussion about the results may require users’ identifiable information or some cultural
understanding about the company; hence we omit the detailed discussion.
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Fig. 10. The community evolution characterized based on, (a) change in tag distribution (concept evolution)
in each community, and (b) change in size of communities (cluster probability).

algorithm, we obtain a sequence of tag factor matrices {Xt} for t = 1, 2,. . . Each col-
umn, xk of Xt, represents the tag distribution of the k-th community at time t. Then we
compute the temporal tag dissimilarity by 1-cos(xk;t−1, xk;t) for time t to plot the con-
cept evolution curve for the k-th community, as shown in Figure 10(a). We annotate
the peaks by the most likely tags at the peak times for each cluster. In this figure, we
can see distinct patterns of tag evolution within the two extracted communities—both
the peak terms and peak times are different. In our interviews with the employees
in the company, some pointed out that the peak times at the end of 2007 correspond
to some proposal deadlines where new concepts are likely to be introduced. The two
peaks seem to suggest there are different deadlines for the sales people and the en-
gineering people. Figure 10(b) shows the changes in the community sizes over time.
We can see the community structure extracted from the ENTERPRISE data is quite
stable except at the end of year 2007, which may reflect a certain activity burst in the
sales community (C2). This case study suggests that our algorithm is able to generate
meaningful mining results from an enterprise data collection.

7.2.2 Digg Communities. We now present a detailed qualitative analysis of the commu-
nities extracted from the Digg dataset, which demonstrates an advantage of probabilis-
tic interpretation given by our method. We first show all communities extracted for a
particular time and then examine the community evolution within these communities.

To illustrate what kinds of stories are “dugg” by what kind of communities, we track
the latent communities based on the digging activities that involve relation R1 and
R4. Figures 14(a) and (e) show the corresponding metagraph and the number of tuples
in the two relations. In our factorization algorithm, we assume that the number of
communities, K, is given beforehand. Here we show communities extracted given K =
2, 4, and 12.

Based on relations R1 and R4, four facets are involved: user, story, keyword, and
topic. We present the keyword and topic facets because they are more informative to
the readers than other facets. Figure 11 shows the most likely keywords and topics
in each community. We present the results of t = 3 (August 6–9, 2008). We project
those keyword and topic (shown within brackets) terms onto a 2D plane. The location
of the i-th keyword or topic term indicates its relative proximity to other terms and is
computed based on its soft membership p(k|i). The position is determined by standard
multidimensional scaling (MDS) [Borg and Groenen 2005] with the soft membership as
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Fig. 11. Community extracted based on the user digging activities, for time t = 3 (August 6–9, 2008) and
number of communities (a) K = 2, (b) K = 4, and (c) K = 12. The most likely keyword and topic terms (shown
within brackets) in each community are projected based on their soft membership. The size of each term
indicates its probability and each term is colored based on its most likely community. The results show
coherent topical preference in communities, as the terms with the same colors are located closely.
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Fig. 12. The community evolution characterized based on, (a) change in size of communities, and (b) change
in keyword distribution in each community.

input. The size of the i-th term indicates how likely the term appears in a story and is
determined based on the probability p(i). Each term is colored based on its most likely
community, by choosing k with maximal p(k|i). In the figure we can see the communi-
ties based on users’ digging activities have coherent topical preferences, as the terms
with the same colors are located closely. The 2-, 4-, and 12-community results show
the communities at different scales. The 2-community result distinguishes political
interests from the Olympics news (Figure 11(a)). The 4-community shows four topical
interests in communities: C1: gaming industry news, C2: US election news, C3: world
news, and C4: general political news (Figure 11(b)). The two major topics (“olympics”
and “georgia”) in C3 are further split in the 12-community result (Figure 11(c)).

