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Abstract
Traditional structured prediction models try to
learn the conditional likelihood, i.e., p(y|x), to
capture the relationship between the structured
output y and the input features x. For many mod-
els, computing the likelihood is intractable. These
models are therefore hard to train, requiring the
use of surrogate objectives or variational infer-
ence to approximate likelihood. In this paper,
we propose conditional Glow (c-Glow), a condi-
tional generative flow for structured output learn-
ing. C-Glow benefits from the ability of flow-
based models to compute p(y|x) exactly and effi-
ciently. Learning with c-Glow does not require a
surrogate objective or performing inference dur-
ing training. Once trained, we can directly and ef-
ficiently generate conditional samples to do struc-
tured prediction. We evaluate this approach on
image segmentation and find c-Glow’s structured
outputs comparable in quality with state-of-the-art
deep structured prediction approaches.

1. Introduction
Structured prediction models are widely used in tasks like
image segmentation (Nowozin & Lampert, 2011), sequential
labeling (Lafferty et al., 2001), etc. For these types of
problems, the goal is to model a mapping from the input x
to the structured output y. In many such problems, it is also
important to be able to make diverse predictions to capture
the variability of plausible solutions to the structured output
problem (Sohn et al., 2015).

Many existing methods for structured output learning use
conditional random fields (CRFs, Wainwright & Jordan,
2008) to approximate the conditional distribution p(y|x).
Recently, deep structured prediction models (Chen et al.,
2015; Zheng et al., 2015; Sohn et al., 2015; Wang et al.,
2016; Belanger & McCallum, 2016; Graber et al., 2018)
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combine deep neural networks with graphical models, so
that they can use the power of deep neural networks to
extract high-quality features, and graphical models to model
correlations and dependencies among variables. The main
drawback of these approaches is that, due to the intractable
likelihood, they are difficult to train. Training them requires
the construction of surrogate objectives that approximate or
bound the likelihood, often involving variational inference
to infer latent variables. Moreover, sampling from CRFs
requires expensive iterative procedures that require careful
tuning (Koller et al., 2009).

In this paper, we develop conditional generative flows (c-
Glow) for structured output learning. In contrast to other
deep structured prediction models, our method can directly
model the conditional distribution p(y|x), without restrictive
assumptions, e.g., variables are fully connected (Krähenbühl
& Koltun, 2011). We can train c-Glow by optimizing the
exactly log-likelihood, removing the need for surrogates
or inference. Compared to other conditional flows (e.g.,
(Trippe & Turner, 2018; Kingma & Dhariwal, 2018)), c-
Glow’s output label y is both conditioned on complex input
and a high-dimensional tensor rather than a one-dimensional
scalar. We evaluate c-Glow on semantic segmentation, find-
ing that c-Glow’s structured outputs comparable in quality
with state-of-the-art deep structured prediction approaches.

2. Related Work
There are two main branches of research related to our paper:
structured prediction and normalizing flow. In this section,
we briefly cover some of the most related literature.

2.1. Deep Structured Models

One emerging strategy to construct deep structured models
is to combine deep neural networks with graphical models.
However, this kind of model can be difficult to learn, since
the likelihood of graphical models is usually intractable.
Chen et al. (2015) proposed joint learning approaches that
blend the learning and approximate inference to alleviate
some of these computational challenges. Zheng et al. (2015)
proposed CRF-RNN, a method that treats mean-field varia-
tional CRF inference as a recurrent neural network to allow
gradient-based learning of model parameters. Wang et al.
(2016) proposed proximal methods for inference. Sohn et al.
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(2015) use variational autoencoders (Kingma & Welling,
2013) to generate latent variables for predicting the output.

Another direction combining structured output learning with
deep models is to construct energy functions with deep
networks. Structured prediction energy networks (SPENs)
(Belanger & McCallum, 2016) define energy functions for
scoring structured outputs as differentiable deep networks.
The likelihood of SPEN is intractable, so the authors use
structured SVM loss to learn. SPENs can also be trained in
an end-to-end learning framework (Belanger et al., 2017)
based on unrolled optimization. Methods to alleviate the
cost of SPEN inference include replacing the argmax in-
ference with an inference network (Tu & Gimpel, 2018).
Inspired by Q-learning, Gygli et al. (2017) use an oracle
value function as the objective for energy-based deep net-
work. Graber et al. (2018) generalize SPENs by adding
non-linear transformations on top of the score function.

2.2. Normalizing Flows

Normalizing flows are neural networks constructed with
fully invertible components. The invertibility of the re-
sulting network provides various mathematical benefits.
Normalizing flows have been successfully used to build
likelihood-based deep generative models (Dinh et al., 2014;
2016; Kingma & Dhariwal, 2018) and to improve varia-
tional approximation (Rezende & Mohamed, 2015; Kingma
et al., 2016). Autoregressive flows (Kingma et al., 2016;
Papamakarios et al., 2017; Huang et al., 2018; Ziegler &
Rush, 2019) condition each affine transformation on all pre-
vious variables, so that ensure an invertible transformation
and triangular Jacobian matrix. Continuous normalizing
flows (Chen et al., 2018; Grathwohl et al., 2018) define the
transformation function using ordinary differential equa-
tions. Trippe & Turner (2018) developed radial flows to
model univariate conditional probabilities.

Most related to our approach are flow-based generative mod-
els. Dinh et al. (2014) first proposed a flow-based model,
NICE, for modeling complex high-dimensional densities.
They later proposed Real-NVP (Dinh et al., 2016), which
improves the expressiveness of NICE by adding more flexi-
ble coupling layers. The Glow model (Kingma & Dhariwal,
2018) improved the performance of such approaches fur-
ther by incorporating new invertible layers. Most recently,
Flow++ (Ho et al., 2019) improves generative flow by vari-
ational dequantization and architecture design, and Ma &
Hovy (2019) proposed new invertible layers.

