
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Propagation based Temporal Network
Summarization

Bijaya Adhikari, Yao Zhang, Sorour E. Amiri, Aditya Bharadwaj, B. Aditya Prakash
Department of Computer Science, Virginia Tech

Email: {bijaya, yaozhang, esorour, adb, badityap}@cs.vt.edu

Abstract—
Modern networks are very large in size and also evolve with time. As their sizes grow, the complexity of performing network analysis
grows as well. Getting a smaller representation of a temporal network with similar properties will help in various data mining tasks. In
this paper, we study the novel problem of getting a smaller diffusion-equivalent representation of a set of time-evolving networks.
We first formulate a well-founded and general temporal-network condensation problem based on the so-called system-matrix of the
network. We then propose NETCONDENSE, a scalable and effective algorithm which solves this problem using careful transformations
in sub-quadratic running time, and linear space complexities. Our extensive experiments show that we can reduce the size of large real
temporal networks (from multiple domains such as social, co-authorship and email) significantly without much loss of information. We
also show the wide-applicability of NETCONDENSE by leveraging it for several tasks: for example, we use it to understand, explore and
visualize the original datasets and to also speed-up algorithms for the influence-maximization and event detection problems on
temporal networks.

Index Terms—Graph Summarization, Temporal Networks, Propagation

F

1 INTRODUCTION

Given a large time-varying network, can we get a smaller,
nearly “equivalent” one? Networks are a common ab-
straction for many different problems in various domains.
Further, propagation-based processes are very useful in
modeling multiple situations of interest in real-life such as
word-of-mouth viral marketing, epidemics like flu, malware
spreading, information diffusion and more. Understanding
the propagation process can help in eventually managing
and controlling it for our benefit, like designing effective
immunization policies. However, the large size of today’s
networks makes it very hard to analyze them. It is even
more challenging considering that such networks evolve
over time. Indeed, typical mining algorithms on dynamic
networks are very slow.

One way to handle the scale is to get a summary: the idea
is that the (smaller) summary can be analyzed instead of the
original larger network. While summarization (and related
problems) on static networks has been recently studied,
surprisingly, getting a smaller representation of a temporal
network has not received much attention (see related work).
Since the size of temporal networks are orders of magnitude
higher than static networks, their succinct representation is
important from a data compression viewpoint too. In this
paper, we study the problem of ‘condensing’ a temporal
network to get one smaller in size which is nearly ‘equivalent’
with regards to propagation. Such a condensed network
can be very helpful in downstream data mining tasks, such
as ‘sense-making’, influence maximization, event detection,
immunization and so on. Our contributions are:

• Problem formulation: Using spectral characterization of
propagation processes, we formulate a novel and gen-

Fig. 1: Condensing a Temporal Network

eral TEMPORAL NETWORK CONDENSATION problem.
• Efficient Algorithm: We design careful transformations

and reductions to develop an effective, near-linear time
algorithm NETCONDENSE which is also easily paral-
lelizable. It merges unimportant node and time-pairs
to quickly shrink the network without much loss of
information.

• Extensive Experiments: Finally, we conduct multiple ex-
periments over large diverse real datasets to show
correctness, scalability, and utility of our algorithm and
condensation in several tasks e.g. we show speed-ups
of 48x in influence maximization and 3.8x in event
detection over dynamic networks.

The rest of the paper is organized in the following way.
We present required preliminaries in Section 2, followed by
problem formulation in Section 3. We present our approach
and discuss empirical results in Sections 4 and 5 respec-
tively. We discuss relevant prior works in Section 6 and we
conclude in Section 7.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

2 PRELIMINARIES

We give some preliminaries next. Notations used and their
descriptions are summarized in Table 1.
Temporal Networks: We focus on the analysis of dynamic
graphs as a series of individual snapshots. In this paper, we
consider directed, weighted graphs G = (V,E,W) where V
is the set of nodes, E is the set of edges and W is the set of
associated edge-weights w(a, b) ∈ [0, 1]. A temporal network
G is a sequence of T graphs, i.e., G = {G1, G2, . . . , GT },
such that the graph at time-stamp i is Gi = (V,Ei,Wi).
Without loss of generality, we assume every Gi in G has the
same node-set V (as otherwise, if we have Gi with different
Vi, just define V = ∪Ti=1Vi). We also assume, in principle
there is a path for any node to send information to any
other node in G (ignoring time), as otherwise we can simply
decompose. Our ideas can, however, be easily generalized
to other types of dynamic graphs.
Propagation models: We primarily base our discussion on
two fundamental discrete-time propagation/diffusion mod-
els: the SI [5] and IC models [17]. The SI model is a basic
epidemiological model where each node can either be in
‘Susceptible’ or ‘Infected’ state. In a static graph, at each
time-step, a node infected/active with the virus/contagion
can infect each of its ‘susceptible’ (healthy) neighbors in-
dependently with probability w(a, b). Once the node is
infected, it stays infected. SI is a special case of the general
‘flu-like’ SIS model, as the ‘curing rate’ (of recovering from
the infected state) δ in SI is 0 while in SIS δ ∈ [0, 1). In the
popular IC (Independent Cascade) model nodes get exactly
one chance to infect their healthy neighbors with probability
w(a, b); it is a special case of the general ‘mumps-like’
SIR (Susceptible-Infected-Removed) model, where nodes in
‘Removed’ state do not get re-infected, with δ = 1.

We consider generalizations of the SI model to temporal
networks [27], where an infected node can only infect its
susceptible ‘current’ neighbors (as given by G). Specifically,
any node a which is in the infected state at the beginning of
time i, tries to infect any of its susceptible neighbor b in Gi

with probability wi(a, b), where wi(a, b) is the edge-weight
for edge (a, b) in Gi. Note that the SI model on static graphs
are special cases of those on temporal networks (with all
Gi ∈ G identical).

3 OUR PROBLEM FORMULATION

Real temporal networks are usually gigantic in size. How-
ever, their skewed nature [1] (in terms of various distri-
butions like degree, triangles etc.) implies the existence of
many nodes/edges which are not important in propagation.
Similarly, as changes are typically gradual, most of adjacent
time-stamps are not drastically different [9]. There may also
be time-periods with sparse connectivities which will not
contribute much to propagation. Overall, these observations
intuitively imply that it should be possible to get a smaller
‘condensed’ representation of G while preserving its diffu-
sive characteristics, which is our task.

It is natural to condense as a result of only local ‘merge’
operations on node-pairs and time-pairs of G—such that
each application of an operation maintains the propagation
property and shrinks G. This will also ensure that successive

TABLE 1: Summary of symbols and descriptions

Symbol Description
G Temporal Network
Gcond Condensed Temporal Network
Gi, Ai ith graph of G and adjacency matrix
wi(a, b) Edge-weight between nodes a and b

in time-stamp i
V ; E Node-set; Edge-set
αN Target fraction for nodes
αT Target fraction for time-stamps
T # of timestamps in Temporal Network
FG Flattened Network of G
XG Average Flattened Network of G
SG The system matrix of G
FG ; XG The adjacency matrix of FG ; XG
λS Largest eigenvalue of SG
λF; λX Largest eigenvalue of FG ; XG
A Matrix (Bold capital letter)
u, v Column Vectors (Bold small letter)

applications of these operations ‘summarize’ G in a multi-
step hierarchical fashion.

More specifically, merging a node-pair {a, b} will merge
nodes a and b into a new super-node say c, in all Gi in
G. Merging a time-pair {i, j} will merge graphs Gi and
Gj to create a new super-time, k, and associated graph
Gk. However, allowing merge operations on every possible
node-pair and time-pair results in loss of interpretability
of the result. For example, it is meaningless to merge two
nodes who belong to completely different communities or
merge times which are five time-stamps apart. Therefore,
we have to limit the merge operations in a natural and well-
defined way. This also ensures that the resulting summary
is useful for downstream applications. We allow a single
node-merge only on node pairs {a, b} such that {a, b} ∈ Ei

for at least one Gi, i.e. {a, b} is in the unweighted ‘union
graph’ UG(V,Eu = ∪iEi). Similarly, we restrict a single
time-merge to only adjacent time-stamps. Note that we can
still apply multiple successive merges to merge multiple
node-pairs/time-pairs. Our general problem is:
Informal Problem 1. Given a temporal network G =
{G1, G2, . . . , GT } with Gi = (V,Ei,Wi) and target
fractions αN ∈ (0, 1] and αT ∈ (0, 1], find a con-
densed temporal network Gcond = {G′1, G′2, . . . , G′T ′}
with G′i = (V ′, E′i,W

′
i) by repeatedly applying “local”

merge operations on node-pairs and time-pairs such that
(a) |V ′| = (1−αN)|V |; (b) T ′ = (1−αT)T ; and (c) Gcond
approximates G w.r.t. propagation-based properties.

3.1 Formulation framework
Formalizing Informal Problem 1 is challenging as we need
to tackle the following two research questions: (Q1) Char-
acterize and quantify the propagation-based property of a
temporal network G; (Q2) Define “local” merge operations.

