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Abstract 

A widely-used approach in the time integration of initial-value problems for time-dependent partial differential 
equations (PDEs) is the method of lines. This method transforms the PDE into a system of ordinary differential 
equations (ODEs) by discretization of the space variables and uses an ODE solver for the time integration. Since 
ODEs originating from spaee-discretized PDEs have a special structure, not every ODE solver is approl~iate. 
For example, the well-known fourth-order Runge-Kutta method is highly inefficient if the PDE is parabolic, but 
it performs often quite satisfactory if the PDE is hyperbolic. In this lecture, we give a survey of the development 
of ODE methods that are tuned to space-discretized PDEs. Because of the overwhelming number of methods 
that have been proposed through the years, we confine our considerations to Runge-Kutta type methods. In this 
contribution to the historical surveys presented at the IMACS 14th World Congress held in July 1994 in Atlanta, 
we describe work of Crank and Nicolson (1947), Laasonen (1949), Peaceman and Rachford (1955), Yuan" 
Chzao-Din (1958), Stiefel (1958), Franklin (1959), OuiUou and Lago (1960), Metzger (1967), Lomax (1968), 
Oourlay (1970), Riha (I972), Gentzsch and Schlfiter (1978), Vichnevetsky (1983), Kinnmark and Gray (1984), 
Sonneveld and van Leer (1985), as well as research carried out at CWI. 
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1, T h e  m e t h o d  o f  fines 

The method of  lines transforms initial-boundary value problems for t ime-dependent partial differen- 
tial equations (PDEs) into initial-value problems (IVPs) for systems of  ordinary differential equations 
(ODEs). This is achieved by discretization o f  the space variables using finite difference, finite element  
or finite volume approximations. The connection of  PDEs with systems of  ODEs was already known 
to Lagrange (see the historical notes in the book of  Hairer, Nersett  and Wanner [10, p. 25]). in 1759 
Lagrange already observed .that his mathematical model for the propagation of  sound in terms o f  a 
system of  second-order ODEs is related to d 'Alembert ' s  equation u u  = ux~ for the vibrating string. 
However,  the actual use o f  the space-discretized approximation in numerically solving initial-botmdary 
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value problems for PDEs seems to start with Rothe in 1930 [32], and is therefore also, called Rothe's 
method (see [10, p. 3]). 

In this paper, we shall restrict our considerations to the case where the spatial discretization of  the 
PDE leads to an IVP of  the form 

dy( t )  _ f ( t , y ( t ) )  y ( to )  = Yo, (1.1) 
dE 

where g is the time variable and Y0 contains the given initial values. Notice that the boundary conditions 
are lumped into the right-hand side function f .  

The IVP (1.1) has a number  of  specific characteristics that play a crucial role in selecting a suitable 
integrator. Firstly, the system (1.1) can be extremely large, particularly, if it originates from a problem 
with 2 or 3 spatial dimensions. Secondly, the system is usually extremely stiff (here, (1.1) is considered 
to be stiff if the solution components  corresponding to eigenvalues of  the Jacobian 0 f / 0 y  that are 
close to the origin are dominating). Thirdly, the required order of  accuracy in time is rather modest  
(usually not exceeding the order of  the spatial discretization, that is, at most  order three). Hence, we 
are led to look for low-order, stiff ODEIVP solvers that are storage economic.  

One approach is to look for conventional, general purpose ODEIVP methods that meet these re- 
quirements.  There are two often used integrators, the second-order trapezoidal rule and the first-order 
backward Euler method,  respectively used by Crank and Nieolson [4] and by Laasonen [24] in their pa- 
pers of  1947 and 1949 for solving heat flow problems. In the PDE literafure, these methods also known 
as the Crank-Nicolson and Laasonen methods. An  integ~,tion method that combines the second-order 
accuracy of  the Crank-Nicolson method and the high stability of  the Laasonen method is offered by 
the two-step method based on backward differentiation (known as the BDF2 method). BDF methods 
were proposed in 1952 by Curtiss and Hirschfelder [3] for solving stiff ODEs and became popular 
by the papers o f  Gear in 1967-1968, and in particular by his book [7] of  1971. The Crank-Nieolson,  
Laasonen and BDF2 methods are applicable to a wide class of  space-discretized PDEs (not only heat 
flow problems) and have comparable computational complexity. In order to solve the implicit rela- 
tions, one usually applies Newton iteration which leads to a large linear system in each iteration. For 
one-dimensional problems, these linear systems can be solved by direct methods that are in general 
highly efficient because the band structure of  the system can be fully exploited. However, in more than 
one spatial dimension,  direct solution methods usually are out of  the question and we have to resort to 
an iterative method, ff Lr~ denotes the number  of  Newton iterations, Ls the number  of  linear system 
iterations, d the spatial dimension, and A the spatial grid size, then the computational complexity 
o f  these methods is O(LNLsA-a) .  Often used linear-system-iteratiorl methods are conjugate gradient 
type methods that require at least O(A  - l / a )  iterations. Hence, the total con|putationai work involved 
for integrating the unit t ime interval with stepsize h is at least W = O ( L s h - l A - a - l / a ) .  