Community Evolution. We select the 4-community result and examine its evolu-
tion. Figure 12(a) shows the probabilities of the four communities over time and
Figure 12(b) shows the keyword dissimilarity across time, where the dissimilarity is
computed based on the cosine similarity of keyword distribution in each community
of consecutive timestamps. We observe two critical times in Figure 12(b): for commu-
nities C2 and C3, the keywords distributions change drastically at t = 3 (August 6–9)
and t = 8 (August 21–24). To examine the events occurring during these times, we look
at the keyword distributions of the two communities. Table VII lists the top 10 key-
words that are most likely to appear in C3 and C2, at t = 2, 3 and t = 7, 8 respectively.
At t = 3, the new popped keywords “olympics” and “georgia” reflect users’ attention to
two significant events: the 2008 Summer Olympics began on August 8 and the 2008
Russia-Georgia conflict started on August 7. At t = 8, the new popped keywords “joe,”
“biden,” “vp,” correspond to the time when presidential candidate Barack Obama an-
nounced that Joe Biden would be his running mate (on August 22). Another critical
time is captured by the change in community size. In Figure 12(a), we see that com-
munity C3 keeps growing until t = 6, when the Russia-Georgia conflict ended with a
ceasefire agreement signed on August 15 and 16.

The characterization of community evolution based on change in the probability of
a cluster and on change in the distribution of entities such as keywords (Figure 12
and Table VII) demonstrates the advantage of our soft clustering method—the ob-
tained probability values can be used not only to determine the community member-
ship, but also to infer the importance or representativeness of entities in terms of their
contribution to the community structure, as well as to capture the community evo-
lution in various dimensions. The presented case study suggests that our method
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Table VII. The Keyword Distribution of Communities C2 and C3 During Two Critical Times,
t = 3 and t = 8

is able to generate meaningful mining results from dynamic multirelational social
media data.

7.3 Evaluation via Prediction

We use prediction tasks to demonstrate the utility of our techniques. Due to the lack
of ground truth in real world datasets, evaluating the community detection results is
challenging. To address this, we design prediction tasks that allow evaluating how
well the detected community structures capture the interaction probabilities among
entities. The tasks are designed based on different scenarios for the two datasets. We
study three aspects of our method through these prediction tasks.

(1) How does our community discovery framework help predict users’ future interests?
(2) How much historic information do we need (the impact of α)?
(3) Which relation is relevant to the prediction?

7.3.1 Performance Metrics. We use two metrics adopted in information retrieval.

(1) P@10 (the precision of the top 10 results). For each user we compute P@10 as the
portion of the correctly predicted tags (or stories) in the first 10 retrieved tags (or
stories) for the user. The overall P@10 for the set of users is computed by taking
the mean of P@10 per user, per time slot.

(2) NDCG (Normalized Discount Cumulative Gain [Järvelin and Kekäläinen 2000]).
One advantage of the measure is its sensitivity to the prediction order. The NDCG
is given by:

NDCG ∝
∑

i
δ(i)

/
log(1 + i), (16)

where i is the rank of predicted tags (or stories), δ(i) = 1 if the prediction of the
rank-i tag is correct and 0 otherwise.

In general, the P@N metric assigns an equal weight for each of the top N predicted
stories, so the results may be sensitive to the choice of N (N = 10 is used in our experi-
ment). The NDCG metric allows different levels of relevance and weighs the prediction
according to their ranks in the ranked list. We use top-5 story prediction as an exam-
ple to illustrate the difference. Assume our model gives an ordered list of stories, (s1,
s2, s3, s4, s5), for a given user. If s1 and s2 are correctly predicted, the NDCG ∝ 1/log(1 +
1) + 1/log(1 + 2) ≈ 1.63; in the other case, if s3 and s5 are correctly predicted, the NDCG
∝ 1/log(1 + 3) + 1/log(1 + 5) ≈ 0.89. The P@5 for both cases is the same (0.4). Hence
we expect it is less sensitive to the cutoff of the ranking list used for prediction, and
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is more effective in differentiating prediction qualities in this task. We use P@N as a
complementary metric in order to give an intuitive sense about the prediction quality.

