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Abstract

We prove the equivalence of first-order lo-
cal consistency relaxations and the MAX
SAT relaxation of Goemans and Williamson
(1994) for a class of MRFs we refer to as logi-
cal MRFs. This allows us to combine the ad-
vantages of each into a single MAP inference
technique: solving the local consistency re-
laxation with any of a number of highly scal-
able message-passing algorithms, and then
obtaining a high-quality discrete solution via
a guaranteed rounding procedure when the
relaxation is not tight. Logical MRFs are
a general class of models that can incorpo-
rate many common dependencies, such as
logical implications and mixtures of super-
modular and submodular potentials. They
can be used for many structured prediction
tasks, including natural language processing,
computer vision, and computational social
science. We show that our new inference
technique can improve solution quality by as
much as 20% without sacrificing speed on
problems with over one million dependencies.

1 INTRODUCTION

One of the canonical problems for probabilistic mod-
eling is finding the most probable variable assignment,
i.e., maximum a posteriori (MAP) inference. For
Markov random fields (MRFs), MAP inference is NP-
hard in general (Shimony, 1994), so approximations
are required in practice. In this paper, we provide
a new analysis of approximate MAP inference for a
particularly flexible and broad class of MRFs we refer
to as logical MRFs. In these models, potentials are
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defined by truth tables of disjunctive logical clauses
with nonnegative weights. This class includes many
common types of models, such as mixtures of super-
modular and submodular potentials, and many of the
models that can be defined using the language Markov
logic (Richardson and Domingos, 2006).1 Such models
are useful for the many domains that require expres-
sive dependencies, such as natural language process-
ing, computer vision, and computational social sci-
ence. MAP inference for logical MRFs is still NP-
hard (Garey et al., 1976), so we consider two main
approaches for approximate inference, each with dis-
tinct advantages.

The first approach uses local consistency relaxations
(Wainwright and Jordan, 2008). Instead of solving
a combinatorial optimization over discrete variables,
MAP inference is first viewed equivalently as the op-
timization of marginal distributions over variable and
potential states. The marginals are then relaxed to
pseudomarginals, which are only consistent among lo-
cal variables and potentials. The primary advantage
of local consistency relaxations is that they lead to
highly scalable message-passing algorithms, such as
dual decomposition (Sontag et al., 2011). However—
except for a few special cases—local consistency relax-
ations produce fractional solutions, which require some
rounding or decoding procedure to find discrete solu-
tions. For most MRFs, including logical MRFs, there
are no previously known guarantees on the quality of
these solutions.

The second approach to tractable MAP inference
for logical MRFs is weighted maximum satisfiability
(MAX SAT) relaxation, in which one views MAP in-
ference as the classic MAX SAT problem and relaxes
it to a convex program from that perspective. Given a
set of disjunctive logical clauses with associated non-
negative weights, MAX SAT is the problem of find-
ing a Boolean variable assignment that maximizes the
sum of the weights of the satisfied clauses. Convex
programming relaxations for MAX SAT also produce

1Markov logic can also include clauses with conjunctions
and with negative or infinite weights.
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fractional solutions, but unlike local consistency re-
laxations, they offer theoretically guaranteed rounding
procedures (Goemans and Williamson, 1994). How-
ever, even though these relaxations are tractable in
principle, general-purpose convex program solvers do
not scale well to inference for large graphical models
(Yanover et al., 2006).

In this paper, we unite these two approaches. Our
first contribution is the following theoretical result:
for logical MRFs, the first-order local consistency re-
laxation and the MAX SAT relaxation of Goemans
and Williamson (1994) are equivalent. We prove this
equivalence by analyzing the local consistency relax-
ation as a hierarchical optimization and reasoning
about KKT conditions of the optimizations at the
lower level of the hierarchy. Replacing the optimiza-
tions at the lower level with compact solutions shows
the equivalence.

This proof of equivalence is important because it re-
veals that one can combine the advantages of both ap-
proaches into a single algorithm by using the message-
passing algorithms developed in the graphical models
community and the guaranteed rounding procedure of
the MAX SAT relaxation. We show that our tech-
nique can improve solution quality by as much as 20%
on problems with over one million clauses.

