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ABSTRACT
We propose a new method for training iterative collective
classifiers for labeling nodes in network data. The itera-
tive classification algorithm (ICA) is a canonical method for
incorporating relational information into the classification
process. Yet, existing methods for training ICA models rely
on computing relational features using the true labels of
the nodes. This method introduces a bias that is inconsis-
tent with the actual prediction algorithm. In this paper,
we introduce a variant of ICA, ICA with back-propagation
(BPICA) as a procedure analogous to recurrent neural net-
work prediction, which enables gradient-based strategies for
optimizing over model parameters. We demonstrate that by
training BPICA, we more directly optimize the training loss
of collective classification, which translates to improved ac-
curacy and robustness on real network data. This robustness
enables effective collective classification in settings where
local classification is very noisy, settings that previously were
particularly challenging for ICA and variants.
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1. INTRODUCTION
Data science tasks often require reasoning about networks

of connected entities, such as social and information networks.
In classification tasks, the connections among network nodes
can have important effects on node-labeling patterns, so
models that perform classification in networks should con-
sider network structure to fully represent the underlying
phenomena. For example, when classifying individuals by
their personality traits in a social network, a common pattern
is that individuals will communicate with like-minded indi-
viduals, suggesting that predicted labels should also tend to
be uniform among connected nodes. Collective classification
methods aim to make predictions based on this relationship
between network structure and labels. In this paper, we
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Figure 1: Illustration of the iterative classification al-
gorithm (ICA). ICA repeatedly computes relational
features based on current estimates of node labels,
then classifies each nodes using a concatenated input
vector of its local features and its relational features.

improve a training procedure for a collective classification
framework that will enable an algorithm to more directly
optimize the performance of trained collective classifiers.

Iterative classification is a framework that enables a variety
of basic machine learning methods to incorporate information
from networks. The base machine learning method can be
any standard classifier that takes information describing each
example as input and then outputs a label. The iterative
classification algorithm (ICA) operates by using previous
predictions about neighboring nodes as inputs to the current
predictor, as illustrated in Figure 1. For example, if the base
predictor is a logistic regression model, one input feature
may be the average predicted class probability of a node’s
neighbors. This pipeline creates a feedback loop that allows
models to pass information through the network and capture
the effect of network structure on classification. Despite the
fact that the feedback loop is the most important aspect of
ICA, existing approaches train these models in a manner
that ignores the feedback-loop structure. In this paper, we
introduce BPICA, which corrects this discrepancy between
the learning and prediction algorithms by incorporating prin-
ciples used in deep learning and recurrent neural networks
into the training process.

Existing learning algorithms for iterative classification re-
sort to an approximation based on the unrealistic assumption
that the predicted labels of neighbors are their true classes
[13, 19]. This assumption is overly optimistic. If it were true,
iteration would be unnecessary. Because the assumption is
overly optimistic, it causes the learned models to cascade
and amplify errors when the assumption is broken in early
stages of prediction. In contrast, the actual ICA predictive
procedure uses predicted neighbor labels as feedback for each
subsequent prediction, which means that if the model was
trained expecting these predicted labels to be perfect, it will



not be robust to situations where predictions are noisy or
inaccurate. In this paper, we correct this faulty assumption
and develop an algorithm that trains models for iterative clas-
sification by treating the intermediate predictions as latent
variables. We compute gradients to the classification loss
function using iterated applications of the chain rule, leading
to a method similar to the back-propagation approach for
training neural networks.

To compute gradients for ICA using the chain rule, we
break down the ICA process into differentiable (or sub-differ-
entiable) operations. In many cases, the base classifier is
differentiable with respect to its parameters. For example, if
it is a logistic regression, it has a well-studied gradient. ICA
also involves aggregation of predictions from neighboring
nodes, which can be casted as a sparse matrix multiplication,
through which gradients can be propagated. Finally, because
the same base-classifier parameters should be used at all
iterations of ICA, we can use methods from recurrent neural
networks such as back-propagation through time (BPTT)
[24] to compute the combined gradient. In contrast with
existing strategies for training ICA, the resulting training
optimization more closely mimics the actual procedure that
ICA uses for prediction.