7.3.2 ENTERPRISE Dataset.

Prediction setting (tag prediction). For the ENTERPRISE dataset, we design a prediction
task to illustrate how our community tracking algorithm can be utilized to predict
users’ future interests. Given data Dt at time t, we extract communities to predict
users’ future use of tags, and compare the prediction with the ground truth in data
Dt+1. We consider Dt as training data and Dt+1 as testing data. This is a constrained
setting because there might be relevant tagging activities occurring before t and after
t + 1. In our prediction experiments we only consider two consecutive time slots6 so as
to minimize the boundary effects at the beginning and the end of the dataset time span.

The task is designed to understand the meaningfulness of the extracted commu-
nity structure in the absence of ground truth for the community memberships. The
extracted community structures are considered to be meaningful if these structures
correlate with external relevant data (in this case, the future individual actions) to a
certain extent and hence enable the prediction.

Our prediction method. Our prediction is derived from the community tracking results.
We determine if a user ui will be interested in a tag x j by the conditional probability:

p(x j|ui) ∝ p(x j, ui) ≈
∑

k
zk ·U(1)

ik ·U(2)
jk , (17)

where zk is the k-th diagonal element of the core tensor, U(1)
ik is the (i, k)-element of the

user factor matrix and U(2)
jk is the ( j, k)-element of the tag factor matrix. For each time

t, we obtain the community model and derive the conditional probability to predict the
user-tag association at time t + 1.

We use the MFT algorithm to handle the temporal data and extract communities
incrementally. As a comparison, we also report the results of the MF algorithm, which
extracts communities for each time slice (nonincrementally).

Baseline methods. We compare our method to two baseline methods.

(1) Recurring interests. Predict future tags (at t + 1) as the tags most frequently used
by the user at t, which is a simple frequency based heuristic.

(2) Collective interests (pLSA). Predict future tags by using a well-known collective
filtering method (probabilistic latent semantic analysis [Hofmann 1999] or pLSA)
on the user-tag matrix.

Results and Discussion. In our experiment, the time interval is one month. The overall
prediction performance is obtained by taking average prediction performance over 10-
month data. The best results for each method are reported in Table VIII. The results
indicate the prediction given by our community discovery framework outperforms the
baseline methods by 43–81% (P@10) or 27–72% (NDCG) on the average, which suggest
that our method can better capture the dynamics of users’ interests.

We explain the results in the following. If a user’s interests remain similar from
time t-1 to t, the simple frequency-based heuristic (recurring interests) would be able
to predict the user’s interests. On the other hand, if the user’s interests change from

6The time slot duration is empirically chosen—we choose one month for the ENTERPRISE dataset and
three days for the Digg dataset. Given the context of two social media environments, the time duration
should be sufficient for a reasonable prediction. For example, in Digg, users are more likely to digg a news
story submitted within few days.

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 3, Article 17, Publication date: August 2011.



Community Discovery via Metagraph Factorization 17:33

Table VIII. The Average Prediction
Performance for ENTERPRISE Tag
Prediction, Evaluated by P@10 and

NDCG Metrics

Fig. 13. Effect of, (a) prior community model (historic information), and (b) different input relations.

t-1 to t, which cannot be captured by the recurring interests method, we may predict
the user’s interests based on other users’ interests—we use pLSA to capture the col-
lective interests. However, pLSA only considers users’ contexts via a single relation
(other users’ interests on tags) and cannot handle richer aspects of users’ contexts.
Figure 13(b) shows that by leveraging cooperate relations (R3 and R4), 19.5% of the
users’ future interests can be predicted by our method under the experimental set-
ting. Note that even using a single relation (R1) as in pLSA, our method still performs
better due to its ability to handle tensor data. It is also possible to use existing tensor
analysis to incorporate all possible relations; however, in the next section we show that
transforming the data into a single, high dimensional tensor does not necessarily yield
good prediction results.

We further study how the prediction performance is affected by different historic
information and relational contexts.