2 PRELIMINARIES

In this section, we review MRFs, local consistency re-
laxations, and MAX SAT relaxations; and we define
logical MRFs.

2.1 Markov Random Fields

MRFs are probabilistic graphical models that factor
according to the structure of an undirected graph. For
the purposes of this paper, we consider MRFs with
discrete domains.

Definition 1. Let x = (x1, . . . , xn) be a vector of
n random variables, where each variable xi has dis-
crete domain Xi = {0, 1, . . . ,Ki − 1}. Then, let φ =
(φ1, . . . , φm) be a vector of m potentials, where each
potential φj(x) maps states of a subset of the variables
xj to real numbers. Finally, let w = (w1, . . . , wm) be a
vector of m real-valued parameters. Then, a Markov
random field over x is a probability distribution of
the form

P (x) ∝ exp
(
w>φ(x)

)
.

MAP inference, i.e., finding the solution of
arg maxxw

>φ(x), is NP-hard (Shimony, 1994).
Thus, various approaches have been developed to
approximate MAP inference efficiently.

2.2 Local Consistency Relaxations

A popular approach for tractable inference in MRFs is
local consistency relaxation (Wainwright and Jordan,
2008). This approach starts by viewing MAP inference
as an equivalent optimization over marginal probabili-
ties. For each φj ∈ φ, let θj be a marginal distribution
over joint assignments xj . For example, θj(xj) is the
probability that the subset of variables associated with
potential φj is in a particular joint state xj . Also, let
xj(i) denote the setting of the variable with index i in
the state xj .

With this variational formulation, inference can be re-
laxed to an optimization over the first-order local poly-
tope L. Let µ = (µ1, . . . , µn) be a vector of probability
distributions, where µi(k) is the marginal probability
that xi is in state k. The first-order local polytope is

L ,


θ,µ

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
xj |xj(i)=k θj(xj) = µi(k) ∀i, j, k∑
xj
θj(xj) = 1 ∀j∑Ki−1

k=0 µi(k) = 1 ∀i
θj(xj) ≥ 0 ∀j,xj

µi(k) ≥ 0 ∀i, k


,

which constrains each marginal distribution θj over
joint states xj to be consistent only with the marginal
distributions µ over individual variables that partici-
pate in the potential φj .

MAP inference can then be approximated with the
first-order local consistency relaxation:

arg max
(θ,µ)∈L

m∑
j=1

wj

∑
xj

θj(xj) φj(xj), (1)

which is an upper bound on the true MAP objective.
The first-order local consistency relaxation is a much
more tractable linear program than exact inference,
and it can be applied to any MRF. Much work has fo-
cused on solving the first-order local consistency relax-
ation for large-scale MRFs, which we discuss further
in Sections 4 and 6. However, in general, the solu-
tions are fractional, and there are no guarantees on
the approximation quality of a tractable discretization
of these fractional solutions.

2.3 Logical Markov Random Fields

We now turn to the focus of this paper: logical MRFs,
which are MRFs whose potentials φ are defined by dis-
junctive Boolean clauses with associated nonnegative
weights, formally defined as follows.

Definition 2. Let C = (C1, . . . , Cm) be a vector of
logical clauses, where each clause Cj ∈ C is a disjunc-
tion of literals and each literal is a variable x or its
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negation ¬x such that each variable xi ∈ x appears at
most once in Cj . Let I+

j (resp. I−j ) ⊆ {1, . . . , n} be
the set of indices of the variables that are not negated
(resp. negated) in Cj . Then Cj can be written as ∨

i∈I+
j

xi

 ∨

 ∨
i∈I−

j

¬xi

 .

A logical Markov random field is an MRF in which
each variable xi has Boolean domain {0, 1}, i.e., Ki =
2, each potential φj(x) = 1 if x satisfies Cj and 0
otherwise, and each parameter wj ≥ 0.

Logical MRFs are very expressive. A clause Cj can be
viewed equivalently as an implication from conditions
to consequences: ∧

i∈I−
j

xi =⇒
∨
i∈I+

j

xi .

Multiple clauses can together express dependencies
that cannot be expressed in a single clause, such as
multiple sets of conditions implying one set of possible
consequences, or one set of conditions implying multi-
ple sets of possible consequences.

