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1 Introduction

Collective inference has been shown empirically to successfully exploit the natural dependencies
in relational and network data [5, 11, 12, 13]. Though many collective techniques are capable
of induction, and have been shown to be asymptotically consistent [16], little to no theory exists
concerning the generalization of such methods. Collective inference can sometimes be viewed as
large-scale structured prediction, for which there do exist generalization guarantees. The tightest
existing uniform convergence rates for structured prediction [2, 10, 14] scale as O(y/log(mn)/m),
where m is the number of examples, and n the size of each structure. In practice, however, n may be
very large, and m may be few or fixed. For example, in image segmentation, a high-resolution image
may have billions of pixels, so the number of labeled images may be limited; in network analysis,
the training set may consist of a single labeled connected component. In such cases, existing bounds
do not guarantee generalization; yet, this theory contradicts the overwhelming empirical evidence
found in the literature.

In this paper, we propose a theory of how collective models generalize in such situations. Our
premise is that, if the data exhibits weak dependence within each structured instance, and if the
predictor exhibits certain complexity and stability properties, then the empirical risk estimate should
concentrate around its mean as n (and/or m) grows. Our analysis leverages recent results in the
concentration of dependent random variables. Under certain weak dependence conditions, the effect
of dependence amounts to a constant multiplier, thus enabling concentration. We also identify two
properties of the hypothesis class—Rademacher complexity, and a new property which we refer
to as collective stability—as sufficient conditions for generalization. When satisfied, we observe
O(1/+/mn) uniform convergence to the true risk, which is significantly faster decay than previous
bounds when n is very large.

2 Preliminaries

Let G denote an arbitrary family of undirected graphs, and G,, the set of all such graphs of order n.
Throughout this paper, we define a graph G € G,, by a set of nodes V £ [n] (where [n] denotes
the set {1,...,n}) and a set of edges E. Unless otherwise specified, assume that all graphs are
undirected. For anode i € V, let N'(i) £ {j : {i,j} € E} denote the neighbors of i; let N(i)
denote the neighbors within graph distance d. Let X denote a countable input space, ) a countable
output space, and Z £ X x ) their Cartesian product. We use z € Z (or z € Z") to denote an
instance (or instances) of Z.

Definition 1. For an undirected graph G = (V, E), a random field is a set of random variables
Z 2 {Z; :i € V} indexed by V. We say that Z is Markovian if every variable Z; is conditionally
independent of all non-adjacent variables Z \ Z s (;, given its neighbors Z x/(;) (sometimes referred
to as its Markov blanket); thus, the distribution factorizes over the cliques of G.



For some n > 1, let G € G, be a fixed graph, and let Z be a random field on G. Each Z; € Z takes
values in Z, and can therefore be expressed as two random variables (X;,Y;), taking values in X
and Y respectively. Denote by P the distribution of a random field on G. We use E¢ to indicate
that the expectation is taken w.r.t. Pg. It is important to distinguish between the true (unknown)
generating distribution and the model-induced distribution. An overly simplistic model may not
capture certain dependencies in the true distribution, whereas an excessively complex model may
assume dependencies that don’t exist (which can result in overfitting).

In the canonical learning framework for structured prediction, we are given m independent draws
from Pg (Z)—i.e., realizations of Z. In our case, we will assume that n is much larger than m, or that
n grows and m = O(1). In network analysis, it is not unusual to learn from a single instance. Note
that any number of realizations can be represented as a single realization of a global random field of
order mn, whose distribution factorizes over the (identical) marginal distributions of m isomorphic,
disjoint random fields of order n. Such is the case in many computer vision tasks, in which the
training set consists of multiple images of identical dimensions. Because of this equivalence, unless
otherwise noted, we will assume that the training data consists of a single realization z € Z™ of a
random field of order n.

Using z (and possibly (), we learn a hypothesis h from a specified class # £ {h : A" — )AJ"},
where Y is not necessarily the same as ). We are particularly interested in hypothesis classes that
perform collective inference—that is, joint reasoning over all instances in the input. This means that
changes to any single input instance may affect the output predictions on others. One specific class
of collective models we will consider are what we refer to as graph-based—meaning, inference
propagates according to a neighborhood topology derived from the input graph. Formally:

Definition 2. For a hypothesis , a graph G, and an input X, let random variables H £ hg(X)
correspond to the prediction vector, and let P¢ j, denote the joint distribution of (X, H). We say
that a hypothesis class H is (d"-order) graph-based if, for every h € H and i € [n],

Pan(Hi | X, H\ Hy) = Pg n(H; | Xi, Xpragsy, Hprag)-

In other words, the prediction on X; is a function of (X;, Xra¢;y, Hara(;)) and is conditionally
independent of all other inputs and predictions given this set. By implication, for any two subsets
X; € X and X3 C X that are disconnected in G, their corresponding predictions H; and Ho
are mutually independent. Examples of graph-based hypotheses include many popular graphical
models, such as (conditional) Markov random fields [8, 13], and iterative algorithms [11].

