The serial sample sort algorithm sorts n integers ($X = [x_1, \ldots, x_n]$) with the following steps:

1. A sample of s ($s \ll n$) elements $[x_{i_1}, \ldots, x_{i_s}]$ is selected from the n-element vector X. We sort the s elements and then choose $p - 1$ “splitter values” $a_1 < \cdots < a_{p-1}$ that divide the sample vector $[x_{i_1}, \ldots, x_{i_s}]$ into p nearly equal sub-vectors.

2. The splitter values define m “buckets” as follows: $B_1 = \{x| x < a_1\}$, $B_i = \{x| a_{i-1} \leq x < a_{i+1}\}$, $2 \leq i \leq p - 1$, $B_p = \{x| a_{p-1} < x\}$. During one pass through the vector X each element x_j is placed in the appropriate bucket according to its value (i.e., is copied into an array B_j).

3. Each bucket is sorted independently.

4. The entire sorted vector is obtained by concatenating the contents of the sorted buckets $[B_1 \cdots B_p]$.

Part I. Write a parallel sample sort algorithm for p processors. The algorithm goes as follows:

1. The data (the vector X) is initially at P_0. The vector is scattered to all processes such that each process P_i gets a sub-vector X_i with n/p elements.

2. Each process selects k sample elements from its sub-vector and sends them to P_0. The process P_0 now has a sample of $s = kp$ elements which it uses to select the splitter values $a_1 < \cdots < a_{p-1}$. These splitters are broadcast to everybody.

3. Each process P_i goes through the local sub-vector X_i and splits it into p subsequences, such that elements in subsequence j belong to bucket j ($X_{i,j} \in B_j$).

4. Each process P_i sends the sub-sequence $X_{i,j}$ to process P_j.

5. Process P_j has all the elements of the original vector X that belong to bucket B_j. Each process sorts locally the received sub-sequences (using e.g., quicksort).

6. The sorted subsequences from all processors are gathered to P_0 and assembled into the sorted vector X.

Part II. Consider the following model for the communication time:

\[T = t_s + t_w \cdot m \]

where t_s is the startup time, t_w the time needed to transfer one word, and m is the number of words in the message.

Run several sends and receives between different pairs of nodes and transmit messages of different sizes (different m’s). Time each of them. From this data estimate the t_s and t_m for the network of workstations (e.g., use a least squares approach).
Part III. Perform a theoretical analysis of the sorting algorithm.

1. Express T_S, the serial time, as a function of the data vector size n.

2. Express T_P, the parallel time, as a function of n and of the number of processors p.

3. Express the parallel overhead T_O as a function of n and p.

4. Find and expression for the regular speedup, and analyze its behavior when $p \to \infty$.

5. Find and expression for the time-constrained speedup, and analyze its behavior when $p \to \infty$.

6. Find and expression for the memory-constrained speedup, and analyze its behavior when $p \to \infty$.

7. Express the parallel efficiencies in each of the three above cases, and analyze their behavior when $p \to \infty$.

Part IV. Run the parallel sorting algorithm for different data sizes (e.g., $n = 2^{10}$ and up) and on different number of processors (e.g., $p = 1, 2, \ldots$ to 16). Time each of the runs. For each of the three cases (regular, time-constrained, and memory-constrained speedups) plot the experimental speedup AND the theoretical speedup versus the number of processors. Discuss and draw conclusions.

Can you predict the behavior of the sorting algorithm on System X ($p = 2^{11}$)? How large should n be to have a parallel efficiency of at least $E \geq 50\%$?