We evaluate the proposed gradient-based training algo-
rithm on data sets where collective classification has been
shown to be helpful in previous studies. These data sets are
citation networks [21], where documents are connected in a
network if one cites the other, and they are to be classified
according to their main topic area. We demonstrate that
BPICA is able to train classifiers that are robust to situations
where local predictions are inaccurate.

The remainder of the paper is organized as follows. In
Section 2, we review related work that our contribution builds
upon. In Section 3, we review the iterative classification
algorithm and introduce the notation we will use to describe
our approach. In Section 4, we introduce BPICA and describe
its back-propagation learning procedure. In Section 5, we
describe experiments evaluating the behavior of BPICA on
node classification data sets, demonstrating it as an effective
of robust collective classification.

2. RELATED WORK
Node classification is one of the fundamental tasks in

analysis of network data [5, 12]. Collective classification
addresses this task by making joint classifications of con-
nected nodes [11, 20, 23]. Gibbs sampling (GS) is another
approach for collective classification using the iterative clas-
sification framework [16, 21]. The idea is to estimate the
full joint distribution by iteratively doing classification using
relational information for fixed iterations. However, it can
require thousands of iterations to converge, so it is often more
expensive than ICA. ICA and GS has been shown repeat-
edly to be an effective framework for collective classification
[10, 14, 16, 19, 21]. ICA is a central algorithm in the research
fields of graph mining and statistical relational learning, and
since it is an algorithm that makes joint predictions, it is a
key example of structured prediction.

One of the more natural motivations for collective clas-
sification comes from the study of social networks, where
the phenomenon of homophily—the tendency of individuals
to interact with other similar individuals—has been iden-
tified. For example, studies have shown homophily in age,
gender, race and ethnicity, and geographical location [2, 17].

Nevertheless, the types of dependencies that can exist in
networks are not limited to assortative relationships—where
connected nodes tend to be similar. Methods such as ICA
enable models to encode both assortative and non-assortative
phenomena.

Through the interpretation of non-terminal classifications
as latent variables, ICA can be related to deep learning
methods. Since the same classifier is used to predict each
latent layer, ICA is most related to recurrent neural networks
(RNNs), which feature a similar feedback loop in which an
output of a neural network is used as its input in a subsequent
iteration. RNNs were introduced decades ago [1, 3], but they
have recently become prominent because of their effectiveness
at modeling sequences, such as those occurring in natural
language processing, e.g., [6, 7, 18, 22]. A now standard
method for gradient optimization of RNN parameters is
known as back-propagation through time [8, 9, 24], which
unrolls recurrent networks and computes gradients for the
parameters separately before combining them into a single
update.

3. THE ITERATIVE CLASSIFICATION
ALGORITHM

In this section, we review the iterative classification al-
gorithm (ICA) and the standard method for training its
parameters. ICA is a framework for node classification in
networks. ICA is given a decorated graph G = {V,E,X},
where V = {v1, . . . , vn}, E contains pairs of linked nodes
(vi, vj) ∈ E, and each node is associated with a respective
feature vector X = {x1, . . . ,xn} with each vector xi ∈ Rd ≡
X . Using these inputs, ICA outputs a set of predictions
{y1, . . . , yn} classifying each of the nodes in V into a dis-
crete label space Y. Throughout this paper, we will consider
the multi-class setting, in which the labels can take one of k
class-label values. In particular, we use the so-called“one-hot”
representation for multi-class labels, such that Y is space
of binary vectors with exactly one nonzero entry, indicating
the class membership. ICA makes the label predictions by
iteratively applying classification functions that label nodes
based on their local features xi and their dynamic relational
features R = {r1, . . . , rn}, each in a common space ri ∈ R.
In other words, the classifier is a function g that maps X ×R
to Y.

The dynamic relational features are computed based on
the current estimated labels of each node. They enable the
classifier to reason about patterns of labels among connected
nodes. For example, a common dynamic relational feature is
the average prediction of neighboring nodes. I.e.,

ri =
1

|{(i, j) ∈ E|}|
∑

j:(i,j)∈E

yj. (1)

Using any such aggregation statistic creates a relational
feature vector that has dimensionality k, where each entry is
the occurrence rate of its corresponding label in the node’s
neighbors.

