Pregel: a system for large-scale graph processing

Abstract

Many practical computing problems concern large graphs. Standard examples include the Web graph and various social networks. The scale of these graphs - in some cases billions
of vertices, trillions of edges - poses challenges to their efficient processing. In this paper we present a computational model suitable for this task. Programs are expressed as a sequence of iterations, in each of which a vertex can receive messages sent in the previous iteration, send messages to other vertices, and modify its own state and that of its outgoing edges or mutate graph topology. This vertex-centric approach is flexible enough to express a broad set of algorithms. The model has been designed for efficient, scalable and fault-tolerant implementation on clusters of thousands of commodity computers, and its implied synchronicity makes reasoning about programs easier. Distribution-related details are hidden behind an abstract API. The result is a framework for processing large graphs that is expressive and easy to program.

↑ REFERENCES

Note: OCR errors may be found in this Reference List extracted from the full text article. ACM has opted to expose the complete List rather than only correct and linked references.

9 Fay Chang , Jeffrey Dean , Sanjay Ghemawat , Wilson C. Hsieh , Deborah A.

11 Jonathan Cohen, Graph Twiddling in a MapReduce World, Computing in Science and Engineering, v.11 n.4, p.29-41, July 2009 [doi> 10.1109/MCSE.2009.120]

14 Jeffrey Dean, Sanjay Ghemawat, MapReduce: simplified data processing on large clusters, Proceedings of the 6th conference on Symposium on Operating Systems Design & Implementation, p.10-10, December 06-08, 2004, San Francisco, CA

22 Douglas Gregor and Andrew Lumsdaine, The Parallel BGL: A Generic Library for
Distributed Graph Computations. Proc. of Parallel Object-Oriented Scientific Computing (POOSC), July 2005.

29 **Donald E. Knuth**, The Stanford GraphBase: a platform for combinatorial computing, ACM, New York, NY, 1993

31 Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and Jonathan W. Berry, Challenges in Parallel Graph Processing. Parallel Processing Letters 17, 2007, 5--20.

32 Kamesh Madduri, David A. Bader, Jonathan W. Berry, and Joseph R. Crobak, Parallel Shortest Path Algorithms for Solving Large-Scale Graph Instances. DIMACS Implementation Challenge - The Shortest Path Problem, 2006.

34 **Grzegorz Malewicz**, A Work-Optimal Deterministic Algorithm for the Certified
Write-All Problem with a Nontrivial Number of Asynchronous Processors, SIAM Journal on Computing, v.34 n.4, p.993-1024, 2005 [doi> 10.1137/S0097539703428014]

40 Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, Andrew Tomkins, Pig latin: a not-so-foreign language for data processing, Proceedings of the 2008 ACM SIGMOD international conference on Management of data, June 09-12, 2008, Vancouver, Canada [doi> 10.1145/1376616.1376726]

41 Rob Pike, Sean Dorward, Robert Griesemer, Sean Quinlan, Interpreting the data: Parallel analysis with Sawzall, Scientific Programming, v.13 n.4, p.277-298, October 2005

47 Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Ulfar Erlingsson, Pradeep Kumar Gunda, and Jon Currey, DryadLINQ: A System for General-Purpose
INDEX TERMS

Primary Classification:
D. Software
 D.2 SOFTWARE ENGINEERING
 D.2.13 Reusable Software
 Subjects: Reusable libraries

Additional Classification:
D. Software
 D.1 PROGRAMMING TECHNIQUES
 D.1.3 Concurrent Programming
 Subjects: Distributed programming

General Terms:
Algorithms, Design

Keywords:
distributed computing, graph algorithms

Collaborative Colleagues:
Grzegorz Malewicz: colleagues
Matthew H. Austern: colleagues
Aart J.C Bik: colleagues
James C. Dehnert: colleagues
Ilan Horn: colleagues
Naty Leiser: colleagues
Grzegorz Czajkowski: colleagues