In general, Q1 is difficult as the characterization should
be scalable and concise. For Q2, the merges are local opera-
tions, and so intuitively they should be defined so that any
local diffusive changes caused by them is minimum. Using
Q1 and Q2, we can formulate Informal Problem 1 as an
optimization problem where the search space is all possible
temporal networks with the desired size and which can be
constructed via some sequence of repeated merges from G.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

3.2 Q1: Propagation-based property

One possible naive answer is to run some diffusion model
on G and Gcond and see if the propagation is similar; but this
is too expensive. Therefore, we want to find a tractable con-
cise metric that can characterize and quantify propagation
on a temporal network.

A major metric of interest in propagation on networks
is the epidemic threshold which indicates whether the
virus/contagion will quickly spread throughout the net-
work (and cause an ‘epidemic’) or not, regardless of the
initial conditions. Past works [11], [26] have studied epi-
demic thresholds for various epidemic models on static
graphs. Recently, [27] show that in context of temporal
networks and the SIS model, the threshold depends on the
largest eigenvalue λ of the so-called system matrix of G: an
epidemic will not happen in G if λ < 1. The result in [27]
was only for undirected graphs; however it can be easily
extended to weighted directed G with a strongly connected
union graph UG (which just implies that in principle any
node can infect any other node via a path, ignoring time; as
otherwise we can just examine each connected component
separately).

Definition 1. System Matrix: For the SI model, the system
matrix SG of a temporal network G = {G1, G2, ..., GT }
is defined as SG =

∏T
i=1(I + Ai).

where At is the weighted adjacency matrix of Gt and I is
the identity matrix. For the SI model, the rate of infection
is governed by λS, the largest eigenvalue of SG . Preserving
λS while condensing G to Gcond will imply that the rate of
virus spreading out in G and Gcond will be preserved too.
Therefore λS is a well motivated and meaningful metric to
preserve during condensation.

3.3 Q2: Merge Definitions

We define two operators: µ(G, i, j) merges a time-pair {i, j}
in G to a super-time k in Gcond; while ζ(G, a, b) merges node-
pair {a, b} in all Gi ∈ G and results in a super-node c in
Gcond.

As stated earlier, we want to condense G by successive
applications of µ and ζ . We also want them to preserve
local changes in diffusion in the locality of merge operands.
At the node level, the level where local merge operations
are performed, the diffusion process is best characterized
by the probability of infection. Hence, working from first
principles, we design these operations to maintain the
probabilities of infection before and after the merges in
the ‘locality of change’ without worrying about the system
matrix. For µ(G, i, j), the ‘locality of change’ is Gi, Gj and
the new Gk. Whereas, for ζ(G, a, b), the ‘locality of change’
is the neighborhood of {a, b} in all Gi ∈ G.
Time-pair Merge: Consider a merge µ(G, i, j) between con-
secutive times i and j. Consider any edge (a, b) in Gi and
Gj (note if (a, b) /∈ Ei, then wi(a, b) = 0) and assume that
node a is infected and node b is susceptible in Gi (illustrated
in Figure 2 (a)). Now, node a can infect node b in i via an
edge in Gi, or in j via an edge in Gj . We want to maintain
the local effects of propagation via the merged time-stamp
Gk. Hence we need to readjust edge-weights inGk such that
it captures the probability a infects b in G (in i and j).

Lemma 1. (Infection via i & j) Let Pr(a → b|Gi, Gj) be
the probability that a infects b in G in either time i
or j, if it is infected in Gi. Then Pr(a → b|Gi, Gj) ≈
[wi(a, b) + wj(a, b)], upto a first order approximation.

Proof: In the SI model, for node a to infect node b in
time pair {i, j}, either the infection occurs in Gi or in Gj ,
therefore,

P (a→ b|Gk, Gj) = wi(a, b) + (1− wi(a, b))wj(a, b).

We have

P (a→ b|Gk, Gj) = wi(a, b) + wj(a, b)− wi(a, b)wj(a, b)

Now, ignoring the lower order terms, we have

P (a→ b|Gk, Gj) ≈ wi(a, b) + wj(a, b).

Lemma 1 suggests that the condensed time-stamp k,
after merging a time-pair {i, j} should be Ak = Ai + Aj .
However, consider a G such that all Gi in G are the same.
This is effectively a static network: hence the time-merges
should give the networkGi rather than T×Gi. This discrep-
ancy arises because for any single time-merge, as we reduce
‘T ’ from 2 to 1, to maintain the final spread of the model,
we have to increase the infectivity along each edge by a
factor of 2 (intuitively speeding up the model [14]). Hence,
the condensed network at time k should be Ak =

Ai+Aj

2
instead; while for the SI model, the rate of infection should
be doubled for time k in the system matrix. Motivated
by these considerations, we define a time-stamp merge as
follows:
Definition 2. Time-Pair Merge µ(G, i, j). The merge opera-

tor µ(G, i, j) returns a new time-stamp k with weighted
adjacency matrix Ak =

Ai+Aj

2 .

Node-pair Merge: Similarly, in ζ(G, a, b) we need to adjust
the weights of the edges to maintain the local effects of
diffusion between a and b and their neighbors. Note that
when we merge two nodes, we need to merge them in all
Gi ∈ G.

Consider any time i. Suppose we merge {a, b} in Gi to
form super-node c in G′i (note that G′i ∈ Gcond). Consider
a node x such that {a, b} and {a, x} are neighbors in Gi

(illustrated in Figure 2 (b)). When c is infected in G′i, it is
intuitive to imply that either node a or b is infected in Gi

uniformly at random. Hence we need to update the edge-
weight from c to x in G′i, such that the new edge-weight is
able to reflect the probability that either node a or b infects
x in Gi.
Lemma 2. (Probability of infecting out-neighbors) If either

node a or node b is infected in Gi and they are merged to
form a super-node c, then the first order approximation
of probability of node c infecting its out-neighbors is
given by:

Pr(c→ z|Gi) ≈

wi(a, z)

2
∀z ∈ Nboi (a)\Nboi (b)

wi(b, z)

2
∀z ∈ Nboi (b)\Nboi (a)

wi(a, z) + wi(b, z)

4
∀z ∈ Nboi (a) ∩Nboi (b)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

(a) Time merge of a single edge (b) Node Merge in a single time

Fig. 2: (a) Example of merge operation on a single edge (a, b) when time-pair {i, j} is merged to form super-time k. (b)
Example of node-pair {a, b} being merged in a single time i to form super-node c.

where, Nboi (v) is the set of out-neighbors of node v in
time-stamp i. We can write down the corresponding prob-
ability Pr(z → c|Gi) (for getting infected by in-neighbors)
similarly.

Proof: Note that Nboi (v) is the set of out-neighbors of
node v at time-stamp i. When super-node c is infected in
G′i ∈ Gcond (the summary network), either node a or node b
is infected in the underlying original network i.e, in Gi ∈ G.
Hence, for a node z ∈ Nboi (a)\Nboi (b), the probability of
node c infecting z is,

P (c→ z|Gi) =
P (a→ z|Gi) + P (b→ a|Gi−1)P (a→ z|Gi)

2

Hence, if a is infected, it infects z at time i directly. But
for b, to infect z at time i, b has to infect a at time i − 1,
and then a infects b at time i. We rewrite the probabilities as
defined by the edge-weights,

P (c→ z|Gi) =
wi(a, z) + wi−1(b, z)wi(a, z)

2

Ignoring lowering order terms, we can get,

P (c→ z|Gi) ≈
wi(a, z)

2

Similarly, we can prove other cases.

Motivated by Lemma 2, we define node-pair merge as:
Definition 3. Node-Pair merge ζ(G, a, b). The merge op-

erator ζ(G, a, b) merges a and b to form a new super-
node c in all Gi ∈ G, s.t. wi(c, z) = Pr(c → z|Gi) and
wi(z, c) = Pr(z → c|Gi).

Note: We use a first-order approximation of the infection
probabilities in our merge definitions as the higher-order
terms introduce non-linearity in the model. This in turn
makes it more challenging to use matrix perturbation theory
later [34]. As shown by our experiments, keepin just the
first-order terms still leads to high quality summaries.

3.4 Problem Definition
We can now formally define our problem.
Problem 1. (TEMPORAL NETWORK CONDENSATION Prob-

lem (TNC)) Given a temporal network G =
{G1, G2, . . . , GT } with strongly connected UG , αN ∈
(0, 1] and αT ∈ (0, 1], find a condensed tempo-
ral network Gcond = {G′1, G′2, . . . , G′T ′} with G′i =
(V ′, E′i,W

′
i) by repeated applications of µ(G, ·, ·) and

ζ(G, ·, ·), such that |V ′| = (1− αN)|V |; T ′ = (1− αT)T ;
and Gcond minimizes |λS − λcondS |.

Problem 1 is likely to be challenging as it is related to
immunization problems [40]. In fact, a slight variation of
the problem can be easily shown to be NP-complete by
reduction form the MAXIMUM CLIQUE problem [15] (see
Appendix). Additionally, Problem 1 naturally contains the
GCP coarsening problem for a static network [28] as a
special case: when G = {G}, which itself is challenging.