Since the dynamic relational features are computed based
on the output of the classifier, the entire process is iterated:
(1) all nodes are labeled by the classifier using the current
dynamic relational features, then (2) the dynamic relational
features are updated based on the new labels. These two
phases are repeated either until the predictions converge and
do not change between iterations or until a cutoff point.



The ICA framework is general in that any classification
function can be used and any definition of dynamic relational
attributes can be used. In practice, researchers have used
naive Bayes, logistic regression, support vector machines
as the classifiers, and they have used averages, sums, and
presence as relational features [10, 14, 19, 21].

The existing training procedure for ICA trains the clas-
sifiers by computing relational features using the training
labels. Given a training set consisting of a set of nodes V ,
edges E, node features X, and ground-truth labels Y , one
generates relational features R using the true training labels,
creating fully instantiated, fully labeled inputs for the classi-
fier. Then any appropriate training procedure for the base
classifier is used to fit the model parameters.

In many settings, we consider real-valued local and rela-
tional features, so each node is described by a feature vector
created by concatenating its local features with its relational
features [xi ri]. In this case, it is convenient to notate the
classification of the entire graph in terms of matrices. Let X
denote the feature matrix for the graph, such that the ith
row of X, i.e., xi is the (transposed) feature vector for node
vi. Similarly, let R denote the relational feature matrix, such
that the ith row of R is the dynamic relational feature vector
of node vi. For convenience, we consider the case where
one type of dynamic relational feature is used, meaning the
dimensionality of R is n by k.

Common instantiations of ICA use linear, multi-class clas-
sifiers, in which the classifiers are based on weighted linear
combination of the features. In these cases, the model pa-
rameters for the classifier typically take the form of weight
matrices U ∈ Rd×k and V ∈ Rk×k. There is a column
in each matrix for each class, and each column contains
a weighting of the local and relational feature dimensions,
respectively. For example, a multi-class logistic regression
classifier computes estimated label probabilities using the
formulas

Ỹ = exp (XV + RU) ,

Y ′i` =
Ỹi`∑
`′ Ỹi`′

.
(2)

Moreover, for neighbor-averaging relational features, it
is also convenient to notate their computation as a matrix
operation. Let A be an n by n weighted adjacency matrix,
where its rows are normalized to unit sums. I.e.,

Aij =

{
1/ni if (i, j) ∈ E
0 otherwise,

(3)

where ni is the number of node vi’s neighbors, ni = |{(i, `) ∈
E}|.

Previous ICA training procedures for such a classifier would
fit the U and V matrices by setting R̂ = AY, then using X
and R̂ as the input to a standard logistic regression training
scheme, such as regularized maximum likelihood.

This training methodology is ideal in the situation where
we expect a perfect-classification fixed-point. In such a fixed
point, the relational features are computed using the true
labels, and the classifiers perform perfectly, exactly predict-
ing the true labels of the nodes; the relational features are
computed, using the perfectly predicted labels, to be exactly
the same features that are computed using the true training
labels; since the relational features are computed using the
exactly predicted true labels, the output is the same as in

Algorithm 1 The Iterative Classification Algorithm

1: Input: Graph G = {V,E} with node features X, number
of iterations T , classifier g.

2: Initialize labels Y {e.g., random or uniform across all
classes}

3: for t from 1 to T do
4: for each node in V do
5: Calculate ri with current label estimates Y {e.g.,

Equation (1) or in the vector form in Section 3,
ri ← [AY]i}.

6: Set yi ← g([xi, ri])
7: end for
8: end for
9: return labels Y

the first step, and the algorithm converges perfectly to the
true labels. Using the matrix form of the relational feature
computation above, this fixed point would be characterized
as

Y = g ([X, AY]) . (4)

Unfortunately, such a fixed point is unrealistic. In prac-
tice, the classifications can be inaccurate or made with low
confidence due to a lack of reliable local information. Thus,
training the model to expect that the neighbor labels be
perfect creates an overconfidence that can lead to cascading
errors. In the next section, we introduce our main contri-
bution: an approach that more directly optimizes the loss
associated with a variant of the ICA prediction process.

