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Abstract

When learning structured predictors, collec-
tive stability is an important factor for gen-
eralization. London et al. (2013) provide the
first analysis of this effect, proving that col-
lectively stable hypotheses produce less de-
viation between empirical risk and true risk,
i.e., defect. We test this effect empirically
using a collectively stable variant of max-
margin Markov networks. Our experiments
on webpage classification validate that in-
creasing the collective stability reduces the
defect and can thus lead to lower overall test
error.

1. Introduction

London et al. (2013) recently showed that collective
stability, a measure of a structured predictor’s re-
silience to small perturbations in the input, enables
tighter generalization guarantees than those previously
known for structured prediction. If every hypothe-
sis in the model class exhibits O(1) collective stabil-
ity, it can be shown that the empirical risk uniformly
converges to the true risk—even in situations where
the training set consists of a few large, structured ex-
amples. In this work, we empirically evaluate an al-
gorithm inspired by this new theory, demonstrating
that the analysis has real, tangible effects on learning
to predict structured outputs. In particular, we aug-
ment the max-margin Markov network (M3N) frame-
work (Taskar et al., 2004) with a collectively stable
inference objective to demonstrate that greater collec-
tive stability leads to better generalization and can
improve overall accuracy, even when learning from a
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single structured example.

Formally, for a class F of vector-valued functions, we
say that F has uniform collective stability β if, for any
two inputs z, z′ that differ only at a single coordinate,

sup
f∈F
‖f(z)− f(z′)‖1 ≤ β.

As an example, London et al. (2013) show that cer-
tain templated models with strongly convex inference
objectives have collective stability O(

√
R/κ), where R

is a bound on the norm of the parameters, and κ is the
strong-convexity parameter. For such hypotheses, the
defect (i.e., the deviation between the empirical and
expected error) is bounded by a quantity with growth
rate

O

(√
R lnn

κmn

)
,

where m is the number of structured examples, and n
is the size of each structured example. (Since here
we are concerned with the learning task, we omit
from the bound some terms determined by the de-
pendency structure of the true data-generating pro-
cess; given certain weak dependency conditions, these
terms amount to a constant multiplier.) While known
approaches minimize the defect by maximizing the
margin of a hypothesis (i.e., minimizing the norm of
the parameters), the form of this bound suggests an-
other complementary strategy; increasing the strong-
convexity parameter—hence, the amount of collective
stability—may be yet another tool for reducing the
defect. In our experiments, we test whether forcing
the hypothesis class to have certain collective stability
improves generalization.

2. Max-Margin Markov Networks with
Convex Inference

To instantiate a structured predictor where we can ex-
periment with adjusting collective stability, we create
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a variant of the max-margin Markov network (M3N)
framework (Taskar et al., 2004). The M3N learning
algorithm estimates the weights for a log-linear repre-
sentation of a Markov random field (MRF) by finding
a large-margin setting. For observed variables x and
label variables y, a feature-map function f(x,y) en-
codes the relevant dependencies, and a weight vector
w defines the conditional log-probability

log Pr(y |x;w) , w>f(x,y)− logZ.

These models are often templated, meaning the same
weights are applied to all features matching a given
dependency pattern. Templating effectively prevents
the number of parameters from growing with the size
of the input.

Max-margin structured learning aims to find a weight
vector w that puts high probability mass on the
ground-truth labels and low probability mass on all
other states. In other words, max-margin learning
prefers that maximum a posteriori (MAP) inference
produces accurate predictions. For training with one
structured example, the objective function for such a
goal is

min
w,ξ

1
2 ||w||

2 + Cξ

s.t. w> (f(x,y)− f(x, ŷ)) ≤ ξ − `(y, ŷ),∀y ∈ Y,

where ` is a loss function, and Y is the label space
(Taskar et al., 2004).

We relax the output space to be a continuous, con-
vex set A, which could be, for example, the marginal
or local marginal polytope. We further modify the
M3N framework by augmenting the inference objec-
tive with a strongly-convex regularization term (i.e.,
prior). By relaxing the output space to the contin-
uous domain and making inference strongly convex,
we guarantee collective stability (London et al., 2013).
Though the theory provides guarantees for strong con-
vexity with respect to the 1-norm, in these preliminary
experiments, we use a scaled, squared `2 norm as this
strongly-convex term for computational convenience.
The inference objective is

max
y∈A

w>f(x,y)− κ||y||2,

where κ is a parameter that adjusts the strong convex-
ity. The max-margin learning objective for this aug-
mented inference is

min
w,ξ

1
2 ||w||

2 + Cξ

s.t. w> (f(x,y)− f(x, ŷ))− κ
(
||y||2 − ||ŷ||2

)
≤ ξ − `(y, ŷ),∀y ∈ A.