The generality of logical MRFs can be stated more
broadly: MAP inference for any discrete distribution
of bounded factor size can be converted to a MAX SAT
problem—and therefore MAP inference for a logical
MRF—of size polynomial in the variables and clauses
(Park, 2002a). One way to convert MAP inference for
a general MRF to MAP inference for a logical MRF
is to encode each entry of the original potential table
as its own potential defined by a disjunctive clause.
The weight of that clause is the negated value of the
original potential energy. Weights can be shifted to
be all nonnegative by adding a constant to each, but
this shift loosens the rounding guarantees introduced
in the next subsection. However, in practice, logical
MRFs can model many important problems without
the need for such conversions.

2.4 MAX SAT Relaxations

The MAP problem for a logical MRF can also be
viewed as an instance of MAX SAT and approximately
solved from this perspective. The MAX SAT prob-
lem is to find a Boolean assignment to the variables x
that maximizes the sum of the weights of the satisfied
clauses in C. A solution to MAX SAT is therefore
also the MAP state of the logical MRF defined via
C. Since MAX SAT is NP-hard, a large body of work
has focused on constructing convex programming re-
laxations for this problem.

Goemans and Williamson (1994) introduced a linear
programming relaxation that provides rounding guar-
antees for the solution. We review their technique and
the results of their analysis here. For each variable
xi, associate with it a continuous variable yi ∈ [0, 1].
Then, let y? be the solution to the linear program

arg max
y∈[0,1]n

∑
Cj∈C

wj min


∑
i∈I+

j

yi +
∑
i∈I−

j

(1− yi), 1

 (2)

and let each variable xi be independently set to 1
according to a rounding probability function f , i.e.,
pi = f(y?i ). Many functions can be chosen for f , but
a simple one Goemans and Williamson (1994) analyze
is the linear function

f(y?i ) =
1

2
y?i +

1

4
.

Let Ŵ be the expected total weight of the satisfied
clauses from using this randomized rounding proce-
dure. More precisely,

Ŵ =
∑

Cj∈C

wj

1−
∏
i∈I+

j

(1− pi)
∏
i∈I−

j

pi

 . (3)

Let W ? be the maximum total weight of the satisfied
clauses over all assignments to x, i.e., the weight of the
MAX SAT solution. Goemans and Williamson (1994)
showed that

Ŵ ≥ 3

4
W ? .

The method of conditional probabilities (Alon and
Spencer, 2008) can deterministically find an assign-
ment to x that achieves a total weight of at least Ŵ .
Each variable xi is greedily set to the value that max-
imizes the expected weight over the unassigned vari-
ables, conditioned on either possible value of xi and the
previously assigned variables. This greedy maximiza-
tion can be applied quickly because, in many models,
variables only participate in a small fraction of the
clauses, making the change in expectation quick to
compute for each variable. Specifically, referring to the
definition of Ŵ (3), the assignment to xi only needs to
maximize over the clauses Cj in which xi participates,
i.e., i ∈ I+

j ∪ I
−
j , which is usually a small set.

3 EQUIVALENCE ANALYSIS

In this section, we prove the equivalence of the first-
order local consistency relaxation and the MAX SAT
relaxation of Goemans and Williamson (1994) for log-
ical MRFs (Theorem 6). Our proof analyzes the local
consistency relaxation to derive an equivalent, more
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compact optimization over only the variable pseudo-
marginals µ that is identical to the MAX SAT relax-
ation. Since the variables are Boolean, we refer to each
pseudomarginal µi(1) as simply µi. Let xF

j denote the

unique setting such that φj(x
F
j ) = 0. (I.e., xF

j is the
setting in which each literal in the clause Cj is false.)

We begin by reformulating the local consistency re-
laxation as a hierarchical optimization, first over the
variable pseudomarginals µ and then over the factor
pseudomarginals θ. Due to the structure of local poly-
tope L, the pseudomarginals µ parameterize inner lin-
ear programs that decompose over the structure of the
MRF, such that—given fixed µ—there is an indepen-
dent linear program φ̂j(µ) over θj for each clause Cj .
We rewrite objective (1) as

arg max
µ∈[0,1]n

∑
Cj∈C

φ̂j(µ), (4)

where

φ̂j(µ) = max
θj

wj

∑
xj |xj 6=xF

j

θj(xj) (5)

s.t.
∑

xj |xj(i)=1

θj(xj) = µi ∀i ∈ I+
j (6)

∑
xj |xj(i)=0

θj(xj) = 1− µi ∀i ∈ I−j (7)

∑
xj

θj(xj) = 1 (8)

θj(xj) ≥ 0 ∀xj . (9)

It is straightforward to verify that objectives (1)
and (4) are equivalent for logical MRFs. All con-
straints defining L can be derived from the constraint
µ ∈ [0, 1]n and the constraints in the definition of

φ̂j(µ). We have omitted redundant constraints to sim-
plify analysis.