In order to reduce the huge amount o f  work when integrating higher-dimensional problems, new 
methods have been developed. The remainder of  this paper will be devoted to such methods. Since it 
is not  feasible to present a complete survey, we shall confine ourselves to Runge-Kut ta  type methods 
that ate tuned to PDEs in two or more spati~:~ dimensions. We shall discuss explicit Runge-Kut ta  
(RK) methods for parabolic and hyperbolic problems (spectrum of  the Jacobian 0,f/i)$/ along the 
negative axis and imaginary axis, respectively), and splitting methods represented as RK methods 
with fractional stages. 
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2. Explicit Runge--Kutta methods  

Consider the s-stage RK method 

Y = e ® Yn + h ( A  ® I ) F ( t n e  + ch, Y ) ,  (2.1) 

Yn+l = Yn -t- h(b T ® I ) F ( t n e  + ch, Y ) ,  

where h is the integration step, ~/n and t/n+1 represent approximations to the exact solution vector 
y(t) at t ---- tn and t --- tn+l, ® denotes the Kronecker product, the s-dimensional vector e is the 
vector with unit entries, I is the identity matrix whose dimension equals that of  the IN/P, and 
s-by-s matrix A and the s-dimensional vectors b and c :-- A e  contain the RK paran~ters.  The s 
components ~ of  Y represent intermediate approximations to Lhe exact solution values ~ ( ~  + cih~ 
and F ( t n e  + ch, Y )  contains the derivative values ( f ( t n  + c~h, Yi)). ~ t~he following, the dhrtensions 
of  e and I may vary, but will always be clear from the context in which they appear. 

If A is strictly lower triangular, then (2.1) defines an explicit RK method (the first method of  this type 
was proposed by Runge [33] about 100 years ago). Explicit RK methods are relatively cheap, provided 
that the integration step h can he chosen sufficiently large. For stiff ODEs, the step is restricted by a 
stability condition of  the form 

/3 0 f ( t n ,  Yn) (2.2) h < p ( j ~ ) ,  Jn : =  a ~  ' 

where P(Jn) is the spectral radius of  Jn and ~ is the so-called stability boundary. In the case of  
parabolic and hyperbolic problems, where the Jacobian of  the right-hand side function respectively 
has (more or less) negative and imaginary eigenvalues, /3 denotes the real stability boundary 
or the imaginary stability boundary/~imag of  the RK method. The real stability boundary is defined 
by the maximum length of  the negative interval (--/3, 0) that is contained in the region where the 
stability polynomial Rs(  z) :-" 1 + bT ( I -- z A ) - l  e assumes values within the unit circle. Similarly, 
the imaginary stability boundary is defined by the maximum length of  ~ e  interval (0, ifl) where Rs 
is bounded by 1. 

2.1. Conventional RK methods 

For conventional RK methods, Rs(z )  is given by the Taylor polynomial o f  degree s in z, that is, the 
polynomial that coincides with the truncated Taylor expansion of  exp(z) at z -- 0. Let us first consider 
the parabolic case. The real stability boundary of  Taylor polynomials is (approximately) given by 
(cf. [14, p. 236] and [20,21]) 

/~.al ~ 0.368(s + 1) 2c'+~)X/19(s + 1). (2.3) 

This approximation is already quite close for s /> 4. We conclude from (2.2) and (2.3) that we 
can take any step we want by choosing s sufficiently large, but these formulas also show that for 
large s the total number of function calls needed for integrating the unit interval with maximum step 
h = ~ p - I ( J n )  ~ 0 .368sp- l (Jn)  is given by N I ~ 2.7p(Jn),  that is, independent o f  s. Hence,  
conventional RK methods are as costly as the explicit Eulvr method (but of  course highly accurate as 
s increases). Since f has O( / I  -d)  components and since for parabolic problems P(Jn) -- O(ZI-2),  
the computational work can be estimated by W -- O ( A - d - 2 ) .  This differs by a factor of  order 
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O ( h A  -3/2) from the estimate derived for the Crank-Nicolson, Laasonen and BDF2 methods (when 
applied to higher-dimensional problems). Usually, this factor is quite large (e.g., if h = O(A)) ,  so that 
conventional RK methods are not the way to solve space-discretized PDEs of  parabolic type. They 
are "'too cosily and too accurate". 