4. ICA WITH BACK-PROPAGATION
In this section, we present our main contribution. We

recast a slight variant of ICA as a series of differentiable
operations such that a training loss function can be directly
optimized.

Additionally to the fact that we cast the operations of an
ICA variant as differentiable operations, the more important
difference between the proposed training approach and the
existing methods is that we enable training of the collective
classification in a manner that more directly mimics how
they will be applied. At test time, a collective classifier
is often given only local features of nodes connected in a
network. Thus, any relational features derived from neighbor
labels is derived from predicted neighbor labels. A classifier
considering these neighbor labels should therefore consider
common patterns of misclassification of neighbor labels. The
previous training procedure invites the classifier to become
overly reliant on the verity of the neighbor labels.

4.1 Prediction
For linear classifiers, ICA can be viewed as the iteration of

the following steps. First, the local and relational features are
multiplied by the model weights. Second, the linear product
prediction scores are squashed. For example, they could be
converted to values in [0, 1] via the logistic sigmoid function,
or into a probability vector via the soft-max function, i.e.,
the normalized multi-class logistic. Third, the squashed pre-
dictions are aggregated into new dynamic relational features.
The following three equations express these steps in matrix



form, respectively.

Z(t) = XV + R(t−1)U

P(t) = f(Z(t))

R(t) = AP(t)

(5)

These updates are applied from iterations t = 1 to t = T .
A common squashing function is the logistic sigmoid func-

tion

f(z) =
1

1 + exp(−z) , (6)

whose derivative is

f ′(z) = f(z)(1− f(z)). (7)

For the final output, we use the soft-max squashing func-
tion to convert the prediction scores Z to a multinomial
probability vector

Y ′ij =
exp

(
Z

(T )
ij

)
∑
k exp

(
Z

(T )
ik

) , (8)

which is equivalent to the multi-class logistic regression for-
mula in Equation (2).

4.2 Learning
Each of these steps is differentiable, and this variant of ICA

iteratively performs linear products and nonlinear squashing
functions. Figure 2 illustrates BPICA as a neural network.
We can thus use a standard method for training such networks
known as back-propagation through time, which unfolds the
iterations of the algorithm (see Figure 2), computes gradients
for each unfolded layer using feed-forward back-propagation,
and combines the gradients to perform learning updates.

The main objective function is the negative log likelihood
of the true labels

L(Z) = −
∑
ij

Yij log Y ′ij

= log

(∑
k

exp(Z
(T )
ik )

)
−
∑
ij

YijZ
(T )
ij

(9)

In order to capture more history information, errors can be
propagated further and this process is called back-propagation
through time.

Define the recursive error signal at t-th layer as:

∆(t) =
∂L

∂(Z(t))
(10)

To apply BPTT training, a single entry of an error matrix

in the previous layer δ
(t−1)
pj can be calculated by the error in

the next layer:

δ
(t−1)
pj =

k∑
m=1

δ(t)pmUmjf
′(Z

(t−1)
pj )App (11)

where p is the node index, j is the class index and k is the
number of classes. Therefore, the errors are propagated from
the output layer to the middle layers.

For convenience, we can rewrite Equation (11) in matrix
form, for each layer (i.e., iterations) except for the last one,

the error ∆(t) can be calculated backward through the fol-
lowing recursive definition

∆(t−1) = A>∆(t)U> � F(t−1) (12)

where

F
(i)
ij = f ′ij(Z

(i)
ij ). (13)

For soft-max classifier, the error gradient ∆(T ) for the last
layer is

∆(T ) =
∂L

∂(Z(T ))
= Y′ −Y. (14)

While this recursive gradient computation is analogous to
standard back-propagation equations for computing gradients
of layered neural networks, an important difference here is
the inclusion of the A matrix, which forms the relational
features. The relational feature computation essentially acts
as an extra neural layer between iterations, and this equation
reflects how error propagates through that relational feature
construction.