Note that, by setting κ = 0, inference becomes the
linear programming (LP) relaxation of MAP inference,
and we obtain the original M3N objective.

We implement collectively stable M3N using a
constraint-generation strategy, iteratively finding the
worst-violated constraint and adding it to a working
set of such constraints. To find the worst-violated con-
straints, we perform loss-augmented inference, which
constructs a quadratic program that maximizes the
inference objective subject to local marginal consis-
tency constraints. Since the number of constraints is
typically much smaller than the dimensionality of the
feature vector, we solve the dual form of the main op-
timization, which is analogous to the standard dual
support vector machine.

3. Experiments

We evaluate collectively stable M3N on the classifica-
tion of webpages from a subset of the WebKB data set,
as preprocessed by Sen et al. (2008). The processed
data set consists of networks of webpages belonging to
the categories: course, faculty, project, staff,
and student. The pages are collected from four uni-
versities, and each page is annotated with word oc-
currences and links. This preprocessed version of the
WebKB data set is relatively small, containing on av-
erage 219 pages and 402 links per school. We model
this data with a Markov network consisting of local,
per-page potentials between word occurrence and page
category, as well as pairwise edge potentials between
all class pairs (Taskar et al., 2002). For max-margin
learning, we compute the margin loss only on the sin-
gleton label variables, placing no penalty on the pair-
wise variables.

In each experiment, we train on one university network
and test the trained model on the remaining three net-
works. Since we train each model on a single net-
work, this setup truly tests London et al.’s theory of
generalization. We try a variety of slack parameters
(C ∈ {0.04, 1, 25}) and a range of convexity parame-
ters (κ ∈ [0, 4]). Recall that, when κ is zero, we have
exactly the standard form of max-margin Markov net-
work learning, since the inference objective becomes
the LP relaxation of MAP inference.

To evaluate our predictions, we label each webpage us-
ing the most likely category as predicted by the learned
model, then compute the classification error rates on
both training and testing sets. In Figure 1, we plot the
average error rates over four folds of cross-validation.
Since we train on one relatively small network at a
time, changes in κ and C can cause spurious jumps
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Figure 1. Average training error (top), testing error (mid-
dle), and their difference, or pseudo-defect (bottom), as a
function of the modulus of convexity, κ. Each point is the
average over four folds. The solid lines represent a moving
average over a five-point window.

in scores, so we plot a smoothed curve in addition
to the point estimates. We compute the smoothed
curves by taking the average of a five-point moving
window. Examining the accuracies reveals that larger
values of κ tend to increase the training error, though
when the slack parameter is large, the training error
is always near zero. The testing error rates tend to
be lower overall with stronger convexity, though the
lowest overall testing score is achieved by using a low
slack parameter and a small, nonzero convexity. Using
no convexity is always worse than using some amount
of convexity.

Since the generalization bound analyzes the defect, we
measure a surrogate for the defect as the difference of

the testing and training errors. We plot the averages
of this quantity, which we refer to as pseudo-defect, in
Figure 1, again including a smoothed version of the
curve in addition to the point estimates. The plots
show a clear downward trend as the convexity term κ
increases.

4. Discussion

In this work, we demonstrate the empirical effect of a
recently developed generalization bound for structured
prediction (London et al., 2013). Inspired by these
bounds, we augment a max-margin structured learn-
ing method with a tunable convexity parameter, which
effectively controls collective stability of the learned
hypothesis. To illustrate the benefits of collective sta-
bility, we examine the effect of tuning the convexity
parameter during learning. Our experimental results
in webpage classification corroborate the importance
of collective stability for structured prediction.

Though the theory suggests that an inference objec-
tive that is strongly convex with respect to the 1-norm
is sufficient for generalization, for the convenience of
implementation, our experiments here use an objec-
tive that is strongly convex with respect to the 2-
norm. The experimental results suggest that even 2-
norm strong convexity helps generalization. We are
currently investigating approaches to actively optimize
the trade-off between collective stability and empirical
risk, e.g., by adaptively selecting the strong-convexity
term κ. We aim to design an efficiently optimizable
learning objective that more closely resembles the risk
bound, using entropy-like priors that are strongly con-
vex with respect to the 1-norm. The empirical results
presented in this work suggest that finding the optimal
κ parameter can provide significant gains in general-
ization and prediction accuracy.
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