Next we consider the hyperbolic case. It happens that for the imaginary stability boundary/3imag we 
do not  always obtain nonzero values. If z-O~+U[Rs(z) - exp(z)] --+ C'p+! as z ---* 0, where p denotes 
the order o f  accuracy of  the RK method, then it can straightforwardly been shown that/31mag is only 
nonzero if either C'p+li p < 0 for p even or C'r,+lir'+l < 0 for p odd. For the Taylor polynomials this 
implies that the imaginary stability interval is empty for p = 1, 2, 5, 6, 9, 10 . . . . .  For  the other orders, 
quite reasonable values are obtained. For example, for p = 3, 4, 7, 8, we have flimag ~ 1.7, 2.8, 1.7, 3.4. 
Taking one of  these latter methods and assuming that p(dn) = O ( A - l ) ,  the total computational work 
associated with the unit interval can be estimated by W = O ( A - d - I ) .  This is a factor o f  order 
O ( h A - I / 2 )  better than the estimate derived for the Crank-Nicolson, Laasonen and BDF2 methods. 
Hence,  unlike the situation for parabolic problems, conventional RK methods seem to be preferrable 
for hyperbolic problems. 

2.2. Parabolic R K  methods 

Our conclusion that for parabolic problems explicit RK methods are "too costly and too accurate" 
suggests sacrifycing accuracy in order to reduce computational costs. By observing that an s-stage RK 
method of  order p with s > p possesses a stability polynomial Rs of  the form 

1 
2~s(P)(z) 2=/~0 + /~ lg  +/~2 Z2 + . - .  + /~sz  s, /~ff = j--~, j = 0 , . . .  ,p ,  (2.4) 

where the coefficients /3j, j = p + 1 , . . . ,  s, are free parameters, it is natural to use these free 
parameters for obtaining larger stability boundaries. For parabolic problems, where the eigenvalues 

of  the Jacobian often are along the negative axis, we are led to construct polynomials R ~  ) (z) with 

increased real stability boundary. Having found an appropriate stability polynomial  Rs 0) ,  it is always 
possible to construct an RK method with R ~  ) as its stability polynomial (see, e.g., [14]). Such methods 
will be called parabolic RK  methods. 

Until now, closed form solutions for the polynomials with maximal real stability boundaries (to 
be called optimal polynomials) are only known for p = 1. They are given by the shifted Chebyshev 
polynomials  

c ~ ) ( z )  :=  Ts 1 + ~ , t~,~ = 2s  2, (2.5) 

where Ts(z)  :=  cos(s  arccos(z)) denotes the first kind Chebyshev polynomial of  degree s. They have 
been rediscovered in the literature again and again (even in recent years, see, e.g., [2]). As far as I 
know, they were first mentioned for integrating parabolic equations: in 1958 by Yuan' Chzao-Din in 
his thesis [41], in 1959 by Franklin it: his paper [6] that appeared in the Journal o f  Mathematical 
Physics, and in 1960 by Guillou and Lago in the proceedings [9] of  the first conference of  AFCAL 
(the French Association for Computing).  These authors were not aware of  each other 's work. 

For p >1 2, only approximate solutions have been constructed. In the thesis of  Metzger [28] in 1967, 
we find numerical  approximations for p ~ 4, a <~ 5, and in a NASA report of  Lomax [27] of  1968, 
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a general approach for computing the coefficients was indicated. Lomax conjectured that the optimal 
polynomials satisfy the so-called equal ripple property, that is, the optimal polynomial has ~ - p local 
extrema +1 or - 1  (this property was actually proved by Riha [31] in 1972 Who also showed h'~e 
unique existence of the optimal polynomials for all p and all s > p). Using the equal ripple property, 
an iterative method can be constructed for the numerical computation of the coefficients. Ho~vever, this 
equal-ripple-iteration method needs rather accurate initial iterates in order to converge. Presumably 
for this reason, Lomax did not use the equal-ripple-property approach, anti instead, comgmted least 
squares approximations for p ---- 2 and 8 ~< 10. Again, Metzger, Lomax and Riha found the/r results 
independently. 

At CWI we used the least squares approach of Lomax for generating initial i t c r a ~  to start the 
equal-ripple-iteration method. In this way, we computed the optimal stability polynomials, together 
with their real stability boundaries, t%-r p ~< 4 and s ~ 10 + p (tables for the coefficients can be found 
in [13,14]). These computations indicated that ~,~, increases quadratically with s as s increases. In 
fact, we found 

~re~ ~ q'ps 2 as s -+ oo, "/2 = 0.814, "/3 = 0.489, q~4 = 0.341. (2.6) 

The quadratic behaviour is important. R implies that the total number of function calls needed for in- 
tegrating the unit interval with maximum step h ~ %,s2p - !  (J,~) is now given by N f  ~ (.yps)-lp(J,~), 
which is a factor 2.7"yps less than the number of function calls needed for conventional RK methods. 
Hence, for large values of s, RK methods generated by (2.5) are much cheaper than conventional RK 
methods, provided that they are available for large values of s. Unfortunately, the numerical compu- 
tation of the optimal polynomials becomes increasingly more difficuR as s increases. This motivated 
t~s to look for analytical expressions for nearly optimal polynomials that are valid for arbitrary high 
values of a. In 1971, Bakker [1] derived in his Master thesis for p ---- 2 and p ---- 3 analytically given 
polynomials which are quite close approximations to the optimal stability polynomials, in the sense 
that [he stability boundaries are close to the maximal attainable values. These polynomials, to be called 
the Bakker  polynomials, are given by 