Then given these error signals at each layer, we can obtain
the gradients for two unrolled weight matrices by applying
chain rule.

∇(V)(t) =
∂(L)

∂(Z(t))

∂(Z(t))

∂(V)
= X>∆(t)

∇(U)(t) =
∂(L)

∂(Z(t))

∂(Z(t))

∂(U)
= (R(t−1))>∆(t)

(15)

Using the methodology of back-propagation through-time,
the final derivative is the sum of each unrolled derivative. The
entire gradient computation is summarized in Algorithm 2.
Given the gradients, a variety of learning optimization pro-
cedures are possible, such as the simple gradient descent
approach

V← V − η
T−1∑
τ=0

X>∆(T−τ)

U← U− η
T−1∑
τ=0

(R(T−τ−1))>∆(T−τ)

(16)

where η is a learning rate that may decrease with further
iterations of gradient descent. More advanced gradient-based
methods are also easily applicable once the gradient computa-
tion is implemented. For example, one particularly effective
strategy is the adagrad approach [4], which we use in our
experiments as described in Section 5.

One important fact about this training procedure is that
it results in a non-convex objective function. Even though
the classifier is linear, the repeated squashing and recurrence
of the labeling through the relational features leads to a
non-convex objective. In experiments, we find that local
solutions to the non-convex optimization produce effective
models.

5. EXPERIMENTS
In this section, we describe experiments that test whether

the proposed training method for BPICA is able to improve
upon existing methods of training iterative classifiers. We
explore scenarios where the local classifier produces inaccu-
rate predictions, challenging the faulty assumption implied
by training ICA and Gibbs sampling (GS) with relational



Figure 2: Structure of BPICA. On the left, the recurrent form illustrates the recursive computation of
iterative classification. On the right, the unfolded structure explicitly considers each iteration as a separate
operation, enabling gradients to be computed for each step.

Algorithm 2 BPICA Gradient Computation

1: Input: Graph G = {V,E}, training labels Y , number of
iterations T .

2: Initialize parameter matrices U, V, set R(0) = 0.
3: Generate matrix A based on E {e.g., Equation (3)}
4: for t from 1 to T do
5: Z(t) = XV + R(t−1)U.
6: P(t) = f(Z(t)) where f is the activation function.

7: R(t) = AP(t)

8: end for
9: Compute gradients of loss for output layer ∆(T)

10: for t from T to 2 do
11: ∆(t−1) ← A>∆(t)U> � F(t−1)

12: end for
13: ∇(V)←

∑T−1
τ=0 X>∆(T−τ)

14: ∇(U)←
∑T−1
τ=0 (R(T−τ−1))>∆(T−τ)

15: return ∇(U) and ∇(V)

features computed using the true labels. The results illus-
trate that our hypothesis is correct, identifying a variety of
settings where BPICA better optimizes the training objective
and produces more accurate predictions on held-out data.

5.1 Setup
For each experiment, we evaluate on four different ap-

proaches for node classification: (1) local prediction using
only the local features; (2) ICA trained using the true labels;
(3) GS trained using the true labels; and (4) BPICA trained
using back-propagation. The local predictor is trained using
a multi-class logistic regression loss function, ICA and GS
are also trained using a multi-class logistic regression loss,
except with the concatenated relational features computed
from the true labels in addition to local features as input.
BPICA is trained using the training labels only in computing
the loss, but never as input to the classifier in any form.

For each of the learning objectives, we optimize using
the adagrad approach [4], in which gradients are rescaled
based on the magnitude of previously seen gradients. For
the gradient gτ at optimization iteration τ , one updates the
variable θ with

θτ ← θτ−1 − η
gτ√∑τ

i=1 gi � gi
, (17)

which is written with a slight abuse of notation in that the
gradient is divided elementwise by the historical magnitude.
Adagrad is one of many approaches that has been shown
in practice to accelerate convergence of gradient-based op-
timization. Each training optimization is done with 1,000
iterations of adagrad and an initial learning rate of η = 0.01.
We evaluate performance of each method using a range of
regularization parameter settings from 1× 10−3 to 1× 103.

