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In this article, we present a novel algorithm to discover multirelational structures from social media streams. A media item
such as a photograph exists as part of a meaningful interrelationship among several attributes, including time, visual content,
users, and actions. Discovery of such relational structures enables us to understand the semantics of human activity and has
applications in content organization, recommendation algorithms, and exploratory social network analysis.

We are proposing a novel nonnegative matrix factorization framework to characterize relational structures of group photo
streams. The factorization incorporates image content features and contextual information. The idea is to consider a cluster
as having similar relational patterns; each cluster consists of photos relating to similar content or context. Relations represent
different aspects of the photo stream data, including visual content, associated tags, photo owners, and post times. The extracted
structures minimize the mutual information of the predicted joint distribution. We also introduce a relational modularity func-
tion to determine the structure cost penalty, and hence determine the number of clusters. Extensive experiments on a large
Flickr dataset suggest that our approach is able to extract meaningful relational patterns from group photo streams. We eval-
uate the utility of the discovered structures through a tag prediction task and through a user study. Our results show that our
method based on relational structures, outperforms baseline methods, including feature and tag frequency based techniques,
by 35%–420%. We have conducted a qualitative user study to evaluate the benefits of our framework in exploring group photo
streams. The study indicates that users found the extracted clustering results clearly represent major themes in a group; the
clustering results not only reflect how users describe the group data but often lead the users to discover the evolution of the
group activity.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—In-
formation filtering; H.3.5 [Information Storage and Retrieval]: Online Information Services—Web-based services; H.4.3
[Information Systems Applications]: Communications Applications; H.5.1 [Information Interfaces and Representa-
tion]: Multimedia Information Systems—Evaluation/methodology; H.5.4 [Information Interfaces and Representation]:
Hypertext/Hypermedia

General Terms: Experimentation, Measurement, Algorithms, Human Factors
Additional Key Words and Phrases: Social media, social network analysis, structure mining, multirelational learning, nonnega-
tive matrix factorization

ACM Reference Format:
Lin, Y.-R., Sundaram, H., De Choudhury, M., and Kelliher, A. 2012. Discovering multirelational structure in social media
streams. ACM Trans. Multimedia Comput. Commun. Appl. 8, 1, Article 4 (January 2012), 28 pages.
DOI = 10.1145/2071396.2071400 http://doi.acm.org/10.1145/2071396.2071400

Author’s address: Y.-R. Lin, H. Sundaram, M. De Choudhury, and A. Kelliher, Arizona State University; email: yu-ru.lin@
asu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page
or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to
lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481,
or permissions@acm.org.
c© 2012 ACM 1551-6857/2012/01-ART4 $10.00

DOI 10.1145/2071396.2071400 http://doi.acm.org/10.1145/2071396.2071400

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 8, No. 1, Article 4, Publication date: January 2012.



4:2 • Y.-R. Lin et al.

1. INTRODUCTION

In this article, we present a novel algorithm to discover multirelational structures from social media
streams. In particular, we discover latent structures in the popular online social media site, Flickr.
The structure encodes relational semantics pertaining to human activity within such social networks.
This latent structure has the potential to enhance content organization, improve recommendation
algorithms, and support exploratory social network analysis.

The semantics of human activity on social media sites (including Flickr and YouTube) needs to be
understood as a relationship between people, actions, artifacts, and supportive contextual metadata.
Today, social media sites have made it easy to upload, share, and interact with content as well as
to communicate with other users on the site. Each site provides a diverse range of functionalities,
including tagging and commenting on media, as well as direct communication with other users. A
shared media item is associated with a variety of information, including the identity of the person
who uploaded it, associated tags, identities of people who commented on the item, and the number of
times viewed or marked as a “favorite.” These user actions (including “upload,” “tag,” “comment”) are
additionally associated with a timestamp. A media item such as a photograph on Flickr therefore exists
as part of a meaningful interrelationship among several attributes including time, visual content,
users, and actions. An example is given in Figure 1.1

Relational semantics derived from human activity are distinctly different from media semantics (e.g.,
“what is the meaning of this photo?”). For example, a Flickr group on “Arizona Travel” may have a lot
of posts on Sedona, a popular destination, in July from people who live in Phoenix who travel there to
escape the heat. There are fewer posts in December, when it is cold in Sedona. Now, the meaning of the
relationship between location (Sedona), time (summer), specific users, and photo colors is not explicit
in the data. This relationship may exist because the active members of the group are friends who live in
Phoenix, and plan an annual summer retreat together in Sedona. In this case, the relational semantics,
while not explicit, are known only to the group members. These relational semantics cannot be easily
discovered by accessing the photo stream via a single object or attribute (e.g., photo tags), or through
a simple aggregation of attributes. Interestingly, the discovery of relational structure in such social
media sites can point to emergent cultural behaviors, which may not even be explicitly identifiable by
members of the network.

1.1 Motivating Applications

We discuss how relational pattern discovery can significantly impact content organization, recommen-
dation algorithms, and exploratory social network analysis.

Content organization. The rapid growth of content on social media sites creates several interesting
challenges. First, the content in a photo stream (either for a user or a community) is typically orga-
nized using a temporal order, making the exploration and browsing of content cumbersome. Second,
sites including Flickr provide frequency based aggregate statistics including popular tags and top con-
tributors. Users can access a subset of the content by clicking on these tags/contributors. However,
these aggregates do not reveal the rich relational structure inherent in the community sharing and in-
teraction. As discussed in Shamma et al. [2007], how to harness the contextual information for media
understanding is one of the most difficult challenges in media pragmatics/applications.

Recommendation algorithms. The multirelational structure can be used to provide effective recom-
mendations along any attribute. When the user is looking at a particular photo, we could use the set
of relations in which the photo is determined to exist, and then recommend other photos, tags, and

1The original images from the groups are unavailable for copyright reasons. In this article, we have included copyright-free
images, similar in appearance to the representative group images.
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Fig. 1. Relational structure in social media streams, which reveals the strong relationship among multiple facets such as
(a) photos (visual content), (b) time, (c) tags and (d) users. This figure presents partial multirelational structure extracted from
the data of Flickr group “The Southwest United States,” based on our proposed algorithm. More detailed results can be referred
to Section 6.2. It illustrates three major themes in the group photo stream: “landscape,” “california,” and “newmexico,” which
mostly associate with three time frames (2005–2006, 2006–2007 and 2007–2008), where different users contributed photos to
these themes.

related peers. The multirelational data can provide additional context, over the (photo, tag) pairs that
have been used to recommend tags in automated annotation algorithms. It can help identify peers
and context (including feature distributions, activities, time) in which they are related to the current
user.

Social network analysis. An important motivation of this work is to discover an interpretable struc-
ture in social media streams to facilitate exploratory analysis. How do groups emerge in online social
networks? Are there specific people, and contexts that explain their emergence? Within such groups,
how does information flow? What roles (including “aggregators,” “disseminators”) do users play? Fi-
nally, when do new associations between tags and photos emerge? We believe that relational structures
can facilitate an effective exploration and summarization of social media.

1.2 Our Approach

A key contribution of this work is the idea that the semantics of human activity in such rich social
media sites can be understood though the relational structure latent in such social networks. The
structure encodes the relationship between users, artifacts, and context. It is important to emphasize
that the relational semantics are often only available to the participants of the social network. That
is, the explanation for the existence of a stable relationship between a specific set of people, location,
time, photos, and tags, while known to the users, may not be explicitly encoded in the data. Hence,
when members of the network are exposed to the latent relational semantics, they may be able to use
this information more effectively than nongroup members.

We extract the relational structure through a novel algorithm using data from Flickr group photo
streams. We define a group photo stream (or group for short) to be a collection of photos posted
in a social media sharing space, together with all the users (who posted the photos) and tags as-
sociated with the photos. In this work, the sharing space specifically refers to Flickr group pools
(http://www.flickr.com/groups/), while other types of sharing spaces such as Facebook groups can also
be considered. Our goal is to extract structures of these relations within the groups by finding a soft
clustering structure that reflects these relations, which we call relational clusters, where each data
item (e.g., a photo, tag, etc.) is assigned to multiple clusters with membership weights that sum to one.
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There are three key ideas in our framework.