Bs(2)(z) 2 s 2 + 1  8 2 - 1 _ (  3z ) 2 
= - - 3 - - ~ - - + ~ T s  l+s--f-/~_l , / ~ : ~ .  (a~ ' - - l ) ,  a > 2 ,  (2.7) 

B ( s 3 ) ( z ) = l +  3 1 3 2 - 2 ( 4 0 k 2 - 1 ) ' -  576/¢4 3"2 -- 2(36k2 -- 1)flT2. ( l  + - ~ )  512k 4 (2.8) 

+ 3 ~ 2 -  2 ( 4 k 2 -  1)/~Ts ( _ ~ )  s 
4608k4 1 + , /c := ~, s ---- 6,12, 18 . . . . .  

2 2  1~/8s4 - 6082 + 297 2 2 (  V ~ )  
~real~fl :----~s - - 1 + ~  5 ~ s  1 +  ~.0.36382 a s s - - + c o ,  

where again Ts denotes the first kind Chebyshev polynomial of degree s (in addition, Bakker actually 
proved the quadratic behaviour of the real stability boundaries of  the optimal polynomials and obtained 
lower and upper bounds for "y~, up to p = 15). A comparison of (2.6) with (2 .7)and (2.8) reveals 
that the Bakker polynomials respectively possess 80% and 75% of the maximal aRainabl¢, asymptotic 
stability boundary. Later on in 1982, we found for p = 2 an even bettor approximation given by 
(cf. [17]) 
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2 z z T  " cos(It/s) + z (2.9) A~(2)(z) = 2 -  z 2 -  

2 s 2 
/~real = [tan(Tr/2a)] 2 ~ 8~-~ ~ 0.810s 2 as s ~ oo. 

These polynomials are not the optimal ones, but yield 99.5% of the maximal attainable, asymptotic 
stability boundary! 

The parabolic RK methods generated by the analytically given polynomials (2.5), (2.7) and (2.9) 
enable us to select an integration step h on the basis of accuracy considerations and to adapt the 

stages according to the stability condition s ~ ~ / ' t~ |hp (Jn ) .  Hence, effectively, we have n u m b e r  o f  

an unconditionally stable method. 
As we remarked earlier, given the stability polynomial, many RK methods possessing this stability 

pol~;nomial are possible. One of the most simple implementations of first-order or second-order RK 
methods with stability polynomial (2.4) reads 

1"~ = y, ,  + aihJ ' ( t~  + c a - l h , ~ - l ) ,  

Yn+l = yn  + h f ( t ~  + h, Ys) ,  

~ s - - i + 2  
, . . .  ai := ~s- i+l  i = 1, , s ,  (2.10) 

where al is assumed to vanish. This implementation is of the form (2.1) with b = es and a matrix A 
with zero entries except for the lower off-diagonal entries. We shall cal! (2.10) the diagonal implemen- 

Unfortunately, when we actually applied the diagonal implementation with s ~ ~ / 7 ~ l h p ( J n ) ,  ration. 

it tumod out that the numerical solution lost accuracy for larger values of s. On a computer with 
14 digits arithmetic, s should not be greater than 12. This is caused by the development of inter- 
hal instabilities within a single step. Just as the step values Sin are required to be stable by im- 
posing the (extemal) stability condition h < Breal/P(Jn), we also have to require that the internal 
values I,~ are stable. In the implementation (2.10), the internal perturbations satisfy the recursion 
AYi  = a~hJnAY~-  l = Pq- l  ( hJn )AYl  , where the so-called internal stability polynomials Pq ( z)  are 
of degree i in z. This leads to the internal stability conditions h < c~i/p(Jn), i = 1 , . . . ,  s, where oq 
denotes the stability boundary associated with R/. For large values of s, these conditions are much 
more restrictive than the external stability condition h < ~real/P(Jn). As a consequence, the main 
advantage of the polynomials (2.5), (2.7) and (2.9), viz. that they are available for arbitrarily large 
values of s, cannot be exploited. 

Fortunately, it is possible to avoid, or at least to suppress the internal instabilities, just by choosing 
another implementation than (2.10). The first attempt to internal stabilization of  RK methods with 
many stages is due to G-entzsch and SchRRer [8] in 1978, who 'rediscovered" the shifted Chebyshev 
polynomials (2.5) and exploited the fact that these polynomials possess s real zeroes zi on the negative 
axis. Although their approach was restricted to linear IVPs, it can directly be extended to nonlinear 
problems to. obtain an RK method o~ the form 

| _ 
YI  ~- Yn,  Yi+l = ~ -- - - h f ( t n  "t" cah, ~ ) ,  

zi 

Zs 

i = 1 , . . . , s -  1, (2.11) 
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This implementat ion may be interpreted as an RK method that is factorized in a sequence of  Euler 
steps and will be called the fac tor i zed  implementation. If  the zeroes zi are ordered such that z~ < z~+l 
or zi > zi+i,  then the performance the factorized irrtplementation is hardly better than that of  the 
diagonal implementat ion as s increases. However,  Gentzsch and Schlfiter r e p o ~  satisfactory results 
for extremely large values o f  s (up to 997) if special orderings o f  the z~ are used. A disadvantage in 
actual applications is that a suitable ordering depends on s. 