Effect of historic information. We vary the weight of the prior model in MFT by setting
α ∈ [0, 1], and report the average P@10 (averaging over time) against α, as shown in
Figure 13(a). The results suggest that incorporating prior knowledge does work better
than no prior (α = 0). Note that the prediction performance drops when overlooking
current observation (α > 0.6). In practice, a good α value can be obtained through
cross-validation.

Effect of various relational contexts. We seek to determine the effective relations in terms
of future tag prediction. We consider relations as a set of features and employ a
forward-feature selection approach to select the best combination of relations. Starting
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from the first relation (R1, i.e. bookmark relation), we select one relation among the
rest that best improves the prediction. The results are shown in Figure 13(b). The
results suggest that combining multiple relations can significantly improve the pre-
diction performance. However, the performance gain does not always come with the
increasing number of input relations. In our case, the effective relations for future
tag prediction are relation R1, R3, and R4 (i.e. bookmark, department, and directory),
which interestingly suggest how an individual’s use of tags is affected by her or his
cooperate structures.

7.3.3 Digg Dataset.

Prediction setting (voting and commenting prediction). Based on the Digg scenario, we de-
sign prediction tasks to predict users’ future interests on digging (voting) and com-
menting on Digg stories. There are two tasks: (a) digg prediction – what stories a user
will digg, and (b) comment prediction—what stories a user will comment on. Both
tasks are evaluated on data from each time slot. We use stories that have digging or
commenting events in time slot ts ∈ [2, 9] as testing sets and the available relational
data (ref. Table V) in time slot ts-1 as training sets. The prediction results are com-
pared with the actual diggs and comments occurring in slot ts. This is a constrained
setting because there might be more digging or commenting activities occurring af-
ter ts (also see Footnote 5). In our prediction experiments, we only consider diggs and
comments in each single slot ts as ground truth. The idea behind the design of both pre-
diction tasks is similar to the ENTERPRISE tag prediction discussed in the previous
section.

Our prediction method. We generate predictions based on the community structure ex-
tracted by our method—denoted by MF and MFT. The MF algorithm outputs commu-
nity structure from relational data of each time slot ts-1. The MFT algorithm uses
the same data as MF, with the aid of a community model extracted for time ts-2 as an
informative prior. Hence MFT gives results incrementally. From an extracted commu-
nity model, we obtain the probability of a community k, p(k), and the probability of a
user u, a keyword w and a topic j, given community k, i.e. p(u|k), p(w|k) and p( j|k). To
predict if a user u will digg or comment on a story r, we first use a folding-in technique
[Popescul et al. 2001] to compute p(r|k), the probability of a story, given each commu-
nity k, based on the story topic and keywords. Then a prediction is made based on the
condition probabilityp(r|u) ∝ p(u,r) ≈ �k’ p(k)p(u|k’)p(r|k’).

Baseline methods. Three baseline methods are used7.

(1) Frequency based heuristics (FREQ). Predict stories based on the frequency of story
topic and keywords at ts-1.

(2) Standard tensor analysis (PARAFAC). Predict stories by using the CP/PARAFAC
tensor decomposition [Bader and Kolda 2006] for data in slot ts-1. The stories to be

7The baseline methods chosen here are different from the baseline methods used in the ENTERPRISE
prediction task due to the differences in the available facet information for making predictions. In ENTER-
PRISE prediction, the task is to predict future tag use based on a data matrix—a single relation involving
the user and tag facets. Given the single matrix setting we have chosen pLSA, which has been considered
effective to handle (document-term) matrix data. In Digg voting prediction, the task is to predict future
digg interests based on one or more high-dimensional data tensors—one relation involving the user and
story facets and another relation involving the story, keyword, and topic facets. (The comment prediction
has a similar high-dimensional setting.) To handle this high-dimensional setting we have chosen MWA, a
high-dimensional extension of pLSA, and PARAFAC, which is a variant of higher-order SVD.
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Fig. 14. Relations used by different methods for digg and comment prediction: (a) R1 and R4 used in our
method for digg prediction; (b) R1 and R5 used in our method for comment prediction; (c) TD tensors used in
PARAFAC and MWA for digg prediction; (d) TC tensors used in PARAFAC and MWA for comment prediction;
(e) no. of tuples in each relation over time.

predicted are first projected on the latent spaces, and the prediction is made based
on the dot product of the user and story projected vectors.