Let?:) x 37 — R be aloss function. Define the empirical loss L of a hypothesis h as L(h, Z) £
LS (Y5, h(X);). For example, using the 0-1 loss, (1(y,§) £ 1]y # §], L is equivalent to the
normalized Hamming distance. The quantity of interest is the expected loss Lg(h) £ Eg[L(h, Z)]
(also known as the risk) over realizations of a random field Z on G, which corresponds to the
error h will incur on future predictions. In the event that Z represents m realizations of the same
underlying random field (as described above), we may only be interested in the expected loss of a
single realization. Using the previous computer vision example, the test instance would be a single
image. In such cases, when H is graph-based, we can easily show that the expected loss on a single
realization of this component random field is equal to the expected loss over m realizations.

Lemma 1. Let Z be a random field on a graph G. Let Z' be a random field on G' = Ujm:1 G; :

G; ~ G, representing m realizations of Z. If H is graph-based, then, for any m > 1, any n > 1,
any G € G,,, and any h € H, we have that Eg[L(h,Z)] = Eq/[L(h,Z)].

2.1 Concentration Inequalities

Before proceeding to our results, we review some supporting definitions and a theorem on the con-
centration of dependent random variables. For the following, let Z = {Z;}"_, be arandom variables
with distribution I, taking values in a countable space Z, and let f : Z™ — R be a measurable func-
tion. Fori € [n],z € 2! and a,b € Z, denote by 117, ,(ZM), Z(?)) the maximal coupling of
the conditional distributions P(Z; 1., | Z1.s-1 = 2, Z; = a) and P(Z;11., | Z1.i—1 = 2,Z; = D).
(For more on maximal couplings, see [4, Chapter 7.4].) Define the upper triangular coupling matrix
® € R" " as
0i.j £ sup Hf,a,b[Zj(‘l) # Z](Q)}
z€Zi—1 a,beZ



forall < j, 0; ; £ 1fori= j, and zero elsewhere. For a random field Z on a given graph G, denote
by ®¢ the coupling matrix of the conditional distributions induced by the topology of G. Finally,

recall the standard definition of the matrix infinity norm, ||®|__ £ SUD;e(n] D=1 |0i,5]- With these
definitions in mind, we present the following adaptation of [3, Theorem 1] and [7, Theorem 1.1].

Theorem 1. If there exists a constant c such that, for any z,z’ € Z" that differ only at a single
coordinate, | f(z) — f(2')| < ¢/n, then for any € > 0,

P{f(Z) —E[f(2)] > ¢} < exp (—2ne*/(c[©].)*) -

3 Generalization

In this section, we prove probably approximately correct (PAC) generalization bounds for collective
inference. We begin with some definitions. For the following, let 7 be an arbitrary class of functions
from Z" to R™.

Definition 3. Let Z be a random field on a graph G € G,,. Let o ~ Bin(n,1/2) be a set of
Rademacher variables. Define the empirical Rademacher complexity of F as

iZ@W”Z}

Define the Rademacher complexity of F, w.r.t. realizations of Z, as R (F) = Eg[R(F, Z)].

R(F,Z) £ Eg |sup

feF

This differs from the traditional definition [1] by the form of F and the fact that 71, ..., Z,, are not
assumed to be i.i.d. Stability is a property of algorithms which ensures that small changes to the
input result in bounded variation in the output. Collective stability applies this concept to vector-
valued functions.

Definition 4. We say that F has uniform collective stability (3 if, for any two inputs z,z’ € Z™ that
differ only at a single coordinate, sup s = || f(z) — f(z")||, < 8.

To generalize our results to a variety of loss functions, we will use the following properties.

Definition 5. A loss function £ : Y x ) — R is M-bounded if, for any y,3' € YV and 9,9’ € ),
[€(y, 9) — €y, §')] < M.

Definition 6. A loss function £ : ) x ) — R is \-admissible if, for any y € Y, and any 3,7’ € ),
M(y’ g) - é(y7 7])| < A |g - 7;/|

We now state our main result.