When  reading the paper of  Gentzsch and Schl~ter, we suddenly realized that the problem o f  in|ernal 
stabilization was already solved a long time ago by numerical analysts working in eltipffc PDEs! The  
spatial discretization of  elliptic PDEs leads to the problem of  solving linear systems A y  = b, where  
A is known to have a negative spectrum in the negative interval ( - - p ( A ) ,  0) with p ( A )  large positive. 
A well-known iterative method for solving such problems is due to Richardson, who proposed in his 
paper [30] o f  1910 the recursion ~ = Y~-l  + ~ i ( A y i - !  -- b) ,  where the parameters o~ are chosen 
such that after s iterations, the polynomial  Ps occurring in the error formula Y8 -- Y = P i (A) (yo  -- y )  
has a small norm in the eigenvalue interval (a, b) of  A. Various approaches to achieve this have been 
prol~osed. Richardson suggested choosing Ps such that it has uniformly distributed zeros in (a, b), 
Stiefel proposed to minimize an integral measure of  P8 (cf. [36]), but  most  numerical  analysts prefer 
to  minimize the m a x i m u m  norm of  Ps. The latter approach leads to shifted Chebyshev polynomials  
that are very similar to (2.5). This process is now known as Richardson's  method o f  f i rs t  degree. 
However,  application of  this method for large values of  s suffers the same internal instability as the 
method (2.11). Just  as Gentzsch and Schlfiter, one has tried to improve the stability by special choices 
of  the ordering of  the parameters a~ (see, e.g., the experiments o f  Young [40] in 1954), but  a real 
break-through was due to Stiefel [36] in 1958. He observed that Chebyshev polynomials  satisfy a 
stable three-term recursion, so that using a three-term recursion for the iterates Yi, r a t e r  than the two- 
term recursion of  Richardson, would avoid the instability problem. This two-step iteration method is 
known as Richardson's  method of  second  degree or, in the more  recent literature, the Chebyshev  semi-  
iterative method .  Realizing that the stability polynomials  (2.5), (2.7) and (2.9) are also expressions in 
terms of  shifted Chebyshev polynomials,  brought us  to construct internally stable implementat ions o f  
the corresponding parabolic RK methods (cf. [15,16]). For  the second-order consistent polynomials  
A(~ 2) and B~ (2), it was pointed out by Sommei jer  (see [15]) that it is even possible to make  the Y~ not  
only stable, but Aso second-order accurate approximations to the exact solution at the intermediate 
points tn  + c~h, i =  1 . . . .  , s .  

The internally stable Runge-Kut ta  method generated by the Bakker polynomials  B (2) performs 
slightly better than the method generated by A(~ 2) (its smaller stability boundary is c o m p e n ~ ' ~ d  by its 
smaller error constants). It is a highly efficient integrator for general heat flow problems, p~rticularly 
for 2D and 3D problems.  We called it the R u n g e - K u t t a - C h e b y s h e v  method, but is could equally well 
have been called the R u n g e - K u t t a - B a k k e r  method.  A detailed study of  its convergence is presented 
in [37] and an extensive performance evaluation can be found in [12]. The R u n g e - K u ~ b y s h c v  
method has been implemented by Sommeijer  as the code RKC and is available through netlib [34]. 

Another  code that is based on stabilized RK methods is the code DUMKA developed by Lebedev 
and his coworkers of  the Institute for Numerical Mathematics o f  the Russian Academy of  Science. They  
approximate the optimal stability polynomials  by so-called Zolotarev polynomials.  Like Gentzsch and 
SchlUter, internal stability is achieved by a special ordering of  the stages rather than using recurrence 
relations. More details can be found in the references [25,26]. 
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Finally, we compare the total computational work of conventional and parabolic RK methods needed 
for integrating the unit interval with a given step h. Assuming that s is defined by 

s ~ ~ / ' r ;~ho (Jn ) ,  
we find for the stabilized RK methods 

w = h-'~ o(z~-~) ~ h-' X/~;'hp(&) o(~ -~) ~ o(~-'/: ~-~-'). 
Comparing this estimate with that derived for conventional RK methods, we see that the computa~onal 
complexity of  the stabilized RK methods differ by a factor of order O(ht/2Z~-l). With respect to the 
Crank-Nicolson, Laasonen and BDF2 methods using conjugate gradient type iteration methods, the 
stabilized RK methods are at least competitive. 