To make this optimization more compact, we replace
each inner linear program φ̂j(µ) with an expression
that gives its optimal value for any setting of µ. Deriv-
ing this expression requires reasoning about any maxi-
mizer θ?j of φ̂j(µ), which is guaranteed to exist because
problem (5) is bounded and feasible2 for any parame-
ters µ ∈ [0, 1]n and wj .

We first derive a sufficient condition for the linear pro-
gram to not be fully satisfiable, in the sense that it
cannot achieve a value of wj , the maximum value of
the weighted potential wjφj(x). Observe that, by the
objective (5) and the simplex constraint (8), showing

that φ̂j(µ) is not fully satisfiable is equivalent to show-
ing that θ?j (xF

j ) > 0.

2Setting θj(xj) to the probability defined by µ under
the assumption that the elements of xj are independent,
i.e., the product of the pseudomarginals, is always feasible.

Lemma 1. If∑
i∈I+

j

µi +
∑
i∈I−

j

(1− µi) < 1 ,

then θ?j (xF
j ) > 0.

Proof. By the simplex constraint (8),∑
i∈I+

j

µi +
∑
i∈I−

j

(1− µi) <
∑
xj

θ?j (xj) .

Also, by summing all the constraints (6) and (7),∑
xj |xj 6=xF

j

θ?j (xj) ≤
∑
i∈I+

j

µi +
∑
i∈I−

j

(1− µi) ,

because all the components of θ? are nonnegative,
and—except for θ?j (xF

j )—they all appear at least once
in constraints (6) and (7). These bounds imply∑

xj |xj 6=xF
j

θ?j (xj) <
∑
xj

θ?j (xj) ,

which means θ?j (xF
j ) > 0, completing the proof.

We next show that if φ̂j(µ) is parameterized such that
it is not fully satisfiable, as in Lemma 1, then its opti-
mum always takes a particular value defined by µ.

Lemma 2. If wj > 0 and θ?j (xF
j ) > 0, then∑

xj |xj 6=xF
j

θ?j (xj) =
∑
i∈I+

j

µi +
∑
i∈I−

j

(1− µi) .

Proof. We prove the lemma via the Karush-Kuhn-
Tucker (KKT) conditions (Karush, 1939; Kuhn and
Tucker, 1951). Since problem (5) is a maximization
of a linear function subject to linear constraints, the
KKT conditions are necessary and sufficient for any
optimum θ?j .

Before writing the relevant KKT conditions, we intro-
duce some necessary notation. For a state xj , we need
to reason about the variables that disagree with the
unsatisfied state xF

j . Let

d(xj) ,
{
i ∈ I+

j ∪ I
−
j |xj(i) 6= xF

j (i)
}

be the set of indices for the variables that do not have
the same value in the two states xj and xF

j .

We now write the relevant KKT conditions for θ?j . Let

λ,α be real-valued vectors where |λ| = |I+
j |+ |I

−
j |+ 1

and |α| = |θj |. Let each λi correspond to a con-
straint (6) or (7) for i ∈ I+

j ∪ I
−
j , and let λ∆ cor-

respond to the simplex constraint (8). Also, let each
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αxj correspond to a constraint (9) for each xj . Then,
the following KKT conditions hold:

αxj
≥ 0 ∀xj (10)

αxj
θ?j (xj) = 0 ∀xj (11)

λ∆ + αxF
j

= 0 (12)

wj +
∑

i∈d(xj)

λi + λ∆ + αxj
= 0 ∀xj 6= xF

j . (13)

Since θ?j (xF
j ) > 0, by condition (11), αxF

j
= 0. By

condition (12), then λ∆ = 0. From here we can
bound the other elements of λ. Observe that for ev-
ery i ∈ I+

j ∪ I−j , there exists a state xj such that
d(xj) = {i}. Then, it follows from condition (13) that
there exists xj such that, for every i ∈ I+

j ∪ I
−
j ,

wj + λi + λ∆ + αxj = 0 .