4 OUR PROPOSED METHOD

The naive algorithm is combinatorial. Even the greedy
method which computes the next best merge operands will
be O(αN · V 6), even without time-pair merges. In fact,
even computing SG is inherently non-trivial due to matrix
multiplications. It does not scale well for large temporal
networks because SG gets denser as the number of time-
stamps in G increases. Moreover, since SG is a dense matrix
of size |V | by |V |, it does not even fit in the main memory for
large networks. Even if there was an algorithm for Problem 1
that could bypass computing SG , λS still has to be computed
to measure success. Therefore, even just measuring success
for Problem 1, as is, seems hard.

4.1 Main idea

To solve the numerical and computational issues, our idea
is to find an alternate representation of G such that the new
representation has the same diffusive properties and avoids
the issues of SG . Then we develop an efficient sub-quadratic
algorithm.

Our main idea is to look for a static network that is
similar to G with respect to propagation. We do this in
two steps. First we show how to construct a static flat-
tened network FG , and show that it has similar diffusive
properties as G. We also show that eigenvalues of SG and
the adjacency matrix FG of FG are precisely related. Due
to this, computing eigenvalues of FG too is difficult. Then
in the second step, we derive a network from FG whose
largest eigenvalue is easier to compute and related to the
largest eigenvalue of FG . Using it we propose a new related
problem, and solve it efficiently.

4.2 Step 1: An Alternate Static View

Our approach for getting a static version is to expand G and
create layers of nodes, such that edges in G are captured by

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

(a) Temporal Network (b) Flattened Network

Fig. 3: (a) G, and (b) corresponding FG .

edges between the nodes in adjacent layers (see Figure 3). We
call this the “flattened network” FG .

Definition 4. Flattened network. FG for G is defined as
follows:
• Layers: FG consists of 1, ..., T layers corresponding to
T time-stamps in G.

• Nodes: Each layer i has |V | nodes (so FG has T |V |
nodes overall). Node a in the temporal network G at
time i is represented as ai in layer i of FG .

• Edges: At each layer i, each node ai has a direct edge to
a(i+1) mod T in layer (i+ 1) mod T with edge-weight
1. And for each time-stamp Gi in the temporal network
G, if there is a directed edge (a, b), then in FG , we add
a direct edge from node ai to node b(i+1) mod T with
weight wi(a, b).

For the relationship between G and FG , consider the SI
model running on G (Figure 3 (a)). Say node a is infected
in G1, which also means node a1 is infected in FG (Figure
3 (b)). Assume a infects b in G1. So in the beginning of G2,
a and b are infected. Correspondingly in FG node a1 infects
nodes a2 and b2. Now in G2, no further infection occurs.
So the same nodes a and b are infected in G3. However, in
FG infection occurs between layers 2 and 3, which means a2
infects a3 and b2 infects b3. Propagation in FG is different
than in G as each ‘time-stamped’ node gets exactly one
chance to infect others. Note that the propagation model
on FG we just described is the popular IC model. Hence,
running the SI model in G should be “equivalent” to running
the IC model in FG in some sense.

We formalize this next. Assume we have the SI model on
G and the IC model on FG starting from the same node-set of
size I(0). Let IGSI(t) be the expected number of infected nodes
at the end of time t. Similarly, let IFG

IC (T) be the expected
number of infected nodes under the IC model till end of
time T in FG . Note that IFG

IC (0) = IFG
SI (0) = I(0). Then:

Lemma 3. (Equivalence of propagation in G and FG) We
have

∑T
t=1 I

G
SI(t) = IFG

IC (T).

Proof: First we will show the following:

T−1∑
t=0

IGSI(t) = IFG
IC (T − 1) (1)

We prove this by induction over time-stamp t =
{0, 1, ..., T − 1}.

Base Case: At t = 0, since the seed set is the same, the in-
fections in both the model are same. Hence, IGSI(0) = IFG

IC (0)

Inductive Step: For inductive step, let the inductive
hypothesis be that for time-stamp 0 < k < T − 1,∑k

t=0 I
G
SI(t) = IFG

IC (k).
Let δGSI(k + 1) be the number of new infection in the SI

model in G at time k+1. The total number of infected nodes
at time k+ 1 is IGSI(k) + δGSI(k+ 1). Similarly, let δFG

IC(k+ 1)
be the number of newly infected nodes at the time k + 1.
Since the number of δGSI(k+ 1) new nodes got infected in SI
model in G, the same number of nodes in the layer k+2 will
get infected in FG . Moreover, all the nodes that are infected
in layer k + 1 at time k in FG infect corresponding nodes in
the next layer. Hence,

δFG
IC(k + 1) = δGSI(k + 1) + IGSI(k)

Now, we have

k+1∑
t=0

IGSI(t) =
k∑

t=0

IGSI(t) + IGSI(k) + δGSI(k + 1)

By inductive hypothesis, we get,

k+1∑
t=0

IGSI(t) = IFIC(k) + IGSI(k) + δGSI(k + 1)

= IFIC(k) + δFG
IC(k + 1) = IFIC(k + 1)

Now, at the time T , the infection in G occurs in time-
stamp T , however, the infection in FG occurs between layers
T and 1. Recall that nodes are seeded in the layer 1 of FG
for IC model, hence they cannot get infected. Therefore, the
difference in the cumulative sum of infection of SI and total
infection in IC is IFG

IC (0). Therefore,

T∑
t=0

IGSI(t) = IFIC(T) + IFG
IC (0)

Since IFIC(0) = IGSI(0), we have
∑T

t=1 I
G
SI(t) = IFIC(T).

That is, the cumulative expected infections for the SI
model on G is the same as the infections after T for the
IC model in FG . This suggests that the largest eigenvalues
of SG and FG are closely related. Actually, we can prove a
stronger statement that the spectra of FG and G are closely
related (Lemma 4).

Lemma 4. (Eigen-equivalence of SG and FG) We have
(λF)T = λS. Furthermore, λ is an eigenvalue of FG , iff
λT is an eigenvalue of SG .

Proof: According to the definition of FG , we have

FG =

0 I + A1 0 ... 0
0 0 I + A2 ... 0
...

...
...

...
...

0 0 0 ... I + AT−1

I + AT 0 0 ... 0

Here Ai is the weighted adjacency matrix of Gi ∈ G and
I is the identity matrix. Both have size |V | × |V |. Now any
eigenvalue λ and corresponding eigenvector x of FG sat-
isfies the equation FGx = λx. We can actually decompose
x as x = [x

′

1,x
′

2, . . .x
′

T]
′
, where each xi is a vector of size

|V | × 1. Hence, we get the following:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

FG

x1

x2

...
xT−1
xT

 = λ

x1

x2

...
xT−1
xT

From the above equation, we can get

(I + A1)x2 = λx1,

(I + A2)x3 = λx2,

...
(I + ATx1) = λxT

Multiplying the equations together,[
T∏

i=1

(I + Ai)

]
x1 = λT · x1

Finally,

SG · x1 = λT · x1

Hence λT is the eigenvalue of SG if λ is the eigenvalue
of FG . Same argument in reverse proves the converse.

Now, since UG is strongly-connected, we have |λF| ≥ |λ|,
for any λ that is eigenvalue of FG . And we also have, if
|x| > |y| then |xk| > |yk| for any k > 1. Therefore there
are not any λ such that |λT | > |λTF |. So, λTF has to be the
principal eigenvalue of SG .

Lemma 4 implies that preserving λS in G is equivalent
to preserving λF in FG . Therefore, Problem 1 can be re-
written in terms of λF (of a static network) instead of λS
(of a temporal one).

4.3 Step 2: A Well Conditioned Network
However λF is problematic too. The difficulty in computing
λF arises because FG is ill-conditioned. Note that FG is
a very sparse directed network. The sparsity causes the
smallest eigenvalue to be very small. Hence, the condition
number [8], defined as the ratio of the largest eigenvalue to
the smallest eigenvalue in absolute value is high, implying
that the matrix is ill-conditioned. The ill-conditioned matri-
ces are unstable for numerical operations. Therefore modern
packages take many iterations and the result may be impre-
cise. Intuitively, it is easy to understand that computing λF
is difficult: as if it were not, computing λS itself would have
been easy (just compute λF and raise it to the T -th power).

So we create a new static network that has a close
relation with FG and whose adjacency matrix is well-
conditioned. To this end, we look at the average flattened
network, XG , whose adjacency matrix is defined as XG =
FG+FG

′

2 , where FG
′ is the transpose of FG . It is easy to see

that trace of XG and FG are equal, which means that the
sum of eigenvalues of XG and FG are equal. Moreover, we
have the following:
Lemma 5. (Eigenvalue relationship of FG and XG) The

largest eigenvalue of FG , λF, and the largest eigenvalue
of XG , λX, are related as λF ≤ λX.

Proof: First, according to the definition, XG =
FG+FG

′

2 . Let λ(FG) be the spectrum of FG and λ(XG) be

spectrum of XG . Let λX be the largest eigenvalue of XG .
Function Re(c) returns the real part of c.

Now, λ(FG) and λ(XG) are related by the majorization
relation [38]. i.e., Re(λ(FG)) ≺ λ(XG), which implies that
any eigenvalue of FG , λ ∈ λ(FG), satisfies Re(λ) ≤ λX.