2.3. Hyperbolic RK methods 

Instead of  maximizing the real stability boundary of stability polynomials of the form (2.4), we 
may also maximize the imaginary stability boundary, to obtain a hyperbolic RK method that should 
be suitable for integrating hyperbolic problems that have Jacobians with imaginary eigenvalues. 

For p = 1, the optimal polynomials are given by 

z 2 
I ( , ) ( z ) = ( _ i ) s [ i T s _ , ( s i Z _ l )  _ ( l +  ____~)2) U [" iz • (~ ._2 \ 7 : - ~ ]  ] , (2.12) 
3~ag = s - 1 ,  s >/ 2, 

where Us(Z) :=  sin((s + 1)arccos(z))/sin(arccos(z)) denotes the second kind Chebyshev polynomial 
of  degre~ z. For odd values of  s, these polynomials were given in 1972 in [13] (a proof can be found 
in [14]). At the time, it was not realized that (2.12) is also valid for even values of  s, because in [13] 
the polynomials I (1) were represented in the form 

z 2 

f l i n g = s - I ,  s - - 2 k + l ,  k / > l ,  

which cannot directly be extended to even values of s. It tams out that the odd-degree polynomials 
are identical to the optimal polynomials corresponding m p = 2, i.e., I(82)(z) = I~l)(z) for s odd. 

In 1984 Kinnmark and Gray [22] derived the representation (2.12) which is valid for all values of s. 
This result was also obtained, independently, by Sonneveld and van Leer [35] in 1985. 

Kinnmark and C.nay [23] have also derived approximations to the optimal polynomials I~ (3) for s 
odd and to I8 (4) for s even. These Kinnmark--Gray polynomials are given by 

' [  K~(3)(z) = ~ - ~  l + z + i8-1~2Ta_1 

+ l i s + 2 t ~ { ( s - 2 ) T , ( f l ) -  sT,-2 ( ~ )  } ] ,  (2.14) 

/ ~ = / ~ : = V / ( s - 1 ) 2 - 1 ,  o d d s > t 3 ,  
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and 

i I [is+I/~Ts-i (~) + li'{(s - 2)Ts (~) -- sTs_2 (~) ~], (2.15) K p ) f z )  = 

~img = f~ : =  ~ / ( s  - l )  2 - 1, e v e n  s / >  4 .  

Earlier, in 1983, Vichnevetsky [38] had already proved that ~ ~ s -- l for all p and s. H e ~ ,  
result of  Vichnevetsky indicates that the Kinnmark--Gray polynomials are exUemely close approxima- 
tions to the optimal ones. However, it also indicates that, unlike the situation for parabolic problems, 
hyperbolic RK methods are hardly more effective than conventional RK methods with nonempty 
imagin~y  stability intervals. 

3. Spli t t ing me thods  

Just as RK methods, splitting methods compute in each step two or more intermediate stages. 
However, unlike RK methods, these stages are not expressed in the full right-hand side of  the PDE, 
but in fractions of  the right-hand side. Almost all splitting methods proposed in the literatme can 
be represented in RK format. This approach was followed in [19] to develop a unified treatment of  
splitting methods and allows a straightforward derivation of  the order conditions and stability functions. 

Suppose that the right-hand side function in (1.1) is split according to 

:ff, y(t)) = ~ f~ff, y(t)), (3.1) 
i=1  

and consider the RK type method 

Y = e ® Yn + h ~ (A (k) ® I )Fk ( tne  + c(k)h, Y ) ,  (3.2) 
k = i  

Yn+i  = ( e  T ® I)Y, 
where Fk(tne + c ( k ) h , Y )  contains the derivative values ( :k ( tn  + c~P)h,]~)). If  ~r = 1, then (3.2) 
reduces to the RK method (2.1) with b T = eTA. The method {(3.1), (3.2)} will be called a ~-term 
RKS method with s fractional stages. RKS methods consist of  two components, the right-hand side 
splitting (3.1) and the splitting scheme (3.2). 

Restricting our discussion to first-order and second-order methods and using the compact notation 
in terms of  the matrices A(k), we have first-order accuracy if 

eTA0)e---- 1, j ---- l , . . . , c r ,  (3.3) 

and second-order accuracy if. in addition, 

1 j ,  k f l ,  ,o-. (3 .4 )  eTAO)A(k)e = ~, ".. 

In principle, the abscissa vectors are defined by c (k) :=  A(~)e. However, in actual computations, 
the time-dependent parts originating from time-dependent boundary conditions, need a more careful 
treatment. In this overview, we shall not elaborate on this aspect of  splitting methods (see, e.g., [5]). 
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The linear stability of RKS methods can be analysed by means of  the linear test equation 

~'(0 - ~ Jky(O, (3.5) 
k-----! 

where J~ is the Jacobian matrix Ofk(yn)/dy. It will be assumed that Jk has its eigenvalues in the 
left halfplane. DefinKng Zk = hJk, k -- 1 , . . . ,  ~r, we deduce from (3.2) 

• Y = e ® y n + ~ ( A ( k ) ® Z k ) Y = ( I - S ) - l ( e ® y n ) ,  S : = ~ ( A ( k )  e Z k ) .  
k----I k----! 