Since αxj
≥ 0 by condition (10) and λ∆ = 0, it follows

that λi ≤ −wj . With these bounds, we show that, for
any state xj , if |d(xj)| ≥ 2, then θ?j (xj) = 0. Assume
that for some state xj , |d(xj)| ≥ 2. By condition (13)
and the derived constraints on λ,

αxj
≥ (|d(xj)| − 1)wj > 0 .

With condition (11), θ?j (xj) = 0. Next, observe that

for all i ∈ I+
j (resp. i ∈ I−j ) and for any state xj , if

d(xj) = {i}, then xj(i) = 1 (resp. xj(i) = 0), and for
any other state x′j such that x′j(i) = 1 (resp. x′j(i) =
0), d(x′j) ≥ 2. By constraint (6) (resp. constraint (7)),
θ?(xj) = µi (resp. θ?(xj) = 1− µi).

We have shown that if θ?j (xF
j ) > 0, then for all states

xj , if d(xj) = {i} and i ∈ I+
j (resp. i ∈ I−j ), then

θ?j (xj) = µi (resp. θ?j (xj) = 1−µi), and if |d(xj)| ≥ 2,
then θ?j (xj) = 0. This completes the proof.

Lemma 1 says if
∑

i∈I+
j
µi +

∑
i∈I−

j
(1− µi) < 1, then

φ̂j(µ) is not fully satisfiable, and Lemma 2 provides its
optimal value. We now reason about the other case,
when

∑
i∈I+

j
µi+

∑
i∈I−

j
(1−µi) ≥ 1, and we show that

it is sufficient to ensure that φ̂j(µ) is fully satisfiable.

Lemma 3. If wj > 0 and∑
i∈I+

j

µi +
∑
i∈I−

j

(1− µi) ≥ 1 ,

then θ?j (xF
j ) = 0.

Proof. We prove the lemma by contradiction. Assume
that wj > 0,

∑
i∈I+

j
µi +

∑
i∈I−

j
(1− µi) ≥ 1, and that

the lemma is false, θ?j (xF
j ) > 0. Then, by Lemma 2,∑

xj |xj 6=xF
j

θ?j (xj) ≥ 1 .

The assumption that θ?j (xF
j ) > 0 implies∑

xj

θ?j (xj) > 1,

which is a contradiction, since it violates the simplex
constraint (8). The possibility that θ?j (xF

j ) < 0 is ex-
cluded by the nonnegativity constraints (9).

For completeness and later convenience, we also state
the value of φ̂j(µ) when it is fully satisfiable, which
follows from the simplex constraint (8).

Lemma 4. If θ?j (xF
j ) = 0, then∑

xj |xj 6=xF
j

θ?j (xj) = 1 .

We can now combine the previous lemmas into a single
expression for the value of φ̂j(µ).

Lemma 5.

φ̂j(µ) = wj min


∑
i∈I+

j

µi +
∑
i∈I−

j

(1− µi), 1

 .

Proof. The lemma is trivially true if wj = 0 since any
assignment will yield zero value. If wj > 0, then
we consider two cases. In the first case, if

∑
i∈I+

j
µi +∑

i∈I−
j

(1− µi) < 1, then, by Lemmas 1 and 2,

φ̂j(µ) = wj

∑
i∈I+

j

µi +
∑
i∈I−

j

(1− µi)

 .

In the second case, if
∑

i∈I+
j
µi +

∑
i∈I−

j
(1 − µi) ≥ 1,

then, by Lemmas 3 and 4,

φ̂j(µ) = wj .

Factoring out wj completes the proof.

This leads to our final equivalence result.

Theorem 6. For a logical MRF, the first-order lo-
cal consistency relaxation of MAP inference is equiv-
alent to the MAX SAT relaxation of Goemans and
Williamson (1994). Specifically, any partial optimum
µ? of objective (1) is an optimum y? of objective (2),
and vice versa.