Since the union graph UG is strongly connected, FG is
strongly connected. Hence, by Perron Frobenius theorem
[12], the largest eigenvalue of FG , λF, is real and positive.
Therefore, λF ≤ λX.

Note that if λX < 1, then λF < 1. Moreover, if λF < 1
then λS < 1. Hence if there is no epidemic in XG , then
there is no epidemic in FG as well, which implies that the
rate of spread in G is low. Hence, XG is a good proxy static
network for FG and G and λX is a well-motivated quantity
to preserve. Also we need only weak-connectedness of UG
for λX (and corresponding eigenvectors) to be real and
positive (by the Perron-Frobenius theorem). Furthermore,
XG is free of the problems faced by FG and SG . Since XG
is symmetric and denser than FG , it is well-conditioned and
more stable for numerical operations. Hence, its eigenvalue
can be efficiently computed.
New problem: Considering all of the above, we re-
formulate Problem 1 in terms of λX. Since G and XG are
closely related networks, the merge definitions on XG can
be easily extended from those on G.

Note that edges in one time-stamp of G are represented
between two layers in XG and edges in two consecutive
time-stamps in G are represented in three consecutive layers
in XG . Hence, merging a time-pair in G corresponds to
merging three layers of XG .

A notable difference in µ(G, ., .) and µ(XG , ., .) arises
due to the difference in propagation models; we have the
SI model in G whereas we the IC model in XG . Since a
node gets only a single chance to infect its neighbors in the
IC model, infectivity does not need re-scaling XG . Despite
this difference, the merge definitions on G and XG remain
identical.

Let us assume we are merging time-stamps i and j in G.
For this, we need to look at the edges between layers i and
j, and j and k, where k is layer following j. Now, merging
time-stamps i and j in G corresponds to merging layers i
and j in XG and updating out-links and in-links in the new
layers. Let wi,j(a, b) be the edge weight between any node
a in layer i.

Definition 5. Time-Pair Merge µ(XG , i, j). The merge oper-
ator µ(XG , i, j) results in a new layer m such that edge
weight between any nodes a in layer m and b in layer k,
wm,k(a, b) is defined as

wm,k(a, b) =
wi,j(a, b) + wj,k(a, b)

2

Note for h = i − 1 mod T , wh,i and wh,m are equal,
since the time-stamp h in G does not change. And as XG is
symmetric wm,k and wk,m are equal. Similarly, we extend
node-pair merge definition in G as follows. As in G, we
merge node-pairs in all layers of XG .

Definition 6. Node-Pair Merge ζ(XG , a, b). Let Nbo(v) de-
note the set of out-neighbors of a node v. Let wi,j(a, b)
be edge weight from any node a in layer i to any node

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

b at layer j. Then the merge operator ζ(XG , a, b) merges
node pair a, b to form a super-node c, whose edges to
out-neighbors are weighted as

wi,j(c, z) =

wi,j(a, z)

2
∀z ∈ Nbo(a)\Nbi(b)

wi,j(b, z)

2
∀z ∈ Nbo(b)\Nbi(a)

wi,j(a, z) + wi,j(b, z)

4
∀z ∈ Nbo(a) ∩Nbi(b)

Finally, our problem can be re-formulated as following.
Problem 2. Given G with weakly connected UG over V , αN

and αT , find Gcond by repeated application of µ(XG , ., .)
and ζ(XG , ., .) such that |V ′| = (1 − αN)|V |; T ′ = (1 −
αT)T ; and Gcond minimizes |λX − λcondX |.

4.4 NETCONDENSE

In this section, we propose a fast top-k selection algorithm
for Problem 2 called NETCONDENSE, which only takes sub-
quadratic time in the size of the input. Again, the obvious
approach is combinatorial. Consider a greedy approach
using ∆-Score.
Definition 7. ∆-Score. ∆XG (a, b) = |λX−λcondX |where λcondX

is the largest eigenvalue of the new XG after merging a
and b (node or time-pair).

The greedy approach will successively choose those
merge operands at each step which have the lowest ∆-
Score. Doing this naively will lead to an expensive algorithm
(due to repeated re-computations of λX for all possible
time/node-pairs). Recall that we limit time-merges to adja-
cent time-pairs and node-merges to node-pairs with an edge
in at least one Gi ∈ G, i.e. edge in the union of all Gi ∈ G,
called the Union Graph UG . Now, computing ∆-Score sim-
ply for all edges (a, b) ∈ UG is still expensive, as it requires
computing eigenvalue of XG for each node-pair. Hence we
estimate ∆-Score for node/time pairs instead using Matrix
Perturbation Theory [34]. Let v be the eigenvector of XG ,
corresponding to λX. Let v(ai) be the ‘eigenscore’ of node
ai in XG . XG(ai, bi) is the entry in XG in the row ai and the
column bi. Now we have the following lemmas.
Lemma 6. (∆-Score for time-pair) Let Vi = nodes in Layer i

of XG . Now, for merge µ(XG , i, j) to form k,

∆XG (i, j) =
−λX(

∑
i∈Vi,Vj

v(i)2) +
∑

k∈Vk
v(i)koTv + Y

vTv −
∑

i∈Vi,Vj
v(i)2

upto a first-order approximation, where η(i,j) = v(i)v(j),
Y =

∑
i∈Vi,j∈Vj

(2 · η(i,j))XG(i, j), and koTv =
1
2 (λXv(i) + λXv(j) + v(i) + v(j)).

Proof: For convenience, we write λX as λ and XG as
X. Similarly, we write v(xi) as vi. Now, according to the
matrix perturbation theory, we have

∆λ =
vT ∆Xv + vT ∆X∆v

vTv + vT ∆v
(2)

When we merge a time-pair in X, we essentially merge
blocks corresponding to the time-stamps i and j in X to

create new blocks corresponding to time-stamp k. Since we
want to maintain the size of the matrix as the algorithm
proceeds, we place layer k in layer i’s place and set rows
and columns of XG corresponding to layer j to be zero.
Therefore, the change in X can be written as

∆X =
∑

i∈Vi,Vj

−(iieT
i + eii

oT) +
∑
k∈Vk

−(kieT
k + ekk

oT) (3)

where ea is a column vector with 1 at position a and
0 elsewhere, and ki and koT are k-th column and row
vectors of X respectively. Similarly, the change in the right
eigenvector can be written as:

∆v =
∑

i∈Vi,Vj

−(viei) + δ (4)

As δ is very small, we can ignore it. Note that vTei = vi,
vT ii = λvi and ioTv = λvi. Now, we can compute Eqn. 2
as follows:

vT ∆Xv =
∑

i∈Vi,Vj

−(viv
T ii + vii

oTv) +
∑
k∈Vk

(viv
Tki + vik

oTv)

(5)
Further simplifying,

vT ∆Xv =
∑

i∈Vi,Vj

−(2λv2
i) +

∑
k∈Vk

(viv
Tki + vik

oTv) (6)

And we have

vT ∆v = v
∑

i∈Vi,Vj

(−viei) = −
∑

i∈Vi,Vj

v2
i (7)

Similarly,

vT ∆X∆v =

vT [
∑

i∈Vi,Vj

−(iieT
i + eii

oT) +
∑
k∈Vk

−(kieT
k + ekk

oT)]

[
∑

i∈Vi,Vj

−(viei)]

(8)

Here we notice that there are edges between two layers in
XG , only if they are adjacent. Moreover, the edges are in
both directions between the layers. Hence,

vT ∆X∆v =
∑

i∈Vi,Vj

λvivj +
∑

i∈Vi,j∈Vj

(vivj + vjvi)X(i, j)

−
∑
k∈Vk

viv
Tki −

∑
k∈Vk,j∈Vj

vik
oTvjej . (9)

Since self loops have no impact on diffusion, we can
write

∑
k∈Vk,j∈Vj

vik
oTvjej = 0. Hence,

vT ∆X∆v =∑
i∈Vi,Vj

λvivj +
∑

i∈Vi,j∈Vj

(2vivjX(i, j)−
∑
k∈Vk

viv
Tki (10)

Putting together, we have

∆λ =
−λ

∑
i∈Vi,Vj

v2
i +

∑
i∈Vi,j∈Vj

2vivj)X(i, j) +
∑

k∈Vk
vik

oTv

vTv −
∑

i∈Vi,Vj
v2
i

(11)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Note that we merge the same node in different layers of
XG corresponding to different time-stamps in G. Now, Let
i be a node in ti and j the same node in tj , and we merge
them to get new node k in tk. Notice that i and j cannot have
common neighbors. Let Nbo(v) be the set of out-neighbors
of node v. For brevity, let I = Nbo(i) and J = Nbo(j). We
have the following,

koTv =
∑
y∈I

vyk
oT
y +

∑
z∈J

vzk
oT
z (12)

=
∑
y∈I

vy
1

2
ioTy +

∑
z∈J

vz
1

2
joTz

Now, let w be the edge-weight between i and j, λvi =∑
y∈I vyi

oT
y − vjw therefore,

∑
y∈I vyi

oT
y = λvi + vjw

Similarly,
∑

z∈B vzj
oT
y = λvj +viw. By construction, we

have w = 1 in XG . Hence,

koTv =
1

2
(λXvi + λXvj + vi + vj). (13)

Lemma 7. (∆-Score for node-pair) Let Va =
{a1, a2, . . . , aT } ∈ XG corresponding to node a in
G. For merge ζ(XG , a, b) to form c,

∆XG (a, b) =
−λX(

∑
a∈Va,Vb

v(a)2) +
∑

c∈Vc
v(a)coTv + Y

vTv −
∑

a∈Va,Vb
v(a)2

upto a first-order approximation, where η(a,b) = v(a)v(b),
Y =

∑
a∈Va,b∈Vb

(2η(a,b))XG(a, b), and coTv =
1
2λX(v(a) + v(b)).

Proof: Following the steps in Lemma 6, we have

∆λ =
−λ

∑
i∈Vi,Vj

v2
i +

∑
i∈Vi,j∈Vj

(2vivj)X(i, j) +
∑

k∈Vk
vik

oTv

vTv −
∑

i∈Vi,Vj
v2
i

(14)

Note that we merge the same node in different layers of
XG corresponding to different time-stamps in G. Now, Let
i be a node in ti and j the same node in tj , and we merge
them to get new node k in tk. Notice that i and j cannot have
common neighbors. Let Nbo(v) be the set of out-neighbors
of node v. For brevity, let I = Nbo(i) and J = Nbo(j). We
have the following,

koTv =
∑
y∈I

vyk
oT
y +

∑
z∈J

vzk
oT
z (15)

=
∑
y∈I

vy
1

2
ioTy +

∑
z∈J

vz
1

2
joTz

Now, let w be the edge-weight between i and j, λvi =∑
y∈I vyi

oT
y − vjw therefore,

∑
y∈I vyi

oT
y = λvi + vjw.

Similarly,
∑

z∈B vzj
oT
y = λvj +viw. By construction, we

have w = 1 in XG . Hence,

koTv =
1

2
(λXvi + λXvj + vi + vj). (16)

Lemma 8. NETCONDENSE has sub-quadratic time-
complexity ofO(TEu+E logE+αNθTV +αTE), where
θ is the maximum degree in any Gi ∈ G and linear
space-complexity of O(E + TV).

Proof: Line 1 in NETCONDENSE takes O(E) time. To
calculate the largest eigenvalue and corresponding eigen-
vector of XG using the Lanczos algorithm takes O(E) time
[37]. It takes O(TV + E) time for Lines 2 and 3. It takes
O(T) time to calculate score for each node pair. Therefore,
Lines 4 and 5 take O(TEu). Line 6 takes O(T log T) to sort
∆-Score for time-pairs and O(E logE) to sort ∆-Score for
node-pairs in the worst case. Now, for Lines 8 to 10, merging
node-pairs require us to look at neighbors of nodes being
merged at each time-stamp. Hence, it takes O(Tθ) time and
we require αNV merges. Therefore, time-complexity for all
node-merge is O(αNθTV). Similarly, it takes O(αTE) time
for all time-merges.

Therefore, the time-complexity of NETCONDENSE is
O(TEu+E logE+αNθTV +αTE). Note that the complex-
ity is sub-quadratic as Eu ≤ V 2 (In our large real datasets,
we found Eu << V 2).

For NETCONDENSE, we need O(E) space to store XG
and Gcond. We also need O(Eu) and O(T) space to store
scores for node-pairs and time-pairs respectively. To store
eigenvectors of XG , we require O(TV) space. Therefore,
total space-complexity of NETCONDENSE is O(E + TV).

Algorithm 1 NETCONDENSE

Require: Temporal graph G , 0 < αN < 1, 0 < αT < 1
Ensure: Temporal graph Gcond(V ′, E′, T ′)

1: obtain XG using Definition 4.
2: for every adjacent time-pairs {i, j} do
3: Calculate ∆XG (i, j) using Lemma 6
4: for every node-pair {a, b} in UG do
5: Calculate ∆XG (a, b) using Lemma 7
6: sort the lists of ∆-Score for time-pairs and node-pairs
7: Gcond = G
8: while |V ′| > αN · |V | or T ′ > αT · T do
9: (x, y)← node-pair or time-pair with lowest ∆-Score

10: Gcond ← µ(Gcond, x, y) or ζ(Gcond, x, y)

11: return Gcond

Parallelizability: We can easily parallelize NETCONDENSE:
once the eigenvector of XG is computed, ∆-Score for node-
pairs and time-pairs (loops in Lines 3 and 5 in Algorithm 1)
can be computed independent of each other in parallel. Sim-
ilarly, µ and ζ operators (in Line 11) are also parallelizable.

5 EXPERIMENTS

5.1 Experimental Setup
We briefly describe our set-up next. All experiments are con-
ducted using a 4 Xeon E7-4850 CPU with 512GB 1066Mhz
RAM. Our code is publicly available for academic pur-
poses1.
Datasets. We run NETCONDENSE on a variety of real
datasets (Table 4) of varying sizes from different domains
such as social-interactions (WorkPlace, School, Chess),

1. http://people.cs.vt.edu/∼bijaya/code/NetCondense.zip

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 2: Datasets Information.

Dataset Weight |V | |E| T
WorkPlace Contact Hrs 92 1.5K 12 Days
School Contact Hrs 182 4.2K 9 Days
Enron # Emails 184 8.4K 44 Months
Chess # Games 7.3K 62.4K 9 Years
Arxiv # Papers 28K 3.8M 9 Years

ProsperLoan # Loans 89K 3.3M 7 Years
Wikipedia # Pages 118K 2.1M 10 Years
WikiTalk # Messages 497K 2.7M 12 Years
DBLP # Papers 1.3M 18M 25 Years

co-authorship (Arxiv, DBLP) and communication (Enron,
Wikipedia, WikiTalk). They include weighted and both
directed and undirected networks. Edge-weights are nor-
malized to the range [0, 1].

WorkPlace, and School are contact networks publicly
available from SocioPatterns2. In both datasets, edges in-
dicate that two people were in proximity in the given time-
stamp. Weights represent the total time of interaction in each
day.

Enron is a publicly available dataset3. It contains edges
between core employees of the corporation aggregated over
44 weeks. Weights in Enron represent the count of emails.

Chess is a network between chess players. Edge-weight
represents number of games played in the time-stamp.

Arxiv is a co-authorship network in scientific papers
present in arXiv’s High Energy Physics – Phenomenol-
ogy section. We aggregate this network yearly, where the
weights are number of co-authored papers in the given year.

ProsperLoan is loan network among user of Pros-
per.com. We aggregate the loan interaction among users to
define weights.

Wikipedia is an edit network among users of English
Wikipedia. The edges represent that two users edited the
same page and weights are the count of such events.

WikiTalk is a communication network among users
of Spanish Wikipedia. Edge between nodes represent that
users communicates with each other in the given time-
stamp. Weight in this dataset is aggregated count of com-
munication.

DBLP is coauthorship network from DBLP bibliography,
where two authors have an edge between them if they have
co-authored a paper in the given year. We define the weights
for co-authorship network as the number of co-authored
papers in the given year.
Baselines. Though there are no direct competitors, we adapt
multiple methods to use as baselines.
RANDOM: Uniformly randomly choose node-pairs and
time-stamps to merge.
TENSOR: Here we pick merge operands based on the cen-
trality given by tensor decomposition. G can be also seen
as a tensor of size |V | × |V | × T . So we run PARAFAC
decomposition [19] on G and choose the largest component
to get three vectors x, y, and z of size |V |, |V |, and T
respectively. We compute pairwise centrality measure for
node-pair {a, b} as x(a) · y(b) and for time-pair {i, j} as
z(i) · z(j) and choose the top-K least central ones.

2. http://www.sociopatterns.org/
3. https://www.cs.cmu.edu/.̃/enron/

CNTEMP: We run Coarsenet [28] (a summarization method
which preserves the diffusive property of a static graph) on
UG and repeat the summary to create Gcond.

In RANDOM and TENSOR, we use our own merge defi-
nitions, hence the comparison is inherently unfair.

5.2 Perfomance of NETCONDENSE: Effectiveness
We ran all the algorithms to get Gcond for different values
of αN and αT , and measure RX = λcondX /λX to judge
performance for Problem 2. See Figure 4. NETCONDENSE
is able to preserve λX excellently (upto 80% even when the
number of time-stamps and nodes are reduced by 50% and
70% respectively). On the other hand, the baselines perform
much worse, and quickly degrade λX. Note that TENSOR
does not even finish within 7 days for DBLP for larger αN .
RANDOM and TENSOR perform poorly even though they
use the same merge definitions, showcasing the importance
of right merges. In case of TENSOR, unexpectedly it tends to
merge unimportant nodes with all nodes in their neighbor-
hood even if they are “important”; so it is unable to preserve
λX. Finally CNTEMP performs badly as it does not use the
full temporal nature of G.

We also compare our performance for Problem 1,
against an algorithm specifically designed for it. We use
the simple greedy algorithm GREEDYSYS for Problem 1
(as the brute-force is too expensive): it greedily picks top
node/time merges by actually re-computing λS. We can run
GREEDYSYS only for small networks due to the SG issues
we mentioned before. See Figure 5 (λM

S is λcondS obtained
from method M). NETCONDENSE does almost as well as
GREEDYSYS, due to our careful transformations.

5.3 Application 1: Temporal Influence Maximization
In this section, we show how to apply our method to the
well-known Influence Maximization problem on a temporal
network (TempInfMax) [3]. Given a propagation model,
TempInfMax aims to find a seed-set S ⊆ V at time 0,
which maximizes the ‘footprint’ (expected number of in-
fected nodes) at time T . Solving it directly on large G can be
very slow. Here we propose to use the much smaller Gcond
as an approximation of G, as it maintains the propagation-
based properties well.

Specifically, we propose CONDINF (Algorithm 2) to solve
the TempInfMax problem on temporal networks. The idea
is to get Gcond from NETCONDENSE, solve TempInfMax
problem on Gcond, and map the results back to G. Thanks to
our well designed merging scheme that merges nodes with
the similar diffusive property together, a simple random
mapping is enough. To be specific, let the operator that maps
node v from Gcond to G be ζ−1(v). If v is a super-node then
ζ−1(v) returns a node sampled uniformly at random from
v.

We use two different base TempInfMax methods: FOR-
WARDINFLUENCE [3] for the SI model and GREEDY-OT [13]
for the PersistentIC model. As our approach is general (our
results can be easily extended to other models), and our
actual algorithm/output is model-independent, we expect
CONDINF to perform well for both these methods. To calcu-
late the footprint, we infect nodes in seed set S at time 0, and
run the appropriate model till time T . We use footprints and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

(a) Arxiv (b) ProsperLoan (c)WikiTalk (d) DBLP

Fig. 4: RX = λcondX /λX vs αN (top row, αT = 0.5) and vs αT (bottom row, αN = 0.5).

(a) WorkPlace (b) School

Fig. 5: Plot of RS = λNETCONDENSE
S /λGREEDYSYS

S .

Algorithm 2 CONDINF

Require: Temporal graph G , 0 < αN < 1, 0 < αT < 1
Ensure: seed set S of top k seeds

1: S = ∅
2: Gcond ← NETCONDENSE (G, αN , αT)
3: k′1, k

′
2, ..., k

′
S ← Run base TempInfMax on Gcond

4: for every k′i do
5: ki ← ζ−1(k′i); S ← S ∪ {ki}
6: return S

running time as two measurements. We set αT = 0.5 and
αN = 0.5 for all datasets for FORWARDINFLUENCE. Simi-
larly, We set αT = 0.5 and αN = 0.5 for School, Enron,
and Chess, αN = 0.97 for Arxiv, and αN = 0.97 for
Wikipedia for GREEDY-OT (as GREEDY-OT is very slow).
We show results for FORWARDINFLUENCE and GREEDY-
OT in Table 3. The results for GREEDY-OT shows that it
did not even finish for datasets larger than Enron. As we
can see, our method performs almost as good as the base
method on G, while being significantly faster (upto 48 times),
showcasing its usefulness.

5.4 Application 2: Event Detection

Event detection [4], [30] is an important problem in temporal
networks. The problem seeks to identify time points at
which there is a significant change in a temporal network.
As snapshots in a temporal network G evolve, with new
nodes and edges appearing and existing ones disappearing,

it is important to ask if a snapshot of G at a given time
differs significantly from earlier snapshots. Such time points
signify intrusion, anomaly, failure, e.t.c depending upon
the domain of the network. Formally, the event detection
problem is defined as follows:

Problem 3. (EVENT DETECTION Problem (EDP)) Given a
temporal network G = {G1, G2, . . . , GT }, find a list R
of time-stamps t, such that 1 ≤ t ≤ T and Gt−1 differs
significantly from Gt.

As yet another application of NETCONDENSE, in this
section we show that summary Gcond of a temporal network
G returned by NETCONDENSE can be leveraged to speed
up the event detection task. We show that one can actually
solve the event detection task on Gcond instead of G and still
obtain high quality results. Since, NETCONDENSE groups
only homogeneous nodes together and preserves important
characteristics of the original network G, we hypothesize
that running SNAPNETS [4] on G and Gcond should produce
similar results. Moreover, due to the smaller size of Gcond
running SNAPNETS on Gcond is faster than running it on
much larger G. In our method, given a temporal network G
and node reduction factor αN (we set time reduction factor
αT to be 0), we obtain Gcond and solve the EDP problem on
Gcond. Specifically, we propose CONDED (Algorithm 3) to
solve the event detection problem.

Algorithm 3 CONDED

Require: Temporal graph G , 0 < αN < 1
Ensure: List R of time-stamps

1: Gcond ← NETCONDENSE (G, αN , 0)
2: R← Run base EVENT DETECTION on Gcond
3: return R

For EDP we use SNAPNETS as the base method. In
addition to some of the datasets previously used, we run
CONDED on other datasets which are previously used for
event detection [4]. These datasets are described below in
detail and the summary is in Table 4.

AS Oregon-PA and AS Oregon-MIX are Autonomous
Systems peering information network collected from the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 3: Performance of CONDINF (CI) with FORWARDINFLUENCE (FI) and GREEDY-OT (GO) as base methods. σm and Tm are
the footprint and running time for method m respectively. ‘-’ means the method did not finish.

Dataset σFI σCI TFI TCI
School 130 121 14s 3s
Enron 110 107 18s 3s
Chess 1293 1257 36m 45s
Arxiv 23768 23572 3.7d 7.5h

Wikipedia - 26335 - 7.1h

Dataset σGO σCI TGO TCI
School 135 128 15m 1.8m
Enron 119 114 9.8m 24s
Chess - 2267 - 8.6m
Arxiv - 357 - 2.2h

Wikipedia - 4591 - 3.2h

TABLE 4: Additional Datasets for EDP.

Dataset |V | |E| T
Co-Occurence 202 2.8K 31 Days
AS Oregon-PA 633 1.08K 60 Units
AS Oregon-MIX 1899 3261 70 Units
IranElection 126K 5.5M 30 Days

Higgs 456K 14.8M 7 Days

TABLE 5: Performance of CONDED. F1 stands for F1-Score.
Speed-up is the ratio of time to run SNAPNETS on G to the
time to run SNAPNETS on Gcond.

αN = 0.3 αN = 0.7
Dataset F1 Speed-Up F1 Speed-Up

Co-Occurence 1 1.23 0.18 1.24
School 1 1.05 1 1.56

AS Oregon-PA 1 1.43 1 2.08
AS Oregon-MIX 1 1.22 1 2.83
IranElection 1 1.27 1 3.19

Higgs 0.66 1.17 1 3.79
Arxiv 1 1.09 1 2.27

Oregon router views4. IranElection and Higgs are twit-
ter networks, where the nodes are twitter user and edges in-
dicate follower-followee realtionship. More details on these
datasets are given in [4].

Co-Occurence is a word co-occurrence network ex-
tracted from historical newspapers, published in January
1890, obtained from the library of congress5. Nodes in
the network are the keywords and edges between two
keywords indicate that they co-appear in a sentence in a
newspaper published in a particular day. The edge-weights
indicate the frequency with which two words co-appear.

To evaluate performance of CONDED, we compare the
list of time-stampsRcond obtained by CONDED with the list
of time-stamps R obtained by SNAPNETS on the original
network G. We treat the time-stamps discovered by SNAP-
NETS as the ground truth and following the methodology
in [4], we compute the F-1 score. We repeat the experiment
with αN = 0.3 and αN = 0.7. The results are summarized
in Table 5.

As shown in Table 5, CONDED has very high F1-score
for most datasets even when αN = 0.7. This suggests that
the list of time-stampsRcond returned by CONDED matches
the result from SNAPNETS very closely. Moreover, the time
taken for the base method to run in Gcond is upto 3.5 times
faster than the time it takes to run on G.

However, for Co-Occurence dataset, the F1-score for
αN = 0.7 is a mere 0.18, despite having F1-score of 1
for αN = 0.3. Note that Co-Occurence is one of the
smallest dataset that we have, hence very high αN seems

4. http://www.topology.eecs.umich.edu/data.html
5. http://chroniclingamerica.loc.gov

to deteriorate the structure of the network, which suggests
a different value of αN is suitable for different networks in
the EDP task.

5.5 Application 3: Understanding/Exploring Networks

Fig. 6: Condensed WorkPlace (αN = 0.6, αT = 0.5).

Fig. 7: Condensed School (αN = 0.5 and αT = 0.5).

We can also use NETCONDENSE for ‘sense-making’ of
temporal datasets: it ensures that important nodes and times
remain unmerged while super-nodes and super-times form
coherent interpretable groups of nodes and time-stamps.
This is not the case for the baselines e.g. TENSOR merges im-
portant nodes, giving us heterogeneous super-nodes lacking
interpretability.
WorkPlace: It is a social-contact network between employ-
ees of a company with five departments, where weights are
normalized contact time. It has been used for vaccination
studies [9]. In Gcond (see Figure 6), we find a super-node
composed mostly of nodes from SRH (orange) and DSE
(pink) departments, which were on floor 1 of the building
while the rest were on floor 2. We also noticed that the
proportion of contact times between individuals of SRH and
DSE were high in all the time-stamps. In the same super-
node, surprisingly, we find a node from DMCT (green)
department on floor 2 who has a high contact with DSE
nodes. It turns out s/he was labeled as a “wanderer” in [9].

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Unmerged nodes in the Gcond had high degree in all
T . For example, we found nodes 80, 150, 751, and 255
(colored black) remained unmerged even for αN = 0.9
suggesting their importance. In fact, all these nodes were
classified as “Linkers” whose temporal stability is crucial for
epidemic spread [9]. The stability of “Linkers” mentioned in
[9] suggests that these are important nodes in every time-
stamp. The visualization of Gcond emphasizes that linkers
connect consistently to nodes from multiple departments;
which is not obvious in the original networks. We also
examined the super-times, and found that the days in and
around the weekend (where there is little activity) were
merged together.
School: It is a socio-contact network between high school
students from five different sections over several days [10].
We condensed School dataset with αN = 0.5 and αT =
0.5. The students in the dataset belong to five sections,
students from sections “MP*1” (green) and “MP*2” (pink)
were maths majors, and those from “PC” (blue) and “PC*”
(orange) were Physics majors, and lastly, students from
“PSI” (dark green) were engineering majors [10]. In Gcond
(see Figure 7), we find a super-node containing nodes from
MP*1 (green) and MP*2 (pink) sections (enlarged pink node)
and another super-node (enlarged orange node) with nodes
from remaining three sections PC (blue), PC* (orange), and
PSI (dark green). Our result is supported by [10], which
mentions that the five classes in the dataset can brodaly
be divided into two categories of (MP*1 and MP*2) and
(PC, PC*, and PSI). The groupings in the super-nodes are
intuitive as it is clear from the visualization itself that
the dataset can broadly be divided into two components
(MP*1 and MP*2) and (PC, PC*, and PSI). We also see that
unmerged nodes in each major connect densely every day.
These connections are obscured by unimportant nodes and
edges in the original network. This dense inter-connection
of “important” nodes is obscured by unimportant nodes
and edges in the original network. However, visualization
of the condensed network emphasizes on these important
structures and how they remain stable over time. We also
noted that small super-nodes of size 2 or 3, were com-
posed solely of male students, which can be attributed to
the gender homophily exhibited only by male students in
the dataset [10]. We noticed that weekends were merged
together with surrounding days in School, while other
days remained intact.
Enron: They are the email communication networks of em-
ployees of the Enron Corporation. In Gcond (αN = 0.8, αT =
0.5), we find that unmerged nodes are important nodes such
as G. Whalley (President), K. Lay (CEO), and J. Skilling
(CEO). Other unmerged nodes included Vice-Presidents and
Managing Directors. We also found a star with Chief of Staff
S. Kean in the center and important officials such as Whalley,
Lay and J. Shankman (President) for six consecutive time-
stamps. We also find a clique of various Vice-Presidents, L.
Blair (Director), and S. Horton (President) for seven time-
stamps in the same period. These structures appear only
in consecutive time-stamps leading to when Enron declared
bankruptcy. Sudden emergence, stability for over six/seven
time-stamps, and sudden disappearance of these structures
correctly suggests that a major event occurred during that
time. We also note that time-stamps in 2001 were never

merged, indicative of important and suspicious behavior.
To investigate the nature of nodes which get merged

early, we look at the super-nodes at the early stage of
NETCONDENSE, we find two super-nodes with one Vice-
President in each (Note that most other nodes are still
unmerged). Both super-nodes were composed mostly of
Managers, Traders, and Employees who reported directly
or indirectly to the mentioned Vice-Presidents. We also look
at unmerged time-stamps and notice that time-stamps in
2001 were never merged. Even though news broke out on
October 2001, analysts were suspicious of practices in Enron
Corporation from early 20016. Therefore, our time-merges
show that the events in early 2001 were important indicative
of suspicious activities in Enron Corporation.
DBLP: These are co-authorship networks from DBLP-CS
bibliography. This is an especially large dataset: hence
exploration without any condensation is hard. In Gcond
(αN = 0.7, αT = 0.5), we found that the unmerged nodes
were very well-known researchers such as Philip S. Yu,
Christos Faloutsos, Rakesh Aggarwal, and so on, whereas
super-nodes grouped researchers who had only few pub-
lications. In super-nodes, we found researchers from the
same institutions or countries (like Japanese Universities)
or same or closely-related research fields (like Data Min-
ing/Visualization). In larger super-nodes, we found that
researchers were grouped together based on countries and
broader fields. For example, we found separate super-
nodes composed of scientists from Swedish, and Japanese
Universities only. We also found super-nodes composed of
researchers from closely related fields such as Data Mining
and Information visualization. Small super nodes typically
group researchers who have very few collaborations in the
dataset, collaborated very little with the rest of the network
and have edges among themselves in few time-stamps.
Basically, these are researchers with very few publications.
We also found a giant super-node of size 395, 000. An
interesting observation is that famous researchers connect
very weakly to the giant super-node. For example, Rakesh
Aggarwal connects to the giant super-node in only two
time-stamps with almost zero edge-weight. Whereas, less
known researchers connect to the giant super-node with
higher edge-weights. This suggests researchers exhibit ho-
mophily in co-authorship patterns, i.e. famous researchers
collaborate with other famous researchers and non-famous
researchers collaborate with other non-famous researchers.
Few super-nodes that famous researchers connect to at dif-
ferent time-stamps, also shows how their research interest
has evolved with time. For example, we find that Philip
S. Yu connected to a super-node of IBM researchers who
primarily worked in Database in early 1994 and to a super-
node of data mining researchers in 2000.

5.6 Scalability and Parallelizability
Figure 8 (a) shows the runtime of NETCONDENSE on the
components of increasing size of Arxiv. NETCONDENSE
has subquadratic time complexity. In practice, it is near-
linear w.r.t input size. Figure 8 (b) shows the near-linear
run-time speed-up of parallel-NETCONDENSE vs # cores on
Wikipedia.

6. http://www.webcitation.org/5tZ26rnac

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

(a) Scalability (b) Parallelizability

Fig. 8: (a) Near-linear Scalability w.r.t. size; (b) Near-linear
speed up w.r.t number of cores for parallelized implementa-
tion.

6 RELATED WORK

Mining Dynamic Graphs. Dynamic graphs have gained a
lot of interest recently (see [2] for a survey). Many graph
mining tasks on static graphs have been introduced to dy-
namic graphs. For example, Tantipathananandh et.al stud-
ied community detection in dynamic graphs [35]. Similarly,
link prediction [32], and event detection [30] have also been
studied in dynamic graphs. Due to the increasing size,
typically it is challenging to perform analysis on temporal
networks and summarizing large temporal networks can be
very useful.
Propagation. Cascade processes have been widely stud-
ied, including in epidemiology [5], [14], information diffu-
sion [17], cyber-security [18] and product marketing [31].
Based on the models, several papers studied propagation
related applications, such as propagation of memes [20] and
so on. In addition, there are research works that focus on
the epidemic threshold of static networks, which determines
the conditions under which virus spreads throughout the
network [6], [7], [11], [18], [23], [25], [26]. Recently [27]
studied the threshold for temporal networks based on the
system matrix. Examples of propagation-based optimization
problems are influence maximization [3], [13], [17], and
immunization [40]. Remotely related work deals with weak
and strong ties over time for diffusion [16].
Graph Summarization. Here, we seek to find a compact rep-
resentation of a large graph by leveraging global and local
graph properties like local neighborhood structure [24], [36],
node/edge attributes [39], action logs [29], eigenvalue of the
adjacency matrix [28], and key subgraphs. It is also related to
graph sparsification algorithms [22]. The goal is to either re-
duce storage and manipulation costs, or simplify structure.
Summarizing temporal networks has not seen much work,
except recent papers based on bits-storage-compression [21],
or extracting a list of recurrent sub-structures over time [33].
Unlike these, we are the first to focus on hierarchical conden-
sation: using structural merges, giving a smaller propagation-
equivalent temporal network. There has been some work
on summarizing temporal graphs, including compression-
based Liu et. al. [21] tackled the problem by compressing
edge weights at each timestamps. However, their method
does not merge either nodes or timestamps. Hence, it cannot
get a summary with much less nodes and timestamps.
Shah et. al. [33] proposed a temporal graph summarization
method (TIME CRUNCH) [33], by extracting representative

local structures across timestamp. However, TIME CRUNCH
do not work for our problem, as our problem requires the
summary to be a compact temporal graph that maintains the
diffusion property, while TIME CRUNCH just outputs pieces
of subgraphs. To summarize, none of the above papers fo-
cused on the temporal graph summarization problem w.r.t.
diffusion.

7 DISCUSSION AND CONCLUSIONS

In this paper, we proposed a novel general TEMPORAL NET-
WORK CONDENSATION Problem using the fundamental so-
called ‘system matrix’ and present an effective, near-linear
and parallelizable algorithm NETCONDENSE. We leverage
it to dramatically speed-up influence maximization and
event detection algorithms on a variety of large temporal
networks. We also leverage the summary network given
by NETCONDENSE to visualize, explore, and understand
multiple networks. As also shown by our experiments, it is
useful to note that our method itself is model-agnostic and
has wide-applicability, thanks to our carefully chosen met-
rics which can be easily generalized to other propagation
models such as SIS, SIR, and so on.

There are multiple ideas to explore further. Condensing
attributed temporal networks, and leveraging NETCON-
DENSE for other graph tasks such as role discovery, immu-
nization, and link prediction are some examples. We leave
these tasks for future works.
Acknowledgements We would like to thank anonymous
reviewers for their suggestions. This paper is based on work
partially supported by the National Science Foundation (IIS-
1353346), the National Endowment for the Humanities (HG-
229283-15), ORNL (Task Order 4000143330) and from the
Maryland Procurement Office (H98230-14-C-0127), and a
Facebook faculty gift. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the
views of the respective funding agencies.

REFERENCES

[1] L. A. Adamic and B. A. Huberman. Power-law distribution of the
world wide web. science, 287(5461):2115–2115, 2000.

[2] C. Aggarwal and K. Subbian. Evolutionary network analysis: A
survey. ACM Computing Survey, 2014.

[3] C. C. Aggarwal, S. Lin, and S. Y. Philip. On influential node
discovery in dynamic social networks. In SDM, 2012.

[4] S. E. Amiri, L. Chen, and B. A. Prakash. Snapnets: Automatic
segmentation of network sequences with node labels. 2017.

[5] R. M. Anderson and R. M. May. Infectious Diseases of Humans.
Oxford University Press, 1991.

[6] N. T. Bailey et al. The mathematical theory of epidemics. 1957.
[7] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos.

Epidemic thresholds in real networks. TISSEC, 10(4):1, 2008.
[8] A. K. Cline, C. B. Moler, G. W. Stewart, and J. H. Wilkinson. An

estimate for the condition number of a matrix. SIAM Journal on
Numerical Analysis, 16(2):368–375, 1979.

[9] M. G. et. al. Data on face-to-face contacts in an office building
suggest a low-cost vaccination strategy based on community
linkers. Network Science, 3(03), 2015.

[10] J. Fournet and A. Barrat. Contact patterns among high school
students. PloS one, 9(9):e107878, 2014.

[11] A. Ganesh, L. Massoulie, and D. Towsley. The effect of network
topology in spread of epidemics. IEEE INFOCOM, 2005.

[12] F. R. Gantmacher and J. L. Brenner. Applications of the Theory of
Matrices. Courier Corporation, 2005.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[13] N. T. Gayraud, E. Pitoura, and P. Tsaparas. Diffusion maximization
in evolving social networks. In COSN, 2015.

[14] H. W. Hethcote. The mathematics of infectious diseases. SIAM
review, 42(4):599–653, 2000.

[15] R. M. Karp. Reducibility among combinatorial problems. In
Complexity of computer computations, pages 85–103. Springer, 1972.

[16] M. Karsai, N. Perra, and A. Vespignani. Time varying networks
and the weakness of strong ties. Scientific Reports, 4:4001, 2014.

[17] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of
influence through a social network. In KDD, 2003.

[18] J. O. Kephart and S. R. White. Measuring and modeling computer
virus prevalence. In IEEE Research in Security and Privacy, 1993.

[19] T. G. Kolda and B. W. Bader. Tensor decompositions and applica-
tions. SIAM Review, 51(3):455–500, 2009.

[20] J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-tracking and
the dynamics of the news cycle. In KDD09, 2009.

[21] W. Liu, A. Kan, J. Chan, J. Bailey, C. Leckie, J. Pei, and R. Kotagiri.
On compressing weighted time-evolving graphs. In CIKM12.
ACM, 2012.

[22] M. Mathioudakis, F. Bonchi, C. Castillo, A. Gionis, and A. Ukko-
nen. Sparsification of influence networks. In KDD, pages 529–537.
ACM, 2011.

[23] A. M’Kendrick. Applications of mathematics to medical problems.
Proceedings of the Edinburgh Mathematical Society, 44:98–130, 1925.

[24] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph summariza-
tion with bounded error. In SIGMOD, 2008.

[25] R. Pastor-Satorras and A. Vespignani. Epidemic spreading in scale-
free networks. Physical review letters, 86(14):3200, 2001.

[26] B. A. Prakash, D. Chakrabarti, M. Faloutsos, N. Valler, and
C. Faloutsos. Threshold conditions for arbitrary cascade models
on arbitrary networks. In ICDM, 2011.

[27] B. A. Prakash, H. Tong, N. Valler, M. Faloutsos, and C. Faloutsos.
Virus propagation on time-varying networks: Theory and immu-
nization algorithms. In ECML/PKDD10, 2010.

[28] M. Purohit, B. A. Prakash, C. Kang, Y. Zhang, and V. Subrah-
manian. Fast influence-based coarsening for large networks. In
KDD14.

[29] Q. Qu, S. Liu, C. S. Jensen, F. Zhu, and C. Faloutsos.
Interestingness-driven diffusion process summarization in dy-
namic networks. In ECML/PKDD. 2014.

[30] S. Rayana and L. Akoglu. Less is more: Building selective anomaly
ensembles with application to event detection in temporal graphs.
In SDM, 2015.

[31] E. M. Rogers. Diffusion of innovations. 2010.
[32] P. Sarkar, D. Chakrabarti, and M. Jordan. Nonparametric link

prediction in dynamic networks. In ICML, 2012.
[33] N. Shah, D. Koutra, T. Zou, B. Gallagher, and C. Faloutsos. Time-

crunch: Interpretable dynamic graph summarization. In KDD15.
[34] G. W. Stewart. Matrix perturbation theory. 1990.
[35] C. Tantipathananandh and T. Y. Berger-Wolf. Finding communities

in dynamic social networks. In ICDM11.
[36] H. Toivonen, F. Zhou, A. Hartikainen, and A. Hinkka. Compres-

sion of weighted graphs. In KDD, 2011.
[37] H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos, and C. Falout-

sos. Gelling, and melting, large graphs by edge manipulation. In
Proceedings of the 21st ACM international conference on Information
and knowledge management, 2012.

[38] F. Zhang. Matrix theory: basic results and techniques. Springer
Science and Business Media, 2011.

[39] N. Zhang, Y. Tian, and J. M. Patel. Discovery-driven graph
summarization. In ICDE, 2010.

[40] Y. Zhang and B. A. Prakash. Dava: Distributing vaccines over
networks under prior information. In SDM, 2014.

Bijaya Adhikari received the bachelor’s degree
in computer engineering from Vistula Univer-
sity, Warsaw, Poland. He is working towards the
Ph.D. degree in the Department of Computer
Science, Virginia Tech. His current research in-
cludes data mining large networks, temporal net-
works analysis, and network embedding with
focus on propagation in networks. He has pub-
lished papers in the SDM conference.

Yao Zhang is a PhD candidate in the Depart-
ment of Computer Science at Virginia Tech. He
got his Bachelor and Master degrees in com-
puter science from Nanjing University, China.His
current research interests are graph mining and
social network analysis with focus on under-
standing and managing information diffusion in
networks. He has published several papers in
top conferences and journals such as KDD,
ICDM, SDM and TKDD.

Sorour E. Amiri received the bachelor’s degree
in computer engineering from Shahid Beheshti
University and master’s degrees in Algorithms
and Computation from the University of Tehran,
Iran. She is working toward the Ph.D. degree in
the Department of Computer Science, Virginia
Tech. Her current research interests include
graph mining and social network analysis with a
focus on segmentation of graph sequences and
summarizing graphs. She has published papers
in AAAI conference and ICDM workshops.

Aditya Bharadwaj received the bachelor’s de-
gree in computer science from Birla Institute
of Technology and Science, Pilani, India. He is
currently working towards the Ph.D. degree in
the Department of Computer Science, Virginia
Tech. His current research includes data mining
large networks, analyzing network layouts and
computational system biology.

B. Aditya Prakash is an Assistant Professor in
the Computer Science Department at Virginia
Tech. He graduated with a Ph.D. from the Com-
puter Science Department at Carnegie Mellon
University in 2012, and got his B.Tech (in CS)
from the Indian Institute of Technology (IIT) –
Bombay in 2007. He has published more than 50
refereed papers in major venues, holds two U.S.
patents and has given three tutorials (SIGKDD
2016, VLDB 2012 and ECML/PKDD 2012) at
leading conferences. His work has also received

a best paper award and two best-of-conference selections (CIKM 2012,
ICDM 2012, ICDM 2011) and multiple travel awards. His research in-
terests include Data Mining, Applied Machine Learning and Databases,
with emphasis on big-data problems in large real-world networks and
time-series. His work has been funded through grants/gifts from the
National Science Foundation (NSF), the Department of Energy (DoE),
the National Security Agency (NSA), the National Endowment for Hu-
manities (NEH) and from companies like Symantec. He received a
Facebook Faculty Gift Award in 2015. He is also an affiliated faculty
member at the Discovery Analytics Center at Virginia Tech. Aditya’s
homepage is at: http://www.cs.vt.edu/ badityap.