For each experimental trial, we perform snowball sampling
to extract a random 1/5 of the nodes to hold out as a separate,
isolated test network. We train on the induced graph of the
4/5 remaining nodes, and measure predictive accuracy on
both the training graph and the held-out testing graph. The
training accuracy should more closely reflect whether each
method’s training strategy effectively optimizes the model
to fit the observed data, and the testing accuracy should
additionally reflect how well the learned model generalizes.
We compute both training and testing accuracy by feeding
the learned model only the local features and link structure,
meaning that though ICA and GS is typically trained with
the training labels as input, we do not provide the labels to
them when evaluating its training accuracy. Our hypothesis
is that by directly computing the gradient of the actual
prediction procedure for collective classification, BPICA will
produce better training performance, which should translate
to better testing performance.

The problem BPICA aims is to solve the discrepancy be-
tween training ICA with relational features based on the true
labels and the fact that at prediction time, ICA uses esti-
mated labels. To illustrate this discrepancy, our experiments
consider situations where local classification becomes more
and more difficult. We generate versions of the data set where
different fractions of the features are removed, in the range
[0.0, 0.9]. For example, when this fraction is 0.5, half of the
features are removed and made unavailable to the learning
and prediction algorithms. In effect, the experiments are run
on versions of the data sets where prediction is harder, and
more relevantly, where the assumption that the predicted
labels are exactly the true labels becomes more and more
incorrect. If the training procedure of BPICA is truly more
robust to this scenario, we expect its improvement over ICA
to become more pronounced as (local) prediction becomes
more difficult.



(a) Cora

(b) CiteSeer

(c) Facebook

Figure 3: Loss function comparison for BPICA and
ICA on three data sets. Each curve is a cross-section
of the high-dimensional training objective function.
The plots contain the solutions from BPICA and the
solution training ICA with the true training labels.
The solutions of BPICA are close to local minima
while the ICA weights are not.

5.2 Data
We experimented with three data sets, two bibliographic

data sets and one social network data set. The Cora data set,
the first bibliographic data set, is a collection of 2708 machine
learning publications categorized into seven classes [21]. Each
publication in the dataset is described by a 0/1-valued word
vector indicating the absence/presence of the corresponding
word from the dictionary. The dictionary consists of 3703
unique words.

The CiteSeer data set, the second bibliographic data set,
is a collection of 3312 research publications crawled from
the CiteSeer repository [21]. It consists of 3312 scientific
publications categorized into six classes. Each publication
in the data set is described by a 0/1-valued word vector
indicating the absence/presence of the corresponding word
from the dictionary. The dictionary consists of 1433 unique
words.

The social network data we use is the Facebook ego network
data [15], which includes users’ personal information, friend
lists, and ego networks. For our experiments, we combined
the ego networks and node features to form a single connected
network, with 4039 users’ anonymized profile data and links
between them. We used the feature “education type,” as a
label, aiming to predict how many degrees each user has, i.e.,
the four classes are whether their highest level of education
is secondary, undergraduate, or graduate, or if they omit this

information from their profiles.

5.3 Empirical Evaluation of Loss
To illustrate that BPICA optimizes the training loss func-

tion better than training with the true labels, we can compare
the training loss associated with the soft-max output loss, i.e.,
the regularized logistic-regression training log-likelihood. We
first train the model weights using BPICA and the relational
features computed using the true labels. We then define a
tradeoff function

l(α) = L(WBPICA + α(WICA −WBPICA)) (18)

where L is the loss function, WBPICA = [V; U] is the weight
matrix from the model trained by BPICA, WICA is the
weight matrix trained by the ICA strategy of using the true-
label relational features. We apply the loss function to differ-
ent weight matrices on the line that connects WBPICA and
WICA. This line is a cross-section of the high-dimensional
function that is the actual training loss. The most important
points to note are (1) when α = 0, which is exactly the loss of
the BPICA weights L(WBPICA), and (2) when α = 1, which
is the loss of the ICA weights L(WICA). The results are
shown in Figure 3. For all three data sets—Cora, CiteSeer
and Facebook—the loss obtained by BPICA L(WBPICA)
appears to be a local minimum, the loss obtained by ICA
training is not. Unsurprisingly, these results suggest that the
training procedure of BPICA is a better strategy to optimize
the loss function than using the true-label relational features,
supporting the intuition and motivation behind our proposed
approach.