(3) Multi-way aspect model (MWA). Predict stories by using the multiway aspect model
[Popescul et al. 2001], a special case of our model (ref. Section 4.3).

The ability to handle relational contexts is the key to our comparison. We
choose specific relations to illustrate the utility of leveraging a specific context by a
metagraph—relation R1 and R4 for digg prediction and R1 and R5 for comment pre-
diction (ref. Figures 14(a) and (b)), and we shall evaluate the effect of other relations
later in this section. Since PARAFAC and MWA only deal with a single high dimen-
sional relation, we construct two 4-way tensors per time that contains digg actions and
comment actions with respect to stories. The two tensors, denoted by TD and TC are
shown in Figures 14(c) and (d). Figure 14(e) shows the number of nonzero entries (tu-
ples) of these data tensors over time. The number of tuples in an R5 tensor corresponds
to the number of stories per time.

Results and discussion. The overall prediction performance is obtained by taking the
average of prediction performance on data for each time slot (t = 1. . .8 for training
and t = 2. . . 9 for testing) over different K values. The results (mean and standard
deviation) are given in Table IX. There are several observations. First, our method,
MF and MFT, significantly outperforms all baseline methods. In digg prediction, our
MF method outperforms the best baseline, PARAFAC by 43% (P@10), 45% (NDCG) on
the average. In comment prediction, the MF method outperforms the best baseline,
MWA by 73% (P@10), 89% (NDCG). Second, the MFT performs the best. It slightly
outperforms MF in digg prediction and improves MF by 15% in comment prediction.
In Figure 15, we show the prediction results over time based on P@10. The results
indicate that during the test period, MFT tends to have better prediction performance
than MF. The performance gain of MF and MFT may be attributed to the ability to
handle relational contexts. As shown in Figure 14(e), transforming the data into 4-
way tensors results in the increase of nonzero entries, while a larger number of entries
does not necessarily help predict users’ interests. In the 4-way tensor representation,
users’ preference for stories may be underrated due to the multiple counts of the facets
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Table IX. The Average Prediction Performance for Digg and Comment
Prediction, Evaluated by P@10 and NDCG Metrics

Fig. 15. The prediction performance over time for, (a) digg, and (b) comment prediction, evaluated by P@10.

(keywords or topics) of popular stories. Unlike PARAFAC and MWA, which only deal
with a single high dimensional relation, MF and MFT are able to handle multiple
relational tensors simultaneously, which balances the information given by user-story
and story-keyword-topic relations.

Next we examine two characteristics, to show how our prediction can be further im-
proved by, (a) incorporating a historic model, and (b) leveraging other relations through
a metagraph.

Effect of historic information. We vary the weight of the prior model in MFT by setting
α ∈ [0, 1] and report the average P@10 over α values (Figure 16(a)). The results sug-
gest that incorporating historic information as prior knowledge works better than no
prior (α = 0, i.e. MF). The effects of historic information are different for the two activi-
ties. For digg prediction, the prediction performance drops when α > 0.4. For comment
prediction, the performance drops increase α ≤ 0.8. This suggests that the future com-
ment activities are more consistent with the historic community structure than the
digg activities, which also implies a longer lasting correlation of community structures
on users’ commenting behavior.

Effects of various relational contexts. For comment prediction, we evaluate the predic-
tion performance over different relational contexts. Figure 16(b) shows the average
prediction results. The label R* indicates which relations are used in the training set,
e.g. R125 denotes relation R1, R2, and R5. We observe that different combinations
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Fig. 16. Effect of, (a) prior community model (historic information), and (b) different input relations.

of the relations affect the prediction performance. For example, incorporating the
contact relation R2 with R1 and R5 significantly helps predict users’ comment
activities, which implies some correlation between the contact relation and the
comment activities (e.g. users are likely to comment on stories on which their friends
also give comments). This comparison shows the complexity of choosing the best
context in prediction. A metagraph can leverage a mechanism similar to the feature
selection scheme for comparing against a family of relational contexts.