3. Background
In this section, we introduce notation and background knowl-
edge directly related to our work.

3.1. Structured Output Learning

Let x and y be random variables with unknown true
distribution p∗(y|x). We collect a dataset D =
{(x1, y1), ..., (xN , yN )}, where xi is the ith input vector
and yi is the corresponding output. To approximate p∗(y|x),
we develop a model p(y|x, θ) and then minimize the nega-
tive log-likelihood

L(D) = − 1

N

N∑
i=1

log p(yi|xi, θ).

In structured output learning, the label y comes from a com-
plex, high-dimensional output space Y with dependencies
among output dimensions. Many structured output learning
approaches use an energy-based model to define a condi-
tional distribution:

p(y|x) = eE(y,x)∫
y′∈Y e

E(y′,x)
,

where E(., .) : X × Y → R is the energy function. In
deep structured prediction, E(x, y) depends on x via a deep
network. Due to the high dimensionality of y, the parti-
tion function, i.e.,

∫
y′∈Y e

E(y′,x), is intractable. To train the
model, we need methods to approximate the partition func-
tion such as variational inference or surrogate objectives,
resulting in complicated training and sub-optimal results.

3.2. Conditional Normalizing Flows

A normalizing flow is a composition of invertible functions
f = f1 ◦ f2 ◦ · · · ◦ fM , which transforms the target y
to a latent code z drawn from a simple distribution. In
conditional normalizing flows (Trippe & Turner, 2018), we
rewrite each function as fi = fx,φi

, making it parameterized
by both x and its parameter φi. Thus, with the change of
variables formula, we can rewrite the conditional likelihood
as

log p(y|x, θ) = log pZ(z)+

M∑
i=1

log

∣∣∣∣det(∂fx,φi

∂ri−1

)∣∣∣∣ , (1)

where ri = fφi
(ri−1), r0 = x, and rM = z.

In this paper, we address the structured output problem by
using normalizing flows. That is, we directly use the condi-
tional normalizing flows, i.e., Equation 1, to calculate the
conditional distribution. Thus, the model can be trained
by locally optimizing the exact likelihood. Note that con-
ditional normalizing flows have been used for conditional
density estimation. Trippe & Turner (2018) use it to solve
the one-dimensional regression problem. Our method is
different from theirs in that the labels in our problem are
high-dimensional tensors rather than scalars. We therefore
will build on recently developed methods for (unconditional)
flow-based generative models for high-dimensional data.
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3.3. Glow

Built on NICE (Dinh et al., 2014) and Real-NVP (Dinh
et al., 2016), Glow (Kingma & Dhariwal, 2018) achieves
significant improvements in likelihood and sample quality
for natural images. The model mainly consist of three com-
ponents. Let u and v be input and output of a layer, whose
shape is [h × w × c], with spatial dimensions (h,w), and
channel dimension c. The three components are as follows.

Actnorm layers. Each actnorm layer performs an affine
transformation of activations using a scalar and bias param-
eters, i.e., s and b.

Invertible 1x1 convolutional layers. Each invertible 1x1
convolutional layer is a generalization of a permutation
operation. Its weights is a c× c matrix W .

Affine layers. As in the NICE and Real-NVP models, Glow
also has affine coupling layers to capture the correlations
among spatial dimensions. The affine coupling layer sepa-
rates the v into two parts, i.e., v1, v2. It passes through the
v1 to a neural network and outputs the parameters, i.e., s2
and b2 for v2.

Glow uses a multi-scale architecture (Dinh et al., 2016) to
combine the layers. This architecture has a “squeeze” layer
for shuffling the variables and a “split” layer for reducing
the computation cost.

4. Conditional Generative Flows
In this section, we introduce our conditional generative
flows, i.e., c-Glow, which is a flow-based generative model
for structured prediction.

4.1. Conditional Glow

To modify Glow to be a conditional generative flow, we
need to modify its three components: the actnorm layer,
the 1x1 convolutional layer, and the affine coupling layer.
The main idea is to use a neural network, which we refer to
as a conditioning network (CN), to generate the parameter
weights for each layer. The details are as follows.

Conditional Actnorm. The parameters of an actnorm layer
are two c × 1 vectors, i.e., the scale s and the bias b. In
conditional Glow, we use a conditioning network to gener-
ate these two vectors and then use them to transform the
variable.

s, b = CN(x)

ui,j = s� vi,j + b.

Conditional 1x1 Convolutional. The 1x1 convolutional
layer uses a c×cweight matrix to permute each dimension’s
variable. In conditional glow, we use a conditioning network

to generate this matrix.

W = CN(x),

ui,j = Wvi,j .

Conditional Affine Coupling. The affine coupling layer
separates the input variable to two halves, i.e., v1 and v2.
It uses v1 as the input to an NN to generate scale and bias
parameters for v2. To build a conditional affine coupling
layer, we use a CN to extract features from x, and then we
concatenate it with va to form the input of NN.

v1, v2 = split(v),
xr = CN(x),

s2, b2 = NN(v1, xr),

u2 = s2 � v2 + b2,

u = concat(v1, u2).

We can still use the multi-scale architecture to combine these
conditional components, so that can preserve the efficiency
of computation.

Since the conditioning networks do not need to be invertible
when optimizing a conditional model, we do not specify
their architecture here. Any differentiable network suffices
and preserves the ability of c-Glow to compute the exact
conditional likelihood of each input-output pair.

To learn the model parameters, we can take advantage of the
efficiently computable log-likelihood for flow-based models.
Therