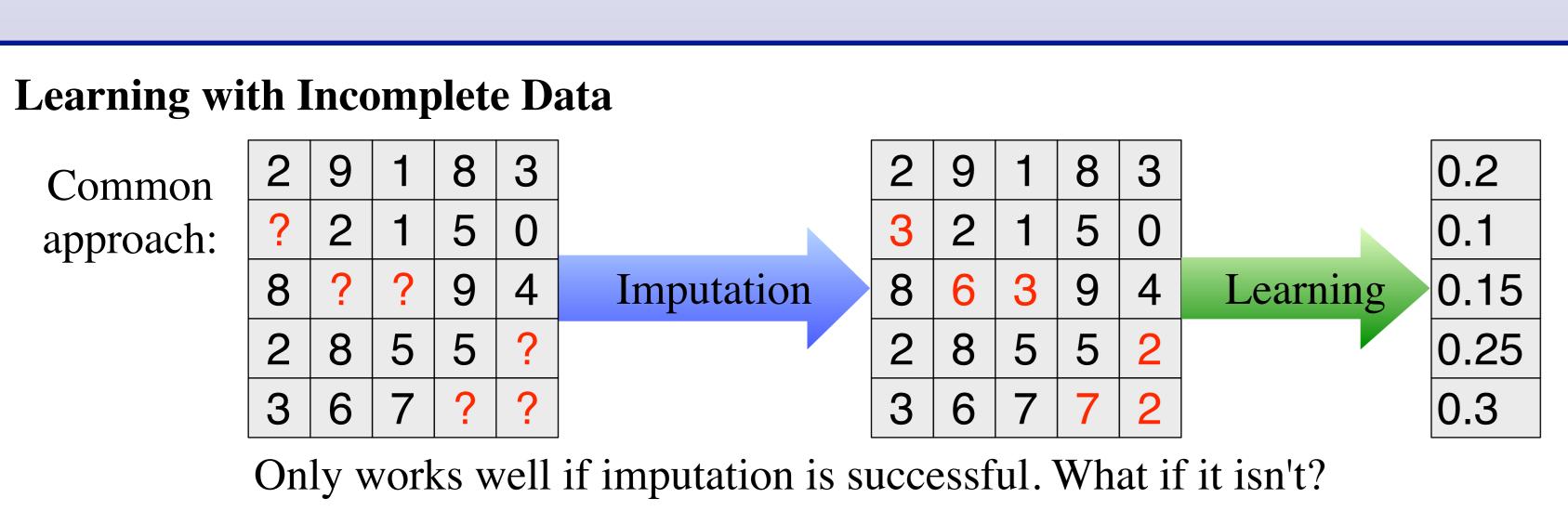
Maximum Entropy Density Estimation with Incomplete F

Bert Huang and Ansaf Salleb-Aouissi {bert@cs, ansaf@ccls}.columb Center for Computational Learning Systems, Columbia University, New York, NY

An elegant method to handle missing data when performing densit



						_	
Better	2	9	1	8	3		0.2
approach:	?	2	1	5	0		0.1
	8	?	?	9	4	Learning	0.2
	2	8	5	5	?		0.2
	3	6	7	?	?		0.3
		<u> </u>					

Learn only from data we know

Algorithm Derivation

Maximum Entropy: use probability distribution with maximum entropy subject to what is known

Standard Maxent:
$$\max_{p \in \Delta} \quad H(p)$$
 s.t.
$$\left| \sum_{x} p(x) f_j(x) - \tilde{\pi}[f_j] \right| \leq \beta_j$$

Our simple idea: redefine missingness-aware expectation as

$$\frac{\sum_{x \in \text{observed}} p(x) f(x)}{\sum_{x \in \text{observed}} p(x)} = \frac{\sum_{x} p(x) f_j(x)}{\sum_{x} p(x) o_j(x)}$$

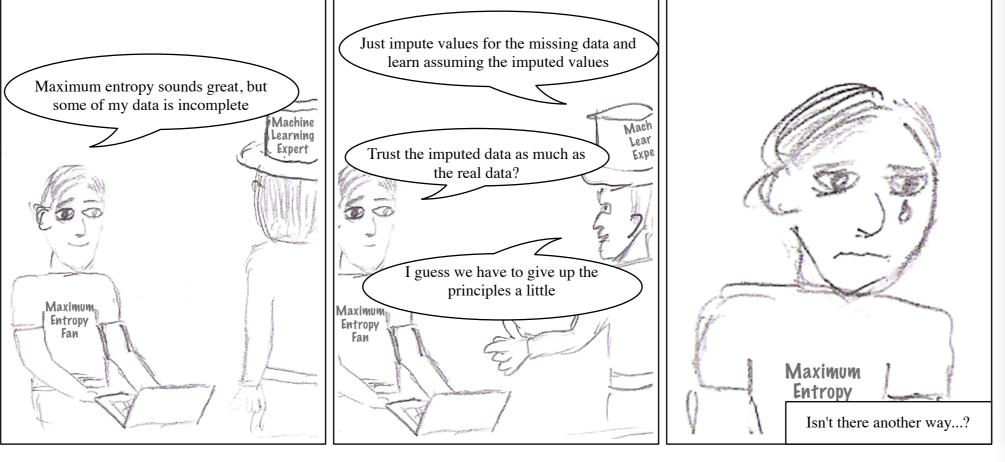
(i.e., exclude missing values from expectation and renormalize)

New Maxent:
$$\max_{p \in \Delta} H(p)$$
 s.t.
$$\left| \frac{\sum_{x} p(x) f_{j}(x)}{\sum_{x} p(x) o_{j}(x)} - \tilde{\pi}[f_{j}] \right| \leq \beta_{j}$$

 $\min Z(\lambda)$, **Dual Formulation**

where
$$p(x) = \frac{1}{Z(\lambda)} \exp\left(\sum_{j} \lambda_{j} \left(f_{j}(x) - \tilde{\pi}[f_{k}]o_{j}(x)\right) + |\lambda_{j}| \beta_{j} o_{j}(x)\right)$$

Motivation



Methods Being Compared				
Abbreviation	Method			
Missing	Our method			
Mean (all)	mean imputation to			
	mean of all examples			
Mean (positive)	mean imputation to mean			
	of positive examples			
${ m EM}$	Gaussian Expectation-			
	Maximization imputation			
	1			

• Following the Maximum Entropy Principle compels us to avoid assumptions

• We cannot afford to assume we know missing values, even after clever imputation

Missingness and Expectations

The missingness-aware expectation can also be written as:

I.e., a real expectation over the *naturally occurring* distribution

$$p(x|o_j(x)) = \frac{p(o_j(x)|x)p(x)}{p(o_j(x))},$$

where $p(o_j(x))$ and $p(o_j(x)|x)$ represent the statistical missingness setting.

Imputed expectations inject artificial features $g_i(x)$ when data is missing.

$$\sum_{x} p(x)g_j(x)$$

where $g_j(x) = f_j(x)$ when $o_j(x)$ but $g_j(x) \stackrel{?}{=} f_j(x)$ when $o_j(x)$

Is your $g_i(x)$ good enough?

Notatio	1
Symbol	Definition
H(p)	entropy of distribution p
$f_j(x)$	j'th feature for example x
$ ilde{\pi}[f_j]$	empirical average for j 'th feature
eta_j	(user-defined) allowed expectation deviation
$o_j(x)$	indicator of whether j 'th feature
	is known for example x

Synthetic Data: Missingness Tests

of features (n)

	Missing	Mean (all)	Mean (positive)	${ m EM}$
MCAR	-261.96 ± 3.04	-262.02 ± 2.99	-262.07 ± 3.05	-262.04 ± 3.05
MAR	-258.58 ± 3.90	-258.70 ± 3.88	-258.75 ± 4.01	-258.63 ± 3.86
NMAR	-258.79 ± 4.02	-259.05 ± 4.01	-258.88 ± 4.22	-259.04 ± 4.00
Full		-254.99	9 ± 3.30	

of samples (lχl)

- Sampled to simulate missingness settings
- Our approach: highest average out-of-sample likelihood over 5000 synthetic sets

Missingness Settings

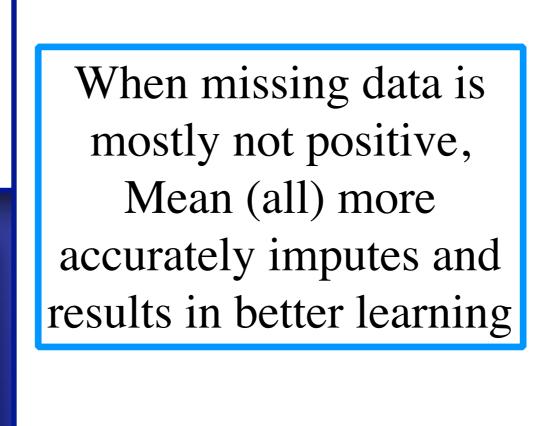
Abbre	viation	Definition
\overline{MC}	CAR	Missing completely at random; missingness is <i>iid</i>
\mathbf{M}	AR	Missing at random; missingness depends on observable features
NN	IAR	Not missing at random; missingness depends on missing features

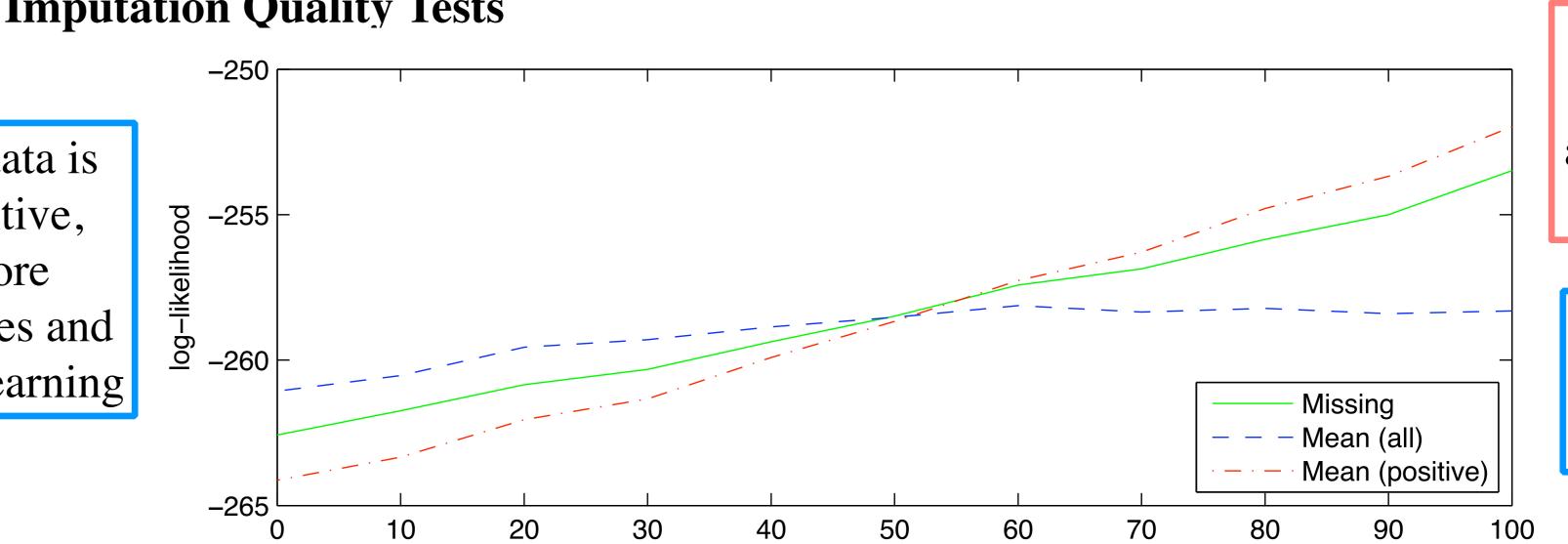
Real Data

	Missing	Mean (all)	Mean (positive)	${ m EM}$	p(o)	p(y o)
bands	-711.1 ± 2.9	-711.5 ± 2.8	$-710.8{\pm}2.7$	-711.5 ± 2.8	0.92	0.87
crx	$-991.0{\pm}3.2$	$-990.9{\pm}3.2$	$-991.0 {\pm} 3.2$	$-990.8 {\pm} 3.3$	0.99	0.42
echo	$\textbf{-57.2} {\pm} 1.1$	-57.3 ± 1.1	$-57.1 {\pm} 1.0$	-57.4 ± 1.0	0.92	0.32
hep	$\textbf{-74.8} {\pm} \textbf{2.6}$	-75.4 ± 2.5	-75.2 ± 2.3	$\textbf{-75.1} {\pm} \textbf{2.5}$	0.90	0.27
horse-colic	$-299.3{\pm}2.9$	-300.1 ± 2.9	-304.7 ± 2.2	$-299.6{\pm}2.7$	0.66	0.38
house-votes	$-555.1{\pm}2.8$	$-555.1{\pm}2.8$	$-555.1{\pm}2.5$	$-555.0{\pm}2.8$	0.91	0.42

- UCI data sets with real missing values, run over 500 random training/testing splits
- Chose regularizer via cross-validation, out-of-sample log likelihoods reported in table
- Algorithms use the least complete half of the features (to exacerbate missingness)
- Best and not-statistically worse in **bold** (via 2-sample t-test with %5 rejection)

Synthetic Data: Imputation Quality Tests





Amount of missing values in positive class

When missing data is mostly positive, Mean (positive) accurately imputes and results in better learning

...but Mean (all) is not as good because imputation is less accurate

...but Mean (positive) is not as good because imputation is less accurate

Our method is never the worst-case; it never presumes to know the missing values so it won't guess wrong on them!