Further discussion on prediction results. Although our method significantly outperforms
baseline methods in the prediction tasks, predicting the items of users’ future inter-
ests based on historic data is not easy in practice—in the ENTERPRISE data (ref.
Table VIII), the best performance (by our method) indicates 19.5% of the users have at
least one item of 10 predicted correctly (according to P@10), but the low NDCG value
implies these items may not be predicted in the correct order. In the Digg dataset (ref.
Table IX), the best performance (by our method) of the digg prediction indicates 54.3%
of the users have at least one item of 10 predicted correctly, while the relatively low
NDCG value (0.215) still reflects the inaccurate ranks of the predicted items. The best
results of the comment prediction are similar to those in the ENTERPRISE dataset.
These results suggest that leveraging multiple relations may be effective in increasing
the coverage of predictable items, but may be limited in giving correct ranks of these
items.

7.4 Scalability Evaluation

We use synthetic datasets to illustrate the scalability of our algorithms. We study how
the computational time of our algorithm increases with different types of data growth;
(a) nonzero elements in a data tensor, (b) number of tensor modes (dimensions),
(c) number of relations (tensors) on a given metagraph, as well as (d) the algorithm
parameter (number of clusters). The four experiments are described in the following
(ref. Figure 17).

(1) We randomly generate an M-way tensor of dimensionality I1, . . . , IM. We increase
the number of nonzero elements in a data tensor by setting M = 3, I1 = I2 =
I3 = 1000. In Figure 17(a), we show the average running time per iteration of our
algorithm against the number of nonzero elements.

(2) With a fixed number of nonzero elements (105), we vary the number of tensor
modes (the number of incident facets of a relation). The dimensionalities of all
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Fig. 17. Running time per iteration (sec.) for different types of data growth (let n denote the value on the
x-axis of each plot). (a) number of nonzero elements (one 3-way tensor with n nonzero elements), (b) number
of tensor modes (one n-way tensor), (c) number of relations (n 3-way tensors) in a metagraph, and (d) for
different algorithm parameters, the number of clusters (K).

facets are fixed (we set Iq = 1000 for all q’s). Figure 17(b) shows the average
running time per iteration over the number of tensor modes.

(3) With a fixed number of nonzero elements (105), we vary the number of relations
in a metagraph by connecting an existing vertex with a new vertex. The order
(tensor modes) and dimensionalities of each relation are fixed (M = 3, I1 = I2 =
I3 = 1000). Figure 17(c) shows the average running time per iteration over the
total number of relations.

(4) With a fixed number of nonzero elements (105) in the data tensors, we vary the
input parameter, the number of clusters, K. Figure 17(d) shows the running time
per iteration over the number of clusters.

The results empirically show that the running time per iteration scales linearly
with the data sizes, the number of tensor modes, the total number of relations, and
the number of clusters. Note that the slope for increasing tensor modes is steeper
than increasing relations. Empirically, the nonzero elements in a higher mode tensor
are usually much more than lower mode tensors (as in Figure 14(e)). Therefore, by
leveraging a metagraph, we can efficiently combine multiple low-dimensional relations
instead of constructing a high-dimensional tensor.
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The experimental results on the synthetic datasets correspond to our analysis in
Section 5.2 and suggest that our algorithm can efficiently deal with large sparse mul-
tirelational data.

8. OPEN ISSUES

We discuss some open issues in the proposed framework:

(1) Evaluating the results of community detection is challenging due to the lack of
ground truth in real-world multirelational datasets. In this work, we have tried to
address this issue in two ways: (a) we present case studies in both ENTERPRISE
and Digg datasets, and (b) we use prediction tasks to study the potential links
derived from the detected communities. The case studies rely on human interpre-
tation, which is expensive and difficult for comparison, making it an unpromising
method to scale to very large datasets. It is important to note that the predic-
tion framework only provides an indirect assessment. Developing a direct and
unambiguous quantitative assessment of community detection in multirelational
networks requires annotated benchmarks and would be critical in our future work.