Proof. Substituting the solution of the inner optimiza-
tion from Lemma 5 into the local consistency relax-
ation objective (4) gives a projected optimization over
only µ which is identical to the MAX SAT relaxation
objective (2).

We discuss the practical implications of this proof of
equivalence in the next section.
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4 SOLVING THE RELAXATION

A large body of work has focused on solving local con-
sistency relaxations of MAP inference quickly. Typi-
cally, off-the-shelf convex optimization methods do not
scale well for large graphical models (Yanover et al.,
2006), so a large, important branch of research has in-
vestigated highly scalable message-passing algorithms.
In this section, we examine how such algorithms can
be augmented with the rounding guarantees of the
MAX SAT relaxation, since they optimize the same
objective. We propose using a message-passing algo-
rithm to optimize the local consistency relaxation and
then applying the rounding procedure of Goemans and
Williamson (1994) to obtain a high-quality discrete
solution. Any algorithm that can find the optimal
variable pseudomarginals µ? is applicable. We con-
sider three families of message-passing algorithms from
graphical models literature.

The first approach is dual decomposition (DD) (Sontag
et al., 2011), which solves a dual problem of (1):

min
δ

n∑
i=1

max
xi

 ∑
j|xi∈xj

δij(xi)


+

m∑
j=1

max
xj

wjφj(xj)−
∑

i|xi∈xj

δij(xi)

 (14)

where δ is a vector of dual variables. Since the pseu-
domarginals θ and µ do not actually appear in ob-
jective (14), only some DD algorithms can be used
to find the optimum µ? in order to compute round-
ing probabilities. Subgradient methods for DD (e.g.,
Jojic et al. (2010), Komodakis et al. (2011), and
Schwing et al. (2012)) can find µ? in many ways,
including those described by Anstreicher and Wolsey
(2009), Nedić and Ozdaglar (2009), and Shor (1985).
Other DD algorithms, such as TRW-S (Kolmogorov,
2006), MSD (Werner, 2007), MPLP (Globerson and
Jaakkola, 2007), and ADLP (Meshi and Globerson,
2011), use coordinate descent to solve the dual objec-
tive. In general, there is no known way to find the
primal solution µ? with coordinate descent DD.

The second approach uses message-passing algorithms
to solve objective (1) directly in its primal form and
therefore always finds µ?. One well-known algorithm
is that of Ravikumar et al. (2010), which uses proxi-
mal optimization, a general approach that iteratively
improves the solution by searching for nearby improve-
ments. The authors also provide rounding guarantees
for when the relaxed solution is integral, i.e., the re-
laxation is tight, allowing the algorithm to converge
faster. Such guarantees are complementary to ours,
since we consider the case when the relaxation is not

tight. Another message-passing algorithm that solves
the primal objective is AD3 (Martins et al., 2011),
which uses the alternating direction method of mul-
tipliers (ADMM) (Boyd et al., 2011). AD3 optimizes
objective (1) for binary, pairwise MRFs and supports
the addition of certain deterministic constraints on
the variables. A third example of a primal message-
passing algorithm is APLP (Meshi and Globerson,
2011), which is the primal analog of ADLP. Like AD3,
it uses ADMM to optimize the objective.

A third approach is a new one that we identify and de-
serves special emphasis. The compact form of relaxed
MAP inference for logical MRFs derived in Section 3
is subsumed by exact MAP inference for hinge-loss
Markov random fields (HL-MRFs) (Bach et al., 2013),
which are MRFs defined over continuous variables with
hinge-loss functions for potentials. A MAP state of
a HL-MRF minimizes the sum of the weighted hinge-
loss potentials. Instead of solving the local consistency
relaxation in the form of objective (1), objective (2)
can be rewritten as a minimization of hinge-loss po-
tentials by subtracting each weighted clause wjφ(x)
from its maximum possible value wj . HL-MRFs sup-
port scalable MAP inference via ADMM, so the same
inference algorithm can be applied to relaxed MAP in-
ference for logical MRFs. This approach is appealing
because it solves the compact form of the local con-
sistency relaxation directly, optimizing over only µ,
thus avoiding the expensive explicit representation of
high-dimensional factor marginals.