(1) Extraction of relations in social media streams. Relations represent different aspects of the photo
stream data, including visual content, associated tags, photo owners, and post times. We consider
such content and contextual information as various relations. The relational representation allows
analyzing the correlation across different aspects (as in our joint factorization described below) as
well as easily incorporating richer contextual information.

(2) Extraction of relational clusters. We formulate the extraction of relational clusters as an optimiza-
tion problem where the objective is to find a set of soft clusters that best represent our observation
of various relations simultaneously. We incorporate various relations in a non-negative joint ma-
trix factorization framework and solve the objective by a scalable iterative algorithm with linear
time complexity.

(3) Evaluation of structure complexity. We propose a relational modularity function for evaluating
the clustering structure and determining the optimal number of relational clusters. We show
that the quality of a clustering defined by the factorization objective can be interpreted as
maximizing the mutual information of the predicted joint distribution. The relational modularity is
then defined as a function of the quality and cost of the structure, where the cost is determined by
the mutual information conditioned on the clustering. We also show a close connection between the
relational modularity function and the modularity concept first introduced in Newman and Girvan
[2004].

We have conducted extensive experiments on large, real-world Flickr datasets that include 120
Flickr photo groups, with 111,108 photos posted over five years. We present case studies on the struc-
tures extracted from four Flickr groups. The analysis reveals consistent clustering structures in each
group in terms of time profiles, visually coherent photos, and blocking structures in relational matri-
ces. We compare the structures extracted from these Flickr groups with random groups (collections of
randomly selected photos) and observe that the structures of random groups are qualitatively differ-
ent from the relational structures extracted from collective human activities. We evaluate the utility
of the discovered structures through a tag prediction task. Our prediction results outperform baseline
methods including feature and tag frequency based techniques, by 35%–420% (based on NDCG) on
an average. The results suggest that our analysis based on relational clustering structures helps im-
prove the quality of tag prediction and provides a quantitative evaluation for the meaningfulness of
an extracted structure. We have conducted a pilot user study with 12 participants to understand the
impact of exposing the group relational semantics to them. The study indicates that users found the
extracted clustering results clearly represent major themes in a group; the clustering results not only
reflect how users describe the group data but often lead the users to discover the evolution of the group
activity.

The rest of the article is organized as follows. Section 2 reviews the related work. Section 3 dis-
cusses relations in social media streams. Section 4 and 5 present our method for extracting rela-
tional clusters and for evaluating the structure complexity. Section 6 reports our experimental study.
Section 7 discusses the open issues; Section 8 presents our conclusions. The appendix contains proofs
and detailed user study results.

2. RELATED WORK

In this section, we first briefly discuss applications based on structure mining in different domains, and
then situate our work within the context of online social media analysis. We further discuss related
techniques for analyzing multimodality or multirelational data.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 8, No. 1, Article 4, Publication date: January 2012.
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Structure mining. Mining structures from data arise naturally in many applications. Xie et al. [2002]
propose a hidden Markov models (HMMs) based approach for mining temporal structures in video
streams. The structures of interest are repetitive segments that often relate to recurrent events, for
instance, plays and breaks in a soccer video. McCowan et al. [2005] propose a framework for extracting
the structure of group meeting actions such as monologue, discussion, note-taking, etc. from audio-
visual streams. “Topic models” [Blei et al. 2003] discover patterns in text corpus by representing the
underlying topics with word distributions and the topics are combined to form documents. In addition,
dynamic topic models [Blei and Lafferty 2006; Wang and McCallum 2006] are developed to capture
the evolution of topics in a sequentially organized corpus of documents. In social network analysis,
the structures of interest do not necessarily correspond to explicit semantics and must be interpreted
according to the time and context of the observation (e.g., U.S. Supreme Court rulings [Doreian and
Fujimoto 2001]). Such analysis has provided important insights for social functions and processes. In
this paper, we are interested in relational structures that deviate from the structure mining within
multimedia, moving more towards the goals of structure mining within social networks, which may
have emergent or context-bounded semantics. Our idea can be stated in a way analogous to the topic
modeling methods; we consider the relational structures as coherent distributions of different types
of social media features (e.g., users, tags, visual features) which combine to form the social media
streams.

Social media analysis. The popularity of social applications and environments has attracted consid-
erable research interests. In particular, our work relates to two primary directions; namely, studying
people’s social networking behavior, and improving the search and recommendation of media by ex-
ploiting contextual as well as social knowledge. The first direction is often studied based on the sta-
tistical properties of online social networks. Backstrom et al. [2006] study how the structural features
correlate with changes of social group members. Kumar et al. [2006] study the evolution of the blogo-
sphere in terms of the change of graph characteristics and the community burstiness, where a temporal
burst is defined based on hyperlinking occurrences. Palla et al. [2007] extract groups per time slice and
then quantifies their evolution based on membership differences. The structure of social interactions
among people have also been studied through a unipartite or bipartite graph, in which the community
structure can be characterized by clustering methods [Lin et al. 2008; Sun et al. 2007].

The second direction considers utilizing the media metadata associated with media objects to im-
prove media content retrieval. Existing research on tagging services includes improving tag recom-
mendation [Garg and Weber 2008; Sigurbjörnsson and Van Zwol 2008], and analyzing usage patterns
of tagging systems [Negoescu and Gatica-Perez 2008]. Chen et al. [2008] propose a group and tag rec-
ommendation system by using concept detectors trained based on visual features and tags. Negoescu
and Gatica-Perez [2008] present a large scale analysis of Flickr groups and propose a topic modeling
approach for representing a group based on the cooccurrence of groups and tags. Zunjarward et al.
[2007] propose a framework for annotating events in images by exploiting the social networks of anno-
tators. Kennedy et al. [2007] propose a framework for generating knowledge (representative tags) for a
location, and for extracting place and event semantics for a tag. Their work suggests that community-
generated media and tags can improve access to multimedia resources. Similarly, Ahern et al. [2007]
propose a system to analyze the tags associated with the geo-referenced images to generate knowledge
about a given location in the form of representative tags. These tags can be further utilized to help
expose the photo content. Shamma et al. [2007] design and prototype tools for capturing the context
in which the media is used, and investigate methods for using the information to organize and index
media.

Multirelational learning. As discussed in Li and Anand [2007], classical propositional clustering
methods are limited in dealing with data having various types of entities and different semantic

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 8, No. 1, Article 4, Publication date: January 2012.



4:6 • Y.-R. Lin et al.

relationships among them. The first-order extensions of classical methods (e.g., RDBC [Kirsten and
Wrobel 1998]) may not be feasible for large relational data due to the quadratic computational com-
plexity. Recently, relational clustering techniques have been proposed to learn the interrelated struc-
tures among various entities and multiple relationships [Banerjee et al. 2007; Bekkerman et al. 2005;
Long et al. 2006; Tang et al. 2008; Wang et al. 2006]. However, the implementations of these techniques
can only handle small-scale datasets and do not take advantage of the sparseness in social network
data. In addition, most of the relational clustering techniques consider hard clustering assignment
(i.e. each entity can belong to only one cluster), which limits its direct usage in applications such as
context-sensitive recommendation in social media.

In multimedia, techniques for combining multimodality in media content analysis have been devel-
oped to overcome the semantic gap problem since visual features are unable to represent the image
content at the semantic level. Cai et al. [2004] use visual, text, and link information of images to con-
struct a relationship graph of Web images. Tong et al. [2005] propose a graph-based learning approach
(both semi-supervised and unsupervised), where different modalities are represented independently
as a multiple graphs. Rege et al. [2008] propose a graph theoretical framework for simultaneously in-
tegrating visual and textual features for co-clustering a tripartite (feature-image-word) graph. Multi-
graph mining has also been studied in other contexts. In text mining, Zhu et al. [2007] propose a ma-
trix factorization algorithm combining both the linkage and the document-term matrices to improve
the hypertext classification.

This article extends our prior work [Lin et al. 2009a]; we include formal discussion of the problem,
extended solutions, detailed algorithms, proof, and new experiment results. Another related work is
[Lin et al. 2009b], which proposes a framework called JAM for constructing a user-centric summary
of their online social activities. Instead of a fixed syntactical structure for representing user activities,
that is, correlating users and concepts through different actions, this work considers a generalized
relational data model to represent data in social media streams. In addition, the JAM framework
extracts one dominate theme at each time, while in this work, multiple relational clusters can co-exist,
which allows users to compare or contrast multiple themes.

Our unique contribution. Mining time-evolving relational patterns in social media streams deals
with the interrelatedness of media content features as well as contextual and temporal information
associated with the media. Our analysis aims to generate an interpretable structural representation
of the social media stream and allow the flexible incorporating of various media relations (visual,
temporal, etc.). The structural representation with probabilistic interpretation can be used directly to
retrieve different types of representative entities and to summarize different aspects of a social media
stream. Our method also takes advantage of the sparseness in social network data, which is able to
handle large scale data in social media streams.

3. RELATIONS IN SOCIAL MEDIA STREAMS

In this section, we discuss various relations often observed in community generated media environ-
ments. We first introduce the concept of relations. Then we specifically discuss relations within the
Flickr group photo streams, including visual features (Section 3.1) and the photo information context
(Section 3.2).

Let us assume we observe a set of photos. These photos are posted by a set of users at certain times,
associated with a set of tags, and consist of a set of visual features. We call a set of objects or entities of
the same type a facet, for instance, a photo facet is a set of photos, a user facet is a set of users, etc. We
call the interactions among facets a relation; a relation can involve two (i.e. binary relation) or more
facets. In this work we only investigate pairwise relations, but our method can be extended to higher
ordered relations. We discuss the extraction of specific relations in the following subsections.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 8, No. 1, Article 4, Publication date: January 2012.
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3.1 Visual Features

We use a number of image features that have been found effective in image content analysis. We briefly
summarize these features as follows.

(1) Color. We use two color based features, color histogram and color moments.
(2) Texture. We use a phase symmetry [Xiao et al. 2005] method for detecting textures from arbitrary

“blobs” in images. It is based on determining local symmetry and asymmetry across an image using
phase information.

(3) Shape. We use two shape features, radial symmetry [Loy and Zelinsky 2003] and phase congruency
[Liu and Laganiere 2007]. The radial symmetry feature detects points of interest in an image.
Phase congruency is an illumination and contrast invariant measure of feature significance.

(4) Interest Points. We extract local interest point descriptors for a image by scale-invariant feature
transform (SIFT) [Lowe 2004]. SIFT features have received much interest due to their invariance to
scale and rotation transforms and their robustness against changes in viewpoint and illumination.

After extracting these features, we construct a D-dimensional feature vector for each photo, where
D = 1064 in this work. Let P be the set of group photos, we obtain a photo-feature matrix W(F) ∈ �|P|×D,
where the i-th row is the feature vector of the i-th photo. We use standard normalization with a logistic
function g(x) = 1/(1 + exp(−x)) to bound the feature values within the range [0,1]. This matrix W(F)

represents the relation between the photo and the visual features.

3.2 Contextual Information

We now discuss the context associated with a photo. In social media, a media object such as a photo gen-
erally has rich contextual information, for instance, who shares the photo, when the photo is shared,
and what additional information is associated with the photo. Three kinds of basic contextual informa-
tion are discussed as follows.

(1) Users. The content and concepts of a photo are determined by its owner, and hence the ownership
provides the most important contextual information. Let U be the set of users who post photos to
the group, i.e. photo owners. We construct a photo-user matrix W(U ) ∈ �|P|×|U |, where each entry
Wi j

(U ) = 1 if the i-th photo is posted by the j-th user, and 0 otherwise.
(2) Tag. Tags are descriptive labels assigned by users to describe the content of a photo, for instance,

“sky,” “bird,” or to provide additional contextual and semantic information, for instance, “summer,”
“vacation,” “Nikon.” Let Q be the set of tags associated with the group photos. We construct a
photo-tag matrix W(Q) ∈ �|P|×|Q|, where each entry Wi j

(Q) = 1 if the i-th photo has the j-th tag, and
0 otherwise.

(3) Time. A photo in Flickr has a timestamp indicating when the photo was taken or posted (uploaded).
Here we use the photo post time since the photo taken time may not be available or may not be
set correctly for some photos. We segment the timestamps into S time slots and construct a photo-
time matrix W(T ) ∈ �|P|×S, where each entry Wi j

(T ) = 1 if the i-th photo is posted during the j-th
time slot, and 0 otherwise. We smooth the temporal information by applying a symmetric moving
average filter on each row vector of W(T ):

yi = 1
M

(M−1)/2∑
j=−(M−1)/2

bj xi+ j,

where x is the input signal, y is the output signal, M is the filter size and bj ’s are the filter coef-
ficients. A filter kernel is determined by the filter coefficients. For example, two different kernels,
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Fig. 2. The temporal information in photo-time matrix W(T) is smoothed by a moving average filter with, for instance, filter
size M = 5, and (a) rectangular kernel or (b) triangular kernel. Depending on the length of a time slot, we can choose to use
either type of filter (usually the rectangular kernel is used for short-length time slots). When applying a smoothing filter on the
photo-time matrix, two photos associated with nearby time slots become similar in the temporal dimension.

Fig. 3. (a) Data representation: The relations in a group photo stream is given as four matrices: photo-feature matrix W(F),
photo-user matrix W(U), photo-tag matrix W(Q) and photo-time matrix W(T). The first matrix comprises visual information and
the last three matrices comprise contextual information of the photo stream. (b) We use joint factorization to extract soft clusters
from various relations simultaneously. The relational data represented as in Figure 3(a) are factorized by the photo-cluster
matrix P and a set of coefficient matrices for different facets (visual features, users, tags, and times).

rectangular and triangular, with filter size M = 5 are shown in Figure 2. Depending on the length
of a time slot, we can choose to use either type of filter (usually the rectangular kernel is used for
short-length time slots). With such smoothing filter, two photos associated with nearby time slots
become similar in the temporal dimension. In other words, the smoothing filter is used to propagate
the “temporal similarity” to nearby time slots.

In our analysis, the data representing the group photo streams over time is given as the data matri-
ces described above, including the image content features as well as the image context and temporal
information. Each relation is represented by a matrix. In our notations, a matrix W(·) is indexed based
on its second dimension. Without loss of generality, we normalize W(·) to ensure �i jWi j

(·) = 1. The data
representation is illustrated as in Figure 3(a).

Note that the relational data model based on matrix representation can easily incorporate more con-
textual information. For example, it is possible to retrieve the EXIF metadata of images and further
obtain the image taken time, location, camera settings, etc. Such information can be represented sim-
ilarly to the basic contextual information discussed in this section. (In this work we do not use EXIF
information, due to the overhead of additional API calls for retrieving EXIF metadata for all images.)
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 8, No. 1, Article 4, Publication date: January 2012.
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4. RELATIONAL CLUSTER EXTRACTION

We now present our method for extracting relational clusters from a group photo stream. We formulate
it as an optimization problem (Section 4.1), and provide an efficient algorithm to solve the clustering
objective (Section 4.2).

4.1 Problem Formulation

We formulate the extraction of relational clusters as an optimization problem where the objective
is to find a set of soft clusters that best represents our observation of various simultaneous relations
between the photos and other facets, including: visual features, associated tags, photo owners, and post
times. In soft clustering we assume that an entity (e.g., a photo, tag, user, etc.) can belong to multiple
clusters, with membership weights that sum to one, indicating how likely the entity belongs to those
clusters. We seek to determine soft clustering assignment of entities so that the diverse relations of any
two entities can be approximated by their relationship (soft assignment) with a small set of clusters.
Each relation is represented by the matrices discussed in the previous section. We now discuss how
to extract soft clusters that reflect a specific relation, and then propose a generalized framework for
extracting clusters from multiple relations.

Visual features. In order to extract clusters having similar visual content, let us assume each cluster
k has a length D feature vector zk where each entry zkj can best represent the significance of the j-th
feature of the set of photos in the cluster k. Our goal is to determine the coefficient zkj based on how
likely a photo i belongs to the cluster k. We define pik to be the probability that a particular photo i
belongs to the cluster k and λk to be the cluster probability. The parameters pik and λk are nonnegative
numbers satisfying �i pik = 1, �k λk = 1. Let Z(F) = {zki} denote a K × D matrix, P = {pik} denote a
|P| × K matrix, and � = {λk} be a K × K diagonal matrix where �i j = λk if i = j = k and 0 otherwise.
For brevity we shall write �kk as �k. We use an idea similar to principal component analysis to derive
P, � and Z(F) from the photo-feature matrix W(F) (ref. Section 3) as:

W(F)
i j ≈

∑
k

λk pikzkj = (
P�Z(F))

i j (1)

This suggests the approximation can be done by minimizing D(W(F) ‖ P�Z(F)), given D(·‖·) as a mea-
sure of approximation cost between two matrices. We use Kullback-Leibler (KL) divergence between
two matrices, where the KL divergence is used as a natural measure of the dissimilarity between two
distributions. Using matrices to represent distributions, the KL divergence between matrices A and B
is defined by D(A‖B) = ∑

i j(Ai j log Ai j/Bi j – Ai j + Bi j), where �i jAi j = �i jBi j = 1.
The corresponding objective is to minimize:

J(P,�, Z(F)) = D
(
W(F) ‖ P�Z(F))

s.t. P ∈ �|P|×K
+ , � ∈ �K×K

+ , Z(F) ∈ �K×D
+ ,∑

i

Pik = 1 ∀k,
∑

k

�k = 1
(2)

where D(·‖·) is the KL divergence defined above. The constraint that columns of P must sum to one
is added to avoid scaling solutions (e.g., if P is a solution, αP can also be the solution if Z(F) is scaled
correspondingly). With the nonnegative constraints, this optimization problem is a case of nonnegative
matrix factorization (NMF) [Lee and Seung 2001].

Users and Tags. Two photos might belong to the same cluster not only due to visual similarity, but
also perhaps because they are posted by the same user, or associated with the same tags. For a set of
users U, suppose we have a K × |U | user coefficient matrix Z(U ), where each entry zkj indicates how
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likely the j-th user posts a photo that falls in the k-th cluster. Similar to the feature matrix factoriza-
tion, we approximate the photo-user matrix W(U ) by P, � and Z(U ) by the following objective:

J
(
P,�, Z(U )) = D

(
W(U ) ‖ P�Z(U )) (3)

subject to Z(U ) ∈ �+K×|U |, with other constraints and D(·‖·) defined as Equation (2). Similarly, let Z(Q)

be the tag coefficient matrix, we approximate the photo-tag matrix W(Q) by P, � and Z(Q) by:

J
(
P,�, Z(Q)) = D

(
W(Q) ‖ P�Z(Q)) (4)

subject to Z(Q) ∈ �+K×|Q|, with other constraints defined as Equation (2).
Temporal information. To extract clusters having similar temporal trends, we consider two photos

to be in the same cluster if they are posted during the same time slot. For S time slots, let Z(T ) be the
time coefficient matrix, where each entry zkj indicates how likely a photo posted at time j belongs to
the k-th cluster. We approximate the photo-time matrix W(T ) by P,� and Z(T ) as:

J
(
P,�, Z(T )) = D

(
W(T ) ‖ P�Z(T )) (5)

subject to Z(T ) ∈ �+K×S, with other constraints defined as Equation (2). Note that the photo-time
matrix contains smoothed temporal information as discussed in Section 3. By considering temporal
information as one type of relation in the photo streams, it can be dealt with in the same way as in
other relations.

Joint objective. Putting together all objective functions with respect to different facets, our objective
is to minimize the following function:

J
(
P,�, {Z(r)}) =

∑
r∈{F,U,Q,T }

D
(
W(r) ‖ P�Z(r))

s.t. P ∈ �|P|×K
+ , � ∈ �K×K

+ , Z(r) ∈ �K×Ir+ ,∑
i

Pik = 1 ∀k,
∑

k

�k = 1

(6)

where {Z(r)} is a set of coefficient matrices for different facets (visual features, users, tags, and times)
and Ik denotes the dimensionality of the second dimension of the coefficient matrices. The joint factor-
ization is illustrated in Figure 3(b). Note, Equation (6) can be easily extended to incorporate additional
aspects or to incorporate weights on facets, for instance, a relation that relates a photo by whoever
marks it a “favorite” can be simply added to our framework. It is also easy to incorporate other social
media contexts, such as the EXIF metadata of images (e.g., image taken time, location and camera
settings) whenever they are available. We provide a solution to the joint objective function in the next
section.

4.2 Algorithm

We provide a solution to the objective defined in Equation (6). Since Equation (6) is not convex in all
variables, it is difficult to guarantee a global minima solution. By employing the concavity of the log
function given in the KL-divergence, we derive a local minima solution to Equation (6) as follows.

THEOREM 1. The following update rules will monotonically decrease the cost defined in Equation (6)
and therefore converge to an (local) optimal solution to our relational clustering problem:
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Table I. Algorithm for Relational Clustering Extraction
Algorithm: Relational Soft Clustering
Input: data matrices {W(r)} for r ∈ {F,U, Q, T }
Output: P, � and {Z(r)}
Method:

Initialize P, �, {Z(r)}
Repeat until convergence

For each r, update Z(r) by Equation (7)
update P and � by Equation (7)

Z(r)
kj ←

∑
r

∑
i

W(r)
i j μ

(r)
i jk,

Pik ←
∑

r

∑
j

W(r)
i j μ

(r)
i jk,

then normalize such that
∑

i

Pik = 1 ∀k,

�k ←
∑

r

∑
i j

W(r)
i j μ

(r)
i jk,

then normalize such that
∑

k

�k = 1

where μ
(r)
i jk = Pik�kZ(r)

kj

(P�Z(r))i j

(7)

The proof of Theorem 1 is provided in the appendix. This iterative update algorithm is a multi-
matrices factorization that generalizes the algorithm proposed by Lee and Seung [2001] for solving
a single nonnegative matrix factorization problem. Table I summarizes the process for solving P,�

and {Z(r)}.
Interpretation. We determine the relational clusters based on the solution matrices P, � and {Z(r)}.

Specifically, the soft membership (ref. Section 4.1) of each photo i in community k is determined by
the conditional probability P(k|i) = P(i, k)/P(i), where P(i,k) is given by (P�)ik, and the marginal
probability P(i) is given by �k(P�)ik. The soft membership of a user or a tag can be computed in the
same way with corresponding normalized coefficient matrices. Such soft membership not only provides
information about the relationship between an object and a cluster; it can also be used to infer the
relationship between two entities or two clusters in the relational structure. For example, the joint
probability between a photo i and a tag j is computed by P(i, j) = �k�kPikZkj

(Q). The joint probability
of two clusters k and l can be determined by the marginal probability P(k, l) = �i P(k|i)P(l|i)P(i),
where i is the entity index within a particular facet such as photo or tag facet. In some application, for
instance, visualization, where hard membership (disjoint clusters) may be used, we can convert soft
membership to hard membership by choosing the maximum P(k|i) over k.

Computational complexity. We now investigate the time complexity for each iteration of the updates
in Equation (7). The most time-consuming part is to compute (P�Z(r))i j∀i, j, r. However, most data
matrices W(·) are sparse, i.e. they have few nonzero entries. Hence we only need to compute the corre-
sponding (P�Z(r))i j for each nonzero entry (i, j) in W(r), which takes O(K) time with K being the number
of clusters. Let n denote the largest number of nonzero entries of all data matrices, the total time com-
plexity is O(nK). If we consider K is bounded by some constants, the time complexity per iteration is
linear in O(n), the number of non-zero entries in data matrices. Note that the sparse property might
not hold for the photo-feature matrix W(F); however, W(F) is typically constructed based on fixed length
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feature vectors. The number of nonzero entries in W(F) only depends on the number of photos and
hence it can be considered to have the same degree of sparseness as other data matrices.

5. RELATIONAL MODULARITY

We discuss how to determine the number of relational clusters in this section. So far we have assumed
the number of relational clusters, K, is given. However, since it is almost impossible to always know
the number of clusters in a large network beforehand, such an assumption will limit the scope of
application of our framework. In the following we propose an automatic mechanism to determine the
number of relational clusters.

Let us first examine the relationship between the number of clusters and the clustering objective
defined in Equation (6). The objective is defined based on KL divergence and there exists a relationship
between mutual information and the KL divergence. We can show that the KL divergence between the
observed joint distribution and the predicted (i.e., estimated by certain model) joint distribution can be
expressed in terms of loss in mutual information, that is,

I(X; Y ) − I(X̂; Ŷ ) = D(p(X, Y ) ‖ q(X, Y )), (8)

where the (X̂, Ŷ ) is a mapping from (X, Y) via the soft-clustering algorithm. There is a straightforward
proof to extend the results in Dhillon et al. [2003]. p(X,Y) and q(X,Y) are the observed and predicted
joint distribution of X and Y, respectively. I(X;Y) denotes the mutual information between X and Y. In
our case, the observed joint distribution is given by a data matrix W(r), the predicted joint distribution
is given by the factorization P�Z(r), and (X̂, Ŷ ) = {(x̂1, ŷ1), (x̂2, ŷ2), . . . (x̂K, ŷK)} represents K disjoint
clusters where x̂ and ŷ contain a subset of X and Y respectively. Based on this mutual information
interpretation, our multirelational clustering objective can be viewed as finding a clustering structure
such that the information about multiple relations among facets remains as much as possible in the
structure. Since I(X;Y) is constant given the data, minimizing the KL divergence is equivalent to maxi-
mizing the mutual information I(X̂; Ŷ ) subject to the number of clusters. The clustering objective based
on the KL divergence is not sufficient to determine the optimal number of clusters, since it does not in-
clude the model penalty. To find a structure with only a small set of clusters, we introduce a penalized
term, the mutual information conditioned on the clustering:

I(X; Y |C) =
∑
c∈C

∑
x∈X

∑
y∈Y

p(x, y, c) log
p(c)p(x, y, c)
p(x, c)p(y, c)

, (9)

where X and Y are two set of objects, C = {1, 2, . . . , K} is the set of cluster indices.
To evaluate the quality or goodness of a relational structure, we define a mutual information based

function called relational modularity QI , as:

QI(K) =
∑

r

I
(
X(r); Y (r)|SK

) − D
(
W(r) ‖ P�Z(r))

=
(∑

r

I
(
X(r); Y (r)|SK

)) − J
(
P,�, {Z(r)}) (10)

where X(r) and Y (r) are two corresponding facets of the relation r, represented by matrix W(r), J is
the clustering objective function defined in Equation (6) subject to number of cluster K, SK is the
K-clustering structure obtained from solving J. The computation of QI(K) involves two steps: First,
for a given K, solve J by the algorithm in Table I, and then use the solution matrices (P, �, {Z(r)})
to compute the conditional mutual information I(X(r); Y (r)|SK) based on Equation (9), where the joint
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probabilities p(x,c), p(y,c) and p(x,y,c) are given by:

p(x, c) ∝ P(c|x)
∑

y

W(r)
xy,

p(y, c) ∝ P(c|y)
∑

x

W(r)
xy, (11)

p(x, y, c) ∝ W(r)
xy P(c|x)P(c|y),

where P(c|x), P(c|y) can be obtained from the solution matrices as described in Section 4. The best
clustering structure is given by the maximal QI .

In the following discussion we connect the relational modularity to the modularity introduced in
Newman and Girvan [2004]. They define modularity Q as:

Q(K) =
K∑

k=1

lkk/L − (
lk/2L

)2 (12)

where K is the number of clusters, L is the total number of links in the network, lkk is the number of
links between nodes belonging to cluster k, lk is the total degree of nodes in cluster k (i.e., number of
links with at least one end falls in cluster k). The idea is to divide the network such that the number
of links within clusters is higher than expected, and hence the modularity Q measures the deviation
between fraction of edges within communities (expressed by the first term inside the summation) and
the expected fraction of such edges (expressed by the second term). It can be seen that the first term
corresponds to the joint probability p(x,y,c), and the second term corresponds to the marginal proba-
bilities p(x,c) and p(y,c). Hence our relational modularity naturally extends the modularity concept by
using the conditional mutual information.

6. EXPERIMENTS

This section reports our experimental studies on a Flickr group dataset. We first describe the dataset
used in our experiments (Section 6.1), and present case studies on the relational clusters extracted
from the data (Section 6.2). Finally we quantitatively evaluate and discuss the quality of the clustering
structure through a prediction task (Section 6.3). In the appendix, we evaluate the effectiveness of
relational modularity by using synthetic datasets, and we present a qualitative user study to evaluate
the benefits of our framework in exploring group photo streams. Figure 4 presents a case study for
which clustering results are recognized by the participants in our user study.

6.1 Flickr Dataset

Using the Flickr API,2 we collect data from a sample of 120 Flickr groups based on the group size
distribution. We download all publicly available photos for each group. Our dataset consists of 111,108
photos, 8,117 unique users, and 102,607 unique tags in total. The photo post times range from January
1, 2004, to January 8, 2009, enabling us to analyze long-term temporal patterns in this collection.

For comparison, we randomly select 1000, 2000, 5000 and 10,000 photos from the dataset and create
4 random groups.

2http://www.flickr.com/services/api/.
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Fig. 4. This figure presents a case which results are recognized by the participants in our user study (see appendix). The
5-cluster results extracted from the “AME” group. We display representative photos, users (renamed for privacy consideration)
and tags, as well as the temporal strength of each cluster over time. Based on participants’ feedback, we annotate the clusters as
C1: “social,” C2: “travel,” C3: “travel,” C4: “project” and C5: “project.” Based on the photos uploaded by the group members, the
clustering results capture interesting evolution of the activity in the local community. For example, social events (as in C1) were
more frequently in 2007. Travel photos (as in C2 and C3) have been continuously uploaded by different users. Users started
documenting their work in Fall 2007 (as in C4 and C5). C4 captures a fine-grained activity evolution; it represents that the
project work involving user-r in different points of time are colocated (e.g. “smallab” and “DAR” in C4 are location names), but
the project content are different.

6.2 Clustering Results

We investigate the clustering structures extracted from those groups and present the results for four
groups: (a) “35mm Focal Length (∗∗ NOT 35mm film. . . ∗∗)”3 (4024 photos), (b) “The Southwest United
States”4 (4968 photos), (c) “Laser photography”5 (1023 photos) and (d) the largest random group which

3http://www.flickr.com/groups/27044956@N00.
4http://www.flickr.com/groups/10477049@N00.
5http://www.flickr.com/groups/31293421@N00.
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Fig. 5. The best clustering structure for each group is determined based on the maximal relational modularity QI . (a)–(d) plot
the values of QI over the number of clusters for group A, B, C and D.

consists of 10,000 randomly selected photos. For brevity we denote these groups as group “A”, “B”, “C”
and “D”.

We focus on the following questions.

(1) How many clusters do we need for best capturing the relational structure?
(2) Can we extract relational structures across different facets?
(3) What are representative photos or tags, in the group?
(4) What is the temporal aspect of a group structure, that is, how likely does a cluster appear during

a particular time period?
(5) What are the relationships among clusters?

We first determine the best clustering structure for each group by plotting the relational modularity
QI over the number of clusters K. The effectiveness of QI is studied in the appendix. The result for
the group A is shown in Figure 5(a). As can be seen, within a certain range of K(2, . . . , 12), QI has the
highest value when K = 5, which is considered to be the best clustering structure. Figure 6 illustrates
the clustering results of group A, which comprises 5 clusters. We show the most representative photos
for a cluster (ref. Figure 6(ii)) based on how likely a photo i belongs to the cluster k, that is, pik in P.
The temporal strength of the clustering structure, that is, how likely a cluster appears at a particular
time (ref. Figure 6(i)), is determined based on the coefficient matrix Z(T ). As can be seen, some clusters
tend to be bursty at certain time periods, for instance, A2 and A3, while some clusters are more stable
over time, for instance, A4. This might be explained by the tag aspect. In Figure 6(iv), we list the top
tags of each cluster based on the values in the coefficient matrix Z(Q). From the tag list, we observe that
stable clusters like A4 tend to have tags signifying photographic style (e.g., “blackandwhite”) or camera
brand (e.g., “konica”), as opposed to tags signifying the spatial context of the photos (e.g. “brasil” in A1,
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Fig. 6. Group A “35mm Focal Length” has 5 clusters. (i) The temporal strength of the clustering structure, i.e., how likely a
cluster appears at a particular time, is determined based on the coefficient matrix Z(T ). (ii) The representative photos for each
cluster based on how likely a photo i belongs to the cluster k, i.e. pik in P. (iii) The photo-tag and photo-user matrices where the
rows and columns are reordered based on the cluster indices of the corresponding photos, tags or users. The clustering structure
is revealed in both matrices. (iv) The top tags of each cluster based on the values in the coefficient matrix Z(Q). The tags reflect
photographic, style (e.g., “blackandwhite”), camera brand (e.g., “konica”), or the spatial context of the photos (e.g. “brasil” in A1,
“zeiss” in A3, “street” in A4, etc.).

“zeiss” in A3, “street” in A4, etc.). Note that the top users of each cluster can be determined based
on Z(U ), but here we omit the list of their identifiable names. To see if the clustering structure is
consistent across different facets, we plot the photo-tag and photo-user matrices where the rows and
columns are reordered based on the cluster indices of the corresponding photos, tags or users. Here the
cluster indices are determined based on the maximal posterior probability computed as described in
Section 4. The clustering structure is revealed in both matrices (ref. Figure 6(iii)).

We also examine the relationship between clusters by computing the joint probability between any
two clusters based on different facets. Figure 7 shows the relationships among clusters within group
A, where thicker lines indicate higher joint probability of elements in a particular facet. It can be seen
that all five clusters have stronger within-cluster joint probability in almost all facets, indicating a
strong relational clustering structure in this group.

We apply the same analysis on other groups. Figure 5(b) and (c) show that both groups B and C have
the best structures with 8 clusters. The temporal strength of the structures and the representative
photos for each cluster are also shown. In Figure 8, we observe an active period for group B; during
the 2007 year, several clusters are likely to co-exist (ref. Figure 8(i)). Although group C has the same
number of clusters, it exhibits different temporal characteristics; most clusters in group C are likely
to appear only at a certain time period (ref. Figure 9(i)). We observe similar consistent clustering
structures in their reordered photo-tag and photo-user matrices.

To understand the limitation of our structure discovery approach, we apply the same analysis on the
random groups. The random group D exhibits characteristics that are very different from normal user
groups A, B and C. First, given a range of number of clusters K, the relational modularity QI tends
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Fig. 7. The relationships among clusters within group A. We compute the joint probability between every two clusters based
on different relations (visual, tag, etc.) Thicker lines indicate higher joint probability of elements in a particular facet. Only
lines with probability larger than a threshold are shown. It can be seen that all five clusters have stronger within-cluster joint
probability in most facets, indicating a strong relational clustering structure in this group.

Fig. 8. Group B: “The Southesst United States” comprises 8 clusters. The group has an active period; during the 2007 year
several clusters are likely to co-exist. The cluster representative photos tend to have similar scenes.

Fig. 9. Group C: “Laser Photography” comprises 8 clusters. It has the same number of clusters with group B but exhibits
different temporal characteristics – most clusters in group C are likely to appear only at a certain time period.
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Fig. 10. Group D: Random group. The random group D exhibits characteristics that are very different from normal user groups
A, B and C. The top photos of each cluster (except for D3) in group D do not give as a clear a sense of the cluster as those in other
groups. The photo-tag and photo-user matrices suggest that although our algorithm gives a consistent clustering structure, the
structure looks more artificial because of the almost uniform cluster sizes.

to increase with K (ref. Figure 5(d)). In Figure 10, the top photos of each cluster (except for D3) in
group D do not give as a clear sense of the cluster as those in other groups (ref. Figure 10(ii)). Similar
characteristics have been observed from other random groups.

The clustering results suggest that our algorithm is able to extract meaningful structures that char-
acterize the relational patterns in group photo streams, in terms of their representative photos, tags
and users, as well as the time profile of the clusters. However, it is also possible that the algorithm
gives an ad-hoc structure that makes little sense, as in the random group case.

6.3 Evaluation via Prediction

How can we quantify the meaningfulness of an extracted structure? We design a prediction task to
examine this question. The idea is if a structure captures recurring relational patterns, it should be
able to predict missing relations in the same group photo stream. Hence we design a task to evaluate
a relational structure by its predictability, that is, a structure is meaningful if the relations of a photo
in the group photo stream can be predicted by the structure.

Prediction setting. We design a task for predicting the relations of unseen photos, given the extracted
structure. For each group, we randomly choose 70% and 90% of the photos for extracting the clustering
structure (training), and use the remaining 30% and 10% of the photos for testing. The task is to
predict the photo-tag relation, that is, tags associated with the testing images. Our prediction utilizes
the coefficient matrices obtained from the training stage, with an estimation of pik for the test photos
using a folding-in technique [Schein et al. 2002]. We determine if a photo pi will be tagged with a tag
xj by the conditional probability:

P(xj |pi) ∝ P(xj, pi) ≈
∑

k

�k · Pik · Z(Q)
kj ,

where �, P and Z are defined as in section 4. Our method is denoted by “RSC” (Relational Soft
Clustering).

Baseline methods. We compare our prediction results with three baseline methods: (a) feature-based
prediction (denoted by “Features”); predicting tags from photos having most similar visual features
(i.e. nearest neighbor); (b) tag-based (denoted by “Tags”); predicting tags based on the tag frequency;
(c) feature/tag (denoted by “F/T”); predicting tags by only using the feature and tag information in joint
factorization.

Evaluation metrics. We use the following metrics adopted in Information Retrieval.

(1) S@10 (the success among the top 10 results). S@10 is defined as the probability of at least one
correct tag among the top 10 results.
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Fig. 11. Relative prediction performance for (a) 70% photos for training and (b) 90% photos for training. We compare our pre-
diction method (RSC) with three baseline methods, feature-based, tag based and both (F/T). Our method significantly improves
the tag prediction in group photo streams.

(2) P@10 (the precision of the top 10 results). P@10 is defined as the proportion of predicted tags that
is correct, averaged over all photos.

(3) MRR (mean reciprocal rank). MRR measures the ability of a method to return a correct tag at the
top of the ranking. It is proportional to �i1/ri, where ri is the rank of the first correct tag for the
i-th photo.

(4) NDCG (Normalized Discount Cumulative Gain [Järvelin and Kekäläinen 2000]). One advantage of
the measure is its sensitivity to the prediction order. The NDCG is proportional to �iδ(i)/log(1 + i),
where i is the rank of predicted tags, δ(i) = 1 if the prediction of the rank-i tag is correct and 0
otherwise. Unlike MRR which only considers the first correct tag, NDCG considers multiple correct
tags at the top of the ranking.

Results and discussion. We provide the detailed results in the appendix. The result shows that our
method significantly outperforms all baselines by 35%–420% (based on NDCG), or 44%–390% (based
on P@10) on an average. For comparison, Figure 11 shows the relative improvement of prediction
performance – each method is compared against the first baseline (Features) method.

There are several observations.

(1) Prediction based on visual features alone performs the worst.

(2) Prediction based on tag frequency works better, but the performance is poor after the most relevant
tag. This can be seen from its high performance in terms of S@10 and MRR, but low performance
in terms of P@10 and NDCG. The reason for this is that many photos posted in a group are also
associated with one or two group related tags, for instance, “35mm” in group A. Hence, the metric
P@10 and NDCG are more effective in differentiating prediction qualities in this task.

(3) Combining feature and tag performs similarly as tag-frequency based prediction.

(4) By incorporating various relations that consist of visual and contextual information (photo-tag,
photo-user, photo-time, and photo-feature), our joint structure analysis finds the highest quality
tags for the testing photos. This may be attributed to the “event locality” in Flickr photos, that is,
many photos are well correlated to either global events, or to events that are observed by the users.
This implies that the use of tags is highly correlated to the event context which is sensitive to a
particular user, time, visual appearance, etc. The relational data model serves as a way to capture
the event context.
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The results suggest that our analysis based on relational clustering structure help improve the
quality of tag prediction. The experiment thus provides a quantifiable sense about the meaningfulness
of the extracted structure.

7. OPEN ISSUES/EXTENSIONS

The proposed framework has several open issues and can lead to potential extensions.

—In this work, we impose a fixed form of structure, that is, clustering structure, to characterize a
group photo stream. However, there might exist other forms that better capture the data, including
generative forms from which the specific structure observed in the data is derived, for instance,
chain, multilevel hierarchy, as suggested in Kemp and Tenenbaum [2008].

—In our factorization method, we use the product of the facet matrices to fit each observed relation.
A more natural extension is to use kernel representation for those factors to exploit their nonlinear
relationship.

—The proposed joint factorization method can be easily expanded to add other features, which allows
this method to be easily incorporated other social media contexts, such as the EXIF metadata of
an image (e.g., image taken time, location and camera settings), or the content filtering labels (e.g.,
“politics” or “business”) associated with a blog post, etc., whenever they are available.

—With richer contextual information such as image taken time and location, the proposed framework
can be applied to event-centric multimedia application, such as detecting events (e.g., attending a
performance) based on the uploaded photos (and the associated contexts) and automatically recom-
mending photos relevant to the events (e.g., photos about the performers or similar performances).

—Moving beyond event-centric application, another interesting direction is community-centric appli-
cation. Our proposed framework can be used to detect so called “boundary objects” which are “weakly
structured in common use, and become structured in individual-site use” [Star and Griesemer 1989].
The concept is illustrated in Figure 7, where the relational cooccurrences are evident within clusters
but faint between clusters. The detection of boundary objects can be useful to support and sustain
the sharing practices in a social media platform. Such system could provide different navigation
mechanisms for different types of sharing space, for instance, color-based navigation function for ex-
ploring photos about a common subject such as “sky,” or time-based navigation function for exploring
photos about people and events within local communities.

8. CONCLUSION

We presented a method for extracting multirelational structure in social media streams. Structure dis-
covery is a fundamental problem with applications in content organization, recommendation systems
and exploratory social network analysis. We used a nonnegative joint matrix factorization approach to
find a set of soft clusters that reflect various relations in a group photo stream. By leveraging various
relations, our method dealt with visual and contextual information, including visual content features,
photo tags, owners and post times, in a unified manner.

We provided an efficient algorithm to solve the clustering problem that scales linearly with the data
size. The discovered structured are interpretable in terms of minimizing the mutual information of
the joint distribution. A relational modularity function was proposed to determine model penalty and
estimate the optimal number of clusters. Extensive experiments on a Flickr dataset and user study
show that (a) our analysis can capture the dynamics of group patterns, and give meaningful summary
of group photo streams; (b) compared with baseline methods, our joint analysis performs the highest
quality tag prediction. These results indicate the utility of our relational clustering method.
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As part of our future work, we plan to extend the current framework to (a) consider different forms
of the structures (b) and extend the current matrix factorization framework to tensor based analysis.

APPENDIXES

APPENDIX A. Proof of Theorem 1

We employ the concavity of log function to prove the correctness of Equation (7). Because log(
∑

kaikbkj)
is a convex function, the following equality holds for all i, j, and

∑
kνi jk = 1:

− log

(∑
k

aikbkj

)
≤ −

(∑
k

νi jk log
aikbkj
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)
, where νi jk = aikbkj∑

k aikbkj

Hence, we have:

J
(
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(
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,

where μ(r) is defined as in Equation (7). With the constraints
∑

iPik = 1, the Lagrangian of Q is defined
as:

L = Q
(
P,�,

{
Z(r)};

{
μ

(r)
i jk

}) + εP

(∑
i

Pik − 1

)
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)
.

Update Z(r): with P and � fixed, we have:
∂L

∂Z(r)
kj

=
∑

r

∑
i

−W(r)
i j μ

(r)
i j

/
Z(r)

kj + const = 0.

By solving this equation, we obtain the update rule for Z(r).
Update P: with {Z(r)} and � fixed, we have:

∂L
∂Pik

=
∑

r

∑
j

−W(r)
i j μ

(r)
i j

/
Pik + εP + const = 0

∂L
∂εP

=
∑

i

Pik − 1 = 0.

By solving the equations, we obtain the update rule for P.
Update �: with {Z(r)} and P fixed, we have:

∂L
∂�k

=
∑

r

∑
i j

−W(r)
i j μ

(r)
i j

/
�k + ε� + const = 0

∂L
∂ε�

=
∑

i

�k − 1 = 0

By solving the equations, we obtain the update rule for �.

APPENDIX B. Effectiveness of Relational Modularity

To study the effectiveness of relational modularity QI , we generate a family of tripartite networks by
the following process. Each dataset contains N entities in each of three different dimensions. These

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 8, No. 1, Article 4, Publication date: January 2012.



4:22 • Y.-R. Lin et al.

Fig. 12. Effectiveness of QI : Determining the cluster numbers by the relational modularity QI performs better than the modu-
larity function Q, against different degree of community noise (pout).

entities belong to C clusters. Each entity i of facet 1 will attach m edges to facet 2 and m edges to
facet 3. The entities being attached are selected as follows: with probability 1 − pout, entity i will
randomly connect to an entity within the same cluster, and with probability pout, entity i will randomly
connect to an entity outside its cluster. The out-linking probability pout can be viewed as the degree of
noise to an ideal clustering structure. The simulation is similar to the one described in Newman and
Girvan [2004], except for we extend the idea to a multi-relational network setting.

We experiment on the synthetic networks generated with number of entities N = 128 for each facet,
and different parameter values for pout ∈ {0.1, 0.2, 0.3} and C ∈ [2, 8]. We fix m to be half of N.

We compare the effectiveness of QI with the modularity function (denoted as Q) proposed in Newman
and Girvan [2004]. The effectiveness is evaluated based on the true clustering number C available
from the simulation. We quantify the effectiveness by accuracy, defined as the portion of instances
where the clustering numbers are correctly identified by either QI or Q. The experiments are repeated
30 times under each of the different settings and the average performance results are reported.

Figure 12 shows the mean accuracy of QI and Q against different degree of clustering noise given by
the out-linking probability pout. We observe that both functions tend to underestimate the clustering
numbers with small noise. In our experiments, QI always outperforms Q in identifying the correct
cluster numbers. This indicates the effectiveness of incorporating additional clustering information in
the modularity function, including the soft membership and the goodness of a clustering defined by
the factorization objective as discussed in Section 5.

APPENDIX C. Detailed Prediction Results

The prediction performance averaged over all groups, with 70% and 90% photos for training, are shown
in Table II and Table III, respectively.

APPENDIX D. User Study

The user study is design to examine whether the recruited participants found the clustering results,
extracted by our algorithm, useful, meaningful, and for which purpose. We ask participants to interact
with our prototype system called “GAct” and examine how they react to the system. Figure 13 shows a
screenshot of the system.

We recruited a total of 12 participants via emails and word-of-mouth. The participants range in age
between early 20s and 40s, with diverse backgrounds ranging from non-technical areas to engineering.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 8, No. 1, Article 4, Publication date: January 2012.



Discovering Multirelational Structure in Social Media Streams • 4:23

Table II.
The average tag prediction performance evaluated by four metrics,
S@10, P@10, MRR and NDCG, with 70% photos for training and 30%
for testing. We compare our prediction results (denoted by “RSC”) with
three baseline methods: feature-based (denoted by “Features”), tag-
based (denoted by “Tags”) and feature/tag (denoted by “F/T”) based
predictions.
����

Features Tags F/T RSC

S@10 0.320 ± 0.237 0.712 ± 0.183 0.702 ± 0.189 0.767 ± 0.142
P@10 0.050 ± 0.039 0.178 ± 0.068 0.174 ± 0.065 0.251 ± 0.070
MRR 0.213 ± 0.090 0.566 ± 0.206 0.560 ± 0.205 0.628 ± 0.170
NDCG 0.077 ± 0.054 0.300 ± 0.117 0.295 ± 0.114 0.400 ± 0.111

Table III.
The average tag prediction performance evaluated by four metrics,
S@10, P@10, MRR and NDCG, with 90% photos for training and 10%
for testing.
����

Features Tags F/T RSC

S@10 0.325 ± 0.231 0.700 ± 0.189 0.693 ± 0.192 0.755 ± 0.142
P@10 0.050 ± 0.036 0.176 ± 0.072 0.173 ± 0.069 0.249 ± 0.072
MRR 0.213 ± 0.090 0.566 ± 0.206 0.560 ± 0.205 0.628 ± 0.170
NDCG 0.076 ± 0.052 0.299 ± 0.126 0.293 ± 0.120 0.397 ± 0.117

Fig. 13. User study. We developed an interactive prototype system “GAct” that generates relational clusters automatically
from a given Flickr photo pool and allows users to explore the relationship among photos, users, tags and times. By using the
proposed joint factorization method, the system extracts five clusters in this group, retrieves representative users and tags,
and renders their membership with each cluster by links, where the link thickness indicates the membership weight. It also
retrieves representative photos and generates a timeline for each cluster.
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Table IV.
User survey results from 12 participants, summarized by mean and standard deviation. All ratings
are on a 5 point scale (5 is the best and 1 is the worst).
Does GAct help you discover typical patterns or common theme in the shared photos? 4.09 ± 0.54
Does GAct help you discover who contributes most to certain themes? 3.83 ± 1.19
Does GAct help you discover how different or similar tags are associated with certain themes? 3.80 ± 0.79
Does GAct help you discover how visual themes or patterns grow or diminish over time? 3.92 ± 1.24
How much do you prefer GAct to the existing Flickr group navigation? 4.30 ± 0.48
Are photos on a common topic? 4.00 ± 0.60
How much do you think GAct is helpful for understanding group activity? 4.17 ± 0.58
How much do you like GAct? 4.00 ± 0.60

Table V. User Study Process
Session 1 (a) Explore the “AME” group using the Flickr

group Web pages.
(b) Explore the “AME” group using GAct and compare their
observation with session 1(a). Compare three versions (3,5,
and 7) of relational clustering.

Session 2 (a) Explore the “Antiques” group using GAct
and compare the three versions (3,5, and 7) of
relational clustering.

(b) Explore the “Antiques” group using Flickr Webpages and
compare their observation with session 2(b).

Session 3 Answer a set of survey questions.

All the participants have varied experience with online photo sharing websites, and 5 of them have
used the Flickr group pool feature.

We asked participants to explore two Flickr groups and then conducted a semi-structured interview
session for gathering their feedback on our system. To elicit feedback about group photo exploration,
we asked questions such as “Do you find typical patterns or common themes in the group?”, “What are
the patterns and themes about?”, “Could you identify a timeframe for a certain theme?”, and “Do you
find particular users or tags that associated with the patterns or themes you described?” Finally, we
asked the participants to respond to a survey questionnaire. The questions and users’ responses are
listed in Table IV. In addition, we asked users to select cluster number(s) among 3, 5, and 7 for each
group which they thought appropriate for capturing the major themes in the groups. Table V shows
the user study process.

The two groups given to the participants are the “AME”6 and the “Antiques and their houses”7 (we
use “Antiques” to denote this group in the following description). Note that 8 of the participants are
students of the School of Arts, Media and Engineering (AME).8 One participant is an active member
in the AME group. The other 7 participants are familiar with some of the members in the AME group,
or with events or activities captured by the photos in this group. None of the participants have seen
the “Antique” group and none of them has particular interest or expertise in antiques.

Discussion. We report the major positive and negative feedback about the system. Broadly speaking,
the participants found the relational clustering results provided by the GAct system clearly repre-
sented major themes in a group, the clustering results reflected how participants described the group
data, the timeline information of themes were particularly useful for discovering the evolution of the
group activity. The major comments are summarized in the following.

Structure exploration with GAct. Almost all participants felt that GAct provided useful and mean-
ingful structure for the group photos and is particularly helpful for exploring unfamiliar groups such
as Antiques. With the AME group, participants (including those not familiar with the AME School)
identified main themes using similar terms “project work,” “party or social events,” and “trips” by

6http://www.flickr.com/groups/83713445@N00.
7http://www.flickr.com/groups/20181527@N00.
8www.ame.asu.edu.
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Fig. 14. The best clustering numbers determined based on the maximal relational modularity QI for the group (a) “AME” and
(b) “Antiques” are 5 and 7, which well correspond to participants’ perception shown in (c). The bar chart in (c) shows the number
of participants who prefer the corresponding number of themes for the two group content shown in GActs.

simply browsing the Flickr Webpages. When interacting with GAct, they found the 3-cluster results
corresponded well to their raw observations. However, participants also agreed that the 5-cluster and
7-cluster results made sense and commented that the versions identified themes in more details (e.g.,
two themes are similarly understood as “trips” or “landscape” but from different Flickr users, and an-
other two themes are different “project work”). The participants’ exploration of Antique group photos
was quite different from the AME photos. With the Antiques group, almost all participants felt over-
whelmed when browsing the Flickr Webpages, but found the themes generated by GAct helped guide
their exploration.

Structure properties. When interacting with GAct, participants tended to use visual similarity to
judge the meaningfulness of a theme, and described the themes based on the visual content depicted
in the cluster photos. Participants commented that the timeline information was useful. Participant
3 thought the timeline was important and useful when the theme was about human activity (e.g.,
projects, parties and trips), but not useful when the theme wais about inanimate objects (e.g., an-
tiques). Participant 6 expressed that the temporal strength of the “party” theme diminished in recent
year which was an interesting observation. When exploring the AME group, participants who were fa-
miliar with the AME School were more interested in playing with the user-theme and tag-theme links.
Participant 6 and 9 (from the AME School) noticed the tags “amenities” and “arduino” associated with
the theme “project work” made sense. Many participants (including one not from the AME School) no-
ticed tags such as “cake” and “birthday” associated with the theme “party” as meaningful descriptors
for the group activity. Participant 3 (from the AME School) identified active contributors in the “trip”
theme. She also felt that the links between tags and themes helped her understand “canada” as a high
frequency tag in the “trip” theme. With the “Antiques” group, almost all participants did not look at
the user-theme links. Some participants were able to make sense of the themes through tag-theme
links, for instance, participant 1 found the house photos in one theme were about “abandoned” houses.
Participant 9 thought the tag-theme links would be more useful for discovering unfamiliar groups.

Structure complexity. We compare participants’ preferred cluster numbers with the optimal cluster
numbers determined by the relational modularity function QI . As shown in Figure 14, the optimal
numbers from QI are 5 and 7 for the “AME” and “Antiques” group photos, which correspond well to
participants’ perception. For the “AME” group, participants said they prefer GAct to merge the 7-
cluster results when the themes have similar semantics (e.g. different themes for “project work” can
be merged together). Participants 2 and 6 told the interviewer that whether more or fewer cluster
numbers would be more useful depended on their purpose and the content of the group; they would
prefer 3-cluster if they wanted a quick summary of the group, but 7-cluster if they wanted to find more
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interesting photos from the group. Participant 2 also noted that, for some groups representing her
strongest interests, she thought she would miss many interesting photos in GAct. For the “Antiques”
group, many participants felt the 7-cluster results were better than the 5-cluster. Some participants
(e.g., 8 and 12) had strong preference for fewer clusters regardless of the group content.

Other consideration. Participants found the interaction in GAct fairly simple. It provided an inter-
esting starting point to explore photos in a group. However, when cluster number increases, the theme
panels and links among panels were cluttered and make it difficult to explore more interesting results.
Many participants gave valuable suggestions to improve the visual and interaction design of the GAct
system, for instance, using icon size instead of line thickness to indicate users’ contribution to themes.

To conclude, the clustering results, including the cluster content and the cluster numbers, of both
groups displayed in GAct are deemed meaningful. However, in an exploratory system, the preferred
number of clusters may depend on various factors, including the group topics, users’ informational
need and information processing capacity, the visual design of the system, etc. These factors may
not be available from group photo data and need to be further considered in the context of applica-
tions. Nevertheless, our framework is able to give reasonable results when such information is not
available.
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