H e n c e ,  

Thus, the stability function is given by 

( ) R = (e  T ® I )  ( I  ® I )  - (A (t~) ® Zt~) (e  ® I) .  (3.6) 
k----I 

3.1. Splitting methods as RKS methods 

This survey paper is concluded with an example of a family of  splitting methods that can be 
represented as an RKS method. For a more 4 e . ~ e d  analysis of  RKS methods with an application to 
transport problems in three spatial dimensions, we refer to [18]. 

Consider the two-term, three-stage splitting scheme defined by 

A (n )=  ½ 0 , A {2)= 0 ½ • (3.7) 

0 0 1 

This scheme is second-order accurate whatever we choose for f l  and J~2- Presumably, the first splitting 
method proposed in the literature generated by the splitting scheme (3.7) is the Peaeeman-Raehford 
method [29] of 1955. If (3.7) is applied to a space-discretized, two-dimensional PDE in which the 
right-hand side f can be split into an x-dependent part .fl and a y-dependent part ,f2, then the so-called 
ADI (Alternating Dire~etion Implicit) method of Pea®®man and Raehford is obtained. Other well-known 
splitting methods generated by (3.7) are the Hopscotch methods proposed by Gourlay in 1970. These 
methods are obtained by dividing the grid points on which the PDE is discretized in two groups G1 
and G2, and by defining f l  and f2 such that they vanish on Gl and G2, respectively. On rectangular 
grids, often used examples are the Line Hopscotch and the Odd-Even Hopscotch methods which arise 
if Gl and G2 contain grid points lying on alternating lines and diagonals, respectively. 

A c k J o ~ e m e n t  

The author is grateful to Dr. B.P. Sommeijer for his interest in this survey paper and for his many 
comments to improve the presentation of  the available material. 



p.J. van ¢ler Houwen / Applied Numerical Mathematics 20 (1996) 261-272 271 

References  

[ 1 ] M. Bakker, Analytic aspects of  a minimax problem, Report "IN 62, Mathematisch Cenmm~ 
(1971) (in Dutch). 

[2] K. Burrage, Order and stability properties of  explicit multi-¢alue methods, Appl. Numer. Ma~.  I (1985) 
363-379. 

[3] C.E Curtiss and J.O. Hhschfelder, Integration of stiff equations, Proc. Nat. Acad. ScL U.S. 38 (1952) 
235-243. 

[4] J. Crank and P. Nicolson, A practical method for numerical integration of  solutions of  ~ ~ e r e n ~ l  
equations of  heat-conduction type, Proc. Cambridge Philos. Sac. 43 (1947) 50-67. 

[5] G. Fairweather and A.R. Mitchell, A new computational procedure for A.D.L methods, SIAM J. Num~r. 
Anal  4 (1967) 163-170. 

[6] J.N. Franklin, Numerical stability in digital and analogue computation for diffusion problems, J. Math. 
Phys. 37 (1959) 305-315. 

[7] C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice Hall, Englewood 
Cliffs, NJ, 1971). 

[8] W. Gentzsch and A. Schliiter, On one-step methods with cyclic stepsize changes for solving tmrabolic 
differential equations, Z Angew. Math. Mech. 58 (1978) T415-T416 (in German). 

[9] A. Guillou and B. Lago, Stability regions of  oue-step and multistep formulas for differential equations: 
investigation of  formulas with large stability boundaries, 1 e Congres de l'Association Franeai__se de C a l c ~  
AFCAL, Grenoble (1960) 43-56 (in French). 
E. Hnirer, S.P. Nersett and G. Wanner, Solving Ordinary D~fferential Equations, I: N ~  Problems 
(Springer, Berlin, 1987/91). 
P. Henrici, Discrete Variable Methods in Ordinary Differential Equations (Wiley, New York, 1962). 
S. Hofmann, First and second-order Runge-KuRa-Chebyshev methods for the nmnerical imegrath~ of  
parabolic differential equations and stiff ordinary differential equations, Master's ~ s ,  U n i v e m ~  of  
Wuppertal, Germany (1992) (in German). 
P.J. van der Houwen, Explicit Runge--Kutta methods with increased stability boundaries, Numer. Math. 20 
(1972) 149-164. 
P.J. van der Houwen, Construction of  Integration Formulas for  Initial-Value Problems (North-HoUaad, 
Amsterdam, 1977). 
P.J. van der Houwen, On the time integration of parabolic differential equations, in: G.A. Watson, ed., 
Numerical Analyais, Lecture Notes in Mathematics 912 (Springer, New York, 1981) 157-168. 
PJ. van der Houwen and B.P. Sommeijer, On the internal stability of  explicit m-stage Runge--Kutta methods 
for large values of  m,  Z Angew. Math. Mech. 60 (1980) 479--485. 
PJ. van der Houwen and B.P. Sommeijer, A special class of  multistep Runge--KuRa methods with exmmk~ 
real stability interval, IMA J. Numer. Anal. 2 (1982) 183-209. 
P.J. van der Houwen and B.P. Sommeijer, Splitting methods for three-dimensional trrmsport models with 
interaction terms, J. Scientific Comput. (submitted). 
PJ. van der Houwen and J.G. Verwer, One-stop splitting methods for semidiscreto peaaboli¢ 
Computing 22 (1979) 291-309. 
R. Jeltsch and O. Nevanlinna, Stability and accuracy of  time discretizafions for initial value 
Report HTKK-MAT-A 187, Helsinki University of  Technology ( 1981 ). 
P. Jeltsch and O. Nevanlinna, Stability of  explicit time discretizations for solving initial value 
Numer. Math. 37 (1981) 61-91. 
LEE. Kinnmark and W.G. Gray, One-step integration methods with maximum stability r e ~ ,  Math. 
Comput. Simulation 16 (1984) 87-92. 