Any of these three approaches can be used to perform
relaxed MAP inference and find µ?, the optimal vari-
able pseudomarginals. If µ? is not integral, i.e., the
relaxation is not tight, then we apply the rounding
procedure of Goemans and Williamson (1994), as dis-
cussed in Section 2.4. We let pi = f(µ?

i ) and apply
the method of conditional probabilities. This tech-
nique combines the fast inference of message-passing
algorithms with the rounding guarantees of MAX SAT
relaxations for high solution quality.

5 EVALUATION

In this section, we compare our proposed approach to
approximate MAP inference with coordinate descent
DD, a popular approach to which rounding procedures
cannot be applied (because it does not find a primal
solution µ?). We show that our proposed technique
of combining the rounding procedure with message-
passing algorithms can significantly improve the qual-
ity of approximate inference. We refer to our tech-
nique as rounded linear programming or rounded LP.
We compare rounded LP with MPLP (Globerson and
Jaakkola, 2007), which is a state-of-the-art coordinate
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Table 1: Average sizes for each group of MAP tasks.

Group Target Users Variables Clauses

1 10,000 10,019 214,163
2 20,000 20,037 446,109
3 30,000 30,055 685,415
4 40,000 40,073 924,082
5 50,000 50,091 1,156,125

descent DD algorithm. Recent work, e.g., Jojic et al.
(2010) and Meshi and Globerson (2011), notes that
MPLP often finds the best discrete, primal solutions.

We evaluate rounded LP and MPLP on randomly gen-
erated social network analysis problems, in which the
task is to predict whether users share the same po-
litical ideology, e.g., liberal or conservative. The net-
works are composed of upvote and downvote edges,
representing whether each user liked or disliked some-
thing another user said. We assume that we have some
attribute information about each user, summarized in
an ideology score uniformly distributed in the [−1, 1]
interval. This score could be the output of a classifier
or an aggregate over features. It represents local infor-
mation about each user, which the model considers in
conjunction with the structure of the interactions.

We generate networks based on a procedure of
Broecheler et al. (2010). For a target number of
users, in-degrees and out-degrees d for each edge type
are sampled from the power-law distribution P (d) ∝
3·d2.5. Edges are created by randomly matching nodes
until no more can be added. The number of users is
initially the target number plus the expected number
of users with zero edges, and then users without any
edges are removed. We generated 25 such networks
in five groups. Table 1 lists the groups, target num-
bers of users, and the average numbers of variables
and clauses in the corresponding MAP tasks, which is
determined by the networks’ structures.

We construct a logical MRF for each network to model
user ideology. We describe the MRFs in terms of their
sets of weighted clauses C. Associate with each user
X in the network a Boolean variable and arbitrarily
associate the true state with a liberal ideology and the
false state with a conservative ideology. We refer to
each such variable as Liberal(X). If the sign of the
ideology score is positive then we add to C the clause

w∼[0,1] : Liberal(X)

and if its sign is negative we add the clause

w∼[0,1] : ¬Liberal(X) .

In either case, each clause is weighted with the magni-
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Figure 1: Primal objective scores relative to MPLP.

tude of the ideology score. For each upvote edge from
user X1 to X2 we add the clauses

1.0 : ¬Liberal(X1) ∨ Liberal(X2)

1.0 : Liberal(X1) ∨ ¬Liberal(X2) ,

enforcing a preference for agreeing ideology, and for
each downvote edge we add the clauses

1.0 : Liberal(X1) ∨ Liberal(X2)

1.0 : ¬Liberal(X1) ∨ ¬Liberal(X2) ,

enforcing a preference for disagreeing ideology. While
these models are motivated by social network analysis,
they are of a similar form to many other problems and
domains involving collective classification with attrac-
tive and repulsive dependencies.