(2) In our factorization method, we use the product of the facet matrices to fit each
observed relation. A more natural extension is to use kernel representation for
those factors to exploit their nonlinear relationship.

(3) We have assumed the number of communities, K, is given beforehand. However,
different K values affect the extracted community structure. Selecting the best
K is highly dependent on the context of application, e.g. it is usually more useful
to select a smaller K for community discovery, but a larger K might improve
the prediction accuracy. Moreover, the community might have a hierarchical
structure such that reasonable mining results occur with many K ’s. There is work
proposing the assumption of flat structure in determining the optimal number of
communities from a single, static network. Newman and Girvan [2004] propose
a modularity function Q to measure the strength of the discovered clustering
structure, which quantifies the deviation between the actual fraction of edges
within communities and the expected fraction of such edges. They empirically
demonstrate that Q is an effective measure for evaluating the community struc-
ture in large networks, where a maximal Q leads to good modular structure in the
network. Their modularity function relies on a hard membership assumption—
each entity can belong to only a single community. Lin et al. [2008] extend the
idea to take soft membership into consideration. Hofman and Wiggins [2008]
incorporate the idea of modularity into a Bayesian treatment on the stochastic
block model. They develop a solution to this problem, which relies on inferring
distributions over the model parameters based on a set of hyperparameters that
act as pseudocounts augmenting observed edge counts and occupation numbers.
Extending their idea to the multirelational network could be a fruitful research
direction.

(4) There are different aspects of community evolution, e.g. (a) change in the com-
munity size, (b) change in the number of communities, and (c) change in the
community membership, content, or features (what the community is about). To
study the evolution within communities, our method has assumed the number of
communities does not change across time (we do not consider the second aspect).
Ahmed and Xing [2008] propose a temporal Dirichlet process mixture model
(TDPM) for evolutionary clustering, which allows the clusters to retain, die out,
or emerge over time, and the actual parameterization of each cluster can also
evolve over time in a Markovian fashion. However, extending their framework

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 3, Article 17, Publication date: August 2011.



17:40 Y.-R. Lin et al.

to efficiently model various types of coevolving objects is nontrivial. Moreover,
comprehending several evolution aspects in a unified process is a challenging
issue.

(5) Our proposed method is useful in quantifying how much the data changes over
time in terms of the changes in overall community structure or the changes in
specific facet distribution. Lahiri and Berger-Wolf [2008] propose a frequency-
based approach in order to mine periodic or near periodic subgraphs in dynamic
networks. You et al. [2009] extract, (a) a set of “graph rewriting rules” to describe
the changes in graph sequences, and (b) a set of “transformation rules” to describe
the structures of these changes using compression-based metrics. These studies
have a different focus on mining the types of network changes.

9. CONCLUSION

We proposed the MetaFac framework to extract community structures from vari-
ous social contexts and interactions. There were three key ideas: (1) metagraph—a
relational hypergraph for representing multirelational social data; (2) MF algorithm—
an efficient nonnegative multitensor factorization method for community extraction on
a given metagraph; (3) MFT—an online factorization method to handle time-varying
relations. We conducted extensive experiments on synthetic and two real-world
datasets—ENTERPRISE and Digg. A qualitative analysis on communities extracted
from both datasets suggested that our method is able to extract meaningful work
communities. We evaluated our method by tag prediction (using ENTERPRISE
data), as well as digg/comment story prediction (using Digg data). We generated
the predictions based on the extracted community models and compared the results
with baselines. Our method outperformed baselines up to an order of magnitude.
We showed our method can be further improved by, (a) incorporating a historic
model, and (b) leveraging other relations through a metagraph. A further examina-
tion of the prediction metrics indicates predicting users’ future interests based on
historic data is nontrivial. Nevertheless, the improvement over baseline methods
suggests the utility of leveraging metagraphs to handle time-varying social relational
contexts.