5.4 Comparison of Prediction Accuracies
For many collective classification algorithms, the local

features still play a significant role in how accurately they
are able to predict. These methods often lack robustness
to handle data that has weak local signal. In order to test
whether BPICA is more robust to the loss of local signal,
we weaken the local signal by randomly deleting subsets of
local features and testing the learning algorithms on the
deleted data. The results for these experiments are shown
in Figures 4 to 6, where we plot the average accuracies for
the best-scoring regularization parameters over 20 splits.
We compared BPICA, ICA, GS, and the local classifier,
which makes predictions only based on local features. The
horizontal axis represents the fraction of deleted features,
which ranges from 0 to 0.9, and the vertical axis represents the
training or testing accuracies achieved by these algorithms.

The results for all three data sets suggest that BPICA is
more robust to weak local signal than ICA, GS, and local
classifier. For the Cora and CiteSeer data, as the fraction of
deleted features increases, the training accuracies of BPICA
stays stable until over 80% of local features have been deleted.
The training accuracies of ICA, GS, and the local classifier
drop earlier and much faster. When 90% of the features are
deleted—meaning only 10% of the features can be used to
train the model—the training accuracies of ICA, GS, and the
local classifier drop to 0.5, however the accuracies of BPICA
still remains around 0.9, showing that BPICA is able to
train models to fully utilize the relational structure. The test
accuracies of BPICA also show better performance than the
other two methods as the number of local features reduces.
Especially when over 60% local features are deleted, the local
predictors become less reliable which causes ICA’s accuracy
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Figure 4: Performance of BPICA, ICA, GS and local classifier on Cora data. Each curve plots the average
training or testing accuracy of the three different methods, using the best-scoring regularization parameters.
The horizontal axis represents the fraction of local features that are removed. On training accuracy, BPICA
dominates all other methods, demonstrating the effectiveness of directly optimizing the loss. On both training
and testing accuracy, BPICA performs significantly better than the other methods when there is weak local
signal.
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Figure 5: Performance of BPICA, ICA and local classifier on CiteSeer data. See Figure 4 for further
discussion.

to significantly worsen, and BPICA is able to withstand
the lack of attribute information. The Facebook results
follow similar trends, where the training and test accuracies
are always better than the ICA and local classifier. The
differences in the testing accuracy between BPICA and ICA
are statistically significant for all fractions of deleted features
on the Cora tests, for 0.7 and 0.9 for the CiteSeer tests, and
for all fractions 0.2 and higher on the Facebook tests.

One interesting effect not often reported in other research
is the tendency for ICA trained using the true labels to pro-
duce predictors that perform worse than the local classifier,
even on training data. This effect is exactly because of the
discrepancy between the training regime and the actual pre-
diction algorithm BPICA aims to correct. For example, in all
three of our data sets, there are settings, especially when the
local classifier is noisy, that ICA has worse training accuracy
than the local classifier.

6. CONCLUSION AND DISCUSSION
We presented BPICA, a variant of the iterative classifica-

tion algorithm that uses differentiable operations, enabling
back-propagation of error gradients to directly optimize the
model parameters. The concept of collective classification
has long been understood to be a principled approach to
classifying nodes in networks, but in practice, it often suffers
from making only small improvements, or not improving at
all. One cause for this could be the faulty training procedure
that we correct in this paper. Our experiments demonstrate

dramatic improvements in training accuracy, which translate
to significant, but less dramatic improvements in testing
performance. Thus, an important aspect to consider to fur-
ther improve the effectiveness of collective classifiers is the
generalization behavior of collective models. One future di-
rection of research is exploring how a more direct training
loss-minimization interacts with known generalization anal-
yses, perhaps leading to further algorithm improvements.
Another future direction we are exploring is how to apply
similar approaches of direct loss minimization in transductive
settings and how to expand the flexibility of the framework
of BPICA to incorporate other variants of ICA.
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