For each of the 25 logical MRFs, we performed approx-
imate MAP inference using rounded LP and MPLP.
For rounded LP, we solved the local consistency relax-
ation as a HL-MRF, as described in Section 4. We
measured the initial linear program objective score
(“LP Upper Bound”), which is an upper bound on
any discrete primal solution, the expected score Ŵ (3)
using pi = f(µ?

i ) (“Rounded LP (Exp)”), and the fi-
nal score after rounding using the method of condi-
tional probabilities (“Rounded LP”), as described in
Section 2.4. For MPLP, we used the implementation of
Globerson et al. (2012) with default settings. We mea-
sured the results of both the first-order local consis-
tency relaxation (“MPLP”) and iterative cycle tight-
ening (“MPLP w/ Cycles”) (Sontag et al., 2008, 2012),
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which searches for tighter relaxations to use. The re-
sults are summarized in Figure 1, and provided in the
supplementary material. All differences in scores be-
tween the ten pairs of methods, e.g., “Rounded LP
(Exp)” and “MPLP w/ Cycles,” are statistically sig-
nificant using a paired t-test with rejection threshold
p < 0.001, except “MPLP” and “MPLP w/ Cycles.”

On these problems, rounded LP always outperforms
MPLP. It finds solutions that are better in expecta-
tion than MPLP’s solutions, and those solutions are
improved further after rounding. What makes these
problems difficult is that each pair of clauses for either
an upvote or downvote edge is a supermodular poten-
tial or submodular potential, respectively. The first-
order local consistency relaxation would be tight for
a completely supermodular problem (Wainwright and
Jordan, 2008), but this mix of potentials makes the
problems hard to solve. We found (in experiments not
shown) that MPLP’s relative performance improves on
problems that have many more supermodular poten-
tials than submodular ones, presumably because they
are very close to polynomial-time solvable problems.
Cycle tightening improves the performance of MPLP,
but its impact is limited because there are so many
frustrated cycles in these problems. Rounded LP is
highly scalable, taking only a minute to solve prob-
lems with over one million clauses. Our experiments
demonstrate tangible consequences of the approxima-
tion guarantee for rounded LP.

6 RELATED WORK

In addition to the various approaches discussed in Sec-
tion 4, other approaches to approximating MAP in-
ference include tighter linear programming relaxations
(Sontag et al., 2008, 2012). These tighter relaxations
enforce local consistency on variable subsets that are
larger than individual variables, which makes them
higher-order local consistency relaxations. Mezuman
et al. (2013) developed techniques for special cases of
higher-order relaxations, such as when the MRF con-
tains cardinality potentials, in which the probability of
a configuration depends on the number of variables in a
particular state. Some papers have also explored non-
linear convex programming relaxations, e.g., Raviku-
mar and Lafferty (2006) and Kumar et al. (2006).

Previous analyses have identified particular subclasses
whose local consistency relaxations are tight, i.e., the
maximum of the relaxed program is exactly the maxi-
mum of the original problem. These special classes in-
clude graphical models with tree-structured dependen-
cies, binary pairwise models with supermodular po-
tential functions, models encoding bipartite matching
problems, and those with nand potentials and perfect

graph structures (Wainwright and Jordan, 2008; Schri-
jver, 2003; Jebara, 2009; Foulds et al., 2011). These
tightness guarantees are powerful but require more re-
strictive conditions than our analysis.

While MAP inference is hard to approximate in gen-
eral (Abdelbar and Hedetniemi, 1998; Park, 2002b),
researchers have studied performance guarantees of
the first-order local consistency relaxation for special
cases. Kleinberg and Tardos (2002) and Chekuri et al.
(2005) considered the metric labeling problem. Feld-
man et al. (2005) used the local consistency relaxation
to decode binary linear codes. Our work provides per-
formance guarantees for approximate MAP inference
for a new class of models, logical MRFs.

Finally, Huynh and Mooney (2009) introduced a linear
programming relaxation for Markov logic (Richard-
son and Domingos, 2006) inspired by MAX SAT re-
laxations. Markov logic subsumes logical MRFs, but
the relaxation of general Markov logic comes with no
known guarantees on the quality of solutions.

7 CONCLUSION

In this paper, we proved that the first-order local con-
sistency relaxation and the MAX SAT relaxation of
Goemans and Williamson (1994) are equivalent for
logical MRFs. This result is important because the
local consistency relaxation can first be solved with
any of a number of highly scalable message-passing al-
gorithms, and the output can then be rounded to a dis-
crete solution of guaranteed high quality. We demon-
strated this technique by comparing it with coordi-
nate descent DD, showing that applying the guaran-
teed rounding procedure leads to higher solution qual-
ity. Directions for future work include applying our
hierarchical optimization analysis to other cases and
examining whether rounding guarantees can be devel-
oped for higher-order relaxations.
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