There are several future directions for this work. (1) As our algorithm does not tie to
a specific data schema, it can be easily extended to deal with schema changes. (2) By
combining various social relations of data and applying a model selection approach,
it can be used to identify effective social relations. As part of our future work, we
are interested in efficiently determining a relational hypergraph that is effective for a
given information task.

10. APPENDIX

PROOF OF THEOREM 1. To prove the convergence of Equations (4)–(6), we will
make use of an auxiliary function similar to the NMF algorithms by Lee and
Seung [2001] (which are based on the Expectation-Maximization algorithm [Dempster
et al. 1977]).

First, we employ the concavity of a log function. Because -log(
∑

kakBjk) is a convex
function, the following equality holds for all j, and

∑
kμjk = 1.

− log
(∑

k
akBjk

)
≤ −

(∑
k
μjk log

akBjk

μjk

)
, where μjk =

akBjk∑
k akBjk

. (18)
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Let a = z and B = (U(Mr) ∗ ...∗U(1))T for each r, where ∗ denotes the Khatri-Rao product
operation. Then we have:

J(G) =
∑
r∈E

∑
i1 ...iMr

⎛
⎝−X(r)

i1...iMr
log

∑
k

zk

∏
m:v (m)∼e(r)

U(m)
imk + [z]

∏
m:v (m)∼e(r)

×m U(m)

⎞
⎠ + const (19)

≤
∑
r∈E

∑
k

zk −
∑
r∈E

∑
i1...iMrk

X(r)
i1...iMr

μ(r)
i1 ...iMrk log

⎛
⎜⎝

zk
∏

m:v (m)∼e(r)

U(m)
imk

μ(r)
i1 ...iMrk

⎞
⎟⎠ + const

def
= Q(z, {U(q)}; {μ(r)}),

where μ(r)
i1...iMrk is defined as in Equation (6).

Update z: We define Qz(z;zt) as an auxiliary function [Lee and Seung 2001] for Jz(z)
with respect to z, where {U(q)} are fixed and zt represents the values at the t-th iter-
ation in μ(r)

i1 ...iMrk. The auxiliary function satisfies Qz(z;zt) ≥ Jz(z) and Qz(z;z) = Jz(z),
such that Jz(z) is nonincreasing under the update zt+1 = argminz Qz(z;zt). Because
Jz(zt+1) ≤ Qz(zt+1;zt) ≤ Qz(zt; zt) = Jz(zt), the sequence of iterative minimization of
Qz leads to a monotonic decrease in the objective function value Jz and ensures the
convergence of the update relations.

Hence, with the constraints
∑

iq U(q)
iqk = 1 ∀q∀k, the Lagrangian of Qz is defined as:

LZ = QZ +
∑

q
εq

(∑
iq

U(q)
iqk − 1

)
. (20)

With {U(q)} fixed, and by taking the derivative of L and setting its result to zero, we
have:

∂Lz

∂zk
=
∂L
∂zk

=
∑

r

∑
i1...iMrk

−X(r)
i1 ...iMr

μ(r)
i1...iMr k

/
zk + const = 0, (21)

where L = Q +
∑

q
εq

(∑
iq

U(q)
iqk − 1

)
is the Lagrangian of Q. (22)

By solving this equation, we obtain the update rule for z (Equation (4)).
Update U(q). Similarly, with z and {U(m)}m�=q fixed, we have:

∂L

∂U(q)
iqk

=
∑

l:e(l)∼v (q)

∑
i1...iq−1iq+1 ...iMl k

−X(l)
i1 ...iMl k

μ(l)
i1 ...iMl k

/
U(q)

iqk + εq + const = 0 (23)

∂L
∂εq

=
∑

k

U(q)
iqk − 1 = 0. (24)

By solving the equations, we obtain the update rule for U(q) (Equation (5)).
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