Theorem 2. If H has uniform collective stability 3, and £ is M-bounded and \-admissible, then,
foranyn > 1, any G € G, and any § € (0, 1), with probability at least 1 — § over realizations of a
random field Z on G, every h € H satisfies

_ In(2/d

La(h) < L(h.Z) + DR(H.Z) + (M +335) [©c], | "l M)

Using Lemma 1, we can directly apply Theorem 2 to the traditional structured prediction setting, in
which the training set consists of multiple independent examples.

Corollary 1. Let Z be a random field on a graph G. Let Z' be a random field on G' £ U;n:l G :
G; ~ G, representing m realizations of Z. Let H and { be as in Theorem 2, and further let H be
graph-based. Then, for any m > 1, anyn > 1, any G € G,,, and any 6 € (0, 1), with probability at
least 1 — 6 over realizations of Z', every h € H satisfies

In(2/4)

2mn

Note that || @¢/ ||, = [|®¢||, because O¢r is block diagonal.

We will prove Theorem 2 via a series of technical lemmas. Due to space restrictions, we will omit
the proofs.



Lemma 2. [f F has uniform collective stability B, and ¢ is M -bounded and \-admissible, then (o F
has uniform collective stability M + \S.

For any particular f € F, let F(Z) £ 15" | f(Z);, and F¢ 2 Eg[F(Z)], and define the
functions ®(F,Z) £ sup;c r Fg — F(Z), and O (F) £ Eq[®(F, Z)].

Lemma 3. If F has uniform collective stability (B, then, for any n > 1, any G € G,, and any
0 € (0,1), with probability at least 1 — 0 over realizations of a random field Z on G,

O(F,Z) < 0(F) + B1Oc|l o VIn(1/8)/(2n).
Lemma 4. For a random field Z on a graph G € G,,, we have that ®¢(F) < 2Rq(F).

Lemma 5. If F has uniform collective stability (B, then, for any n > 1, any G € G, and any
0 € (0,1), with probability at least 1 — 0 over realizations of a random field Z on G,

Ra(F) <R(F,Z) + BO¢llo vIn(1/6)/(2n).

We are now ready to prove Theorem 2.

Proof [Theorem 2] We start with the simple observation that
Lg(h) < L(h,Z) + sup [Lg(R') — L(K',Z)] = L(h,Z) + ®(F, Z).
h'eH

where we let F £ £ o H. By Lemma 2, F has uniform collective stability M + 3. We therefore
have from Lemma 3 that, with probability at least 1 — 6/2,

Lea(h) < L(h,Z) + @c(F) + (M + AB) [O¢|l, v/In(2/0)/(2n).

To bound @ (F), we apply Lemma 4 and Talagrand’s contraction lemma [9] (since ¢ is A-Lipschitz
w.r.t. its second argument); this yields ®¢(F) < 2Rg(F) = 2Rg (L o H) < 20ARg(H). Using
Lemma 5 (with uniform collective stability 3, since we are now dealing with ), we have that, with
probability at least 1 — §/2,

2AR¢(H) < 20R(H, Z) + 28 |Oc|l,, vIn(2/8)/(2n).

Via De Morgan’s law and the union bound, all of these bounds hold with probability at least 1 — 9,
so we combine them to complete the proof. |

Since binary classification is a common prediction task, we can apply Theorem 2 to measurements
of the 0-1 loss, which we denote by a superscript 1.

Lemma 6. The 0-1 loss {y is 1-bounded and (1/2)-admissible.

4 Discussion

To achieve the usual O(1//n) uniform convergence, we require that R(H,Z) = O(1/v/n),
B = 0(1) and [|®¢||,, = O(1). In this section, we discuss the circumstances under which these
conditions are satisfied.

The empirical Rademacher complexity of many popular hypothesis classes has been thoroughly
studied, though not for collective models. Intuitively, the complexity of relational MRFs should be
similar to that of linear predictors, which is O(1/4/n) [6], since the log likelihood is simply a linear
combination of feature functions. Weiss and Taskar [15] offer some insight into this analysis.

It remains to be proven whether popular collective models exhibit acceptable collective stability.
Clearly, for non-collective models, 5 = O(1), though these hypotheses are of little interest to the
structured prediction setting. For collective models—in particular, graph-based models—it is rea-
sonable to assume that influence, as a function of graph distance, decays at a geometric rate. Thus,
assuming a bounded neighborhood size, the effect of changing any single node should converge to
a constant.

Finally, our bounds require that the infinity norm of the coupling matrix be bounded independent
of n. Chazottes et al. [3] identify “low-temperature” Ising models as an example of processes that
satisfy this condition. It is an open question whether the same can be shown for broader classes of
random fields. Intuitively, their analysis should hold for any random field that exhibits geometric
strong mixing.
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