[lO] 

[11] 
[12] 

[131 

[14] 

D5] 

[16] 

[17] 

[18] 

[19] 

[2o] 

[21] 

[22] 



272 P.J. van der Houwen / Applied Numerical Mathematics 20 (1996) 261-272 

[23] LP.E. Kinnmark mid W.G. Gray, One-step integration methods of third-fourth order accuracy with large 
hyperbolic stability limRs, Math. Comput. Simulation 16 (I984) 181-I 84. 

[24] P. Laasonen, On a meglod for solving the heat flow equation, Acta Math. 81 (1949) 309-323 (in German). 
[25] V.L. Lebedev, Explicit difference schemes with time-variable steps for solving stiff systems of equations, 

Preprint No. 177, Dept. of  Numerical Mathematics, USSR Acad. Sc., Moscow (1987) (in Russian). 
[26] V.L. Lebedev, How to solve stiff systems of equations by explicit difference schemes, in: G.I. Marchuk, 

od., Nume~cal Methods and Applications (CRC Press, Ann Arbor, MI, 1994) 45-80. 
[27] H. Lomax, On the construction of highly stable, explicit numerical methods for integrating coupled ODEs 

with parasitic eigenvalues, NASA Technical Note NASAIN D/4547 (1968). 
[28] C.L. Metzger, Runge-Kutta methods whose number of stages exceeds their order, These (Troisieme cycle), 

Universit6 do Grenoble (1967) (in French). 
[29] D.W. Peaceman and H.H. Rachford Jr, The numerical solution of parabolic and elliptic differential equations, 

J. Soc. lndust. Appl. Math. 3 (1955) 28-41. 
[30] L.F. Richardson, The approximate arithmetical solution by finite differences of physical problems involving 

differential equations, with an application to the stresses in a masonry dam, Philos. Trans. Roy. Soc. London 
Set. A 210 (1910) 307-357 and Prec. Roy. Soc. London Ser. A 83 (1910) 335-336. 

[31] W. Riha, Optimal stability polynomials, Computing 9 (1972) 37-43. 
[32] E. Rothe, Two-dimensional parabolic boundary value problems as limiting case of one-dimensional boundary 

value problems, Math. Ann. 102 (1930) 650-670 (in German). 
[33] C. Runge, Oil the numerical solution of differential equations, Math. Ann. 46 (1895) 167-178 (in German). 
[34] B.P. Sommeijer, RKC, a nearly-stiff ODE solver, available through netlib (mail: netlib@ornl.gov, send rkc.f 

from ode) (1991). 
[35] P. Sonneveld and B. van Leer, A minimax problem along the imaginary axis, Nieuw Archiefvoor Wiskunde 

3 (4) (1985) 19-22. 
[36] E.L. Stiefel, Kernel polynomials in linear algebra and their numerical applications, Nat. Bur. Stand. Appl. 

Math- Series 49 (1958) 1-22. 
[37] J.G. Verwer, W.H. Hundsdorfer and B.P. Sommeijer, Convergence properties of the Runge-Kutta--Chebyshev 

method, Numer. Math. 57 (1990) 157-178. 
[38] R. Vichnevetsky, New stability theorems concerning one-step numerical methods for ordinary differential 

equations, Math. Comput. Simulation 25 (1983) 199-205. 
[39] N.N. Yanenko, The Method o f  Fractional Steps (Sprit~ger, Berlin, 1971). 
[40] D.M. Young, On Riehardson's method for solving linear systems with positive definite matrices, J. Math. 

Phys. 32 (1954) 243-255. 
[41] Yuan" Chzao-Din, Some difference schemes for the solution of the first boundary value problem for linear 

differential equations with partial derivatives, Thesis, Moscow State University (1958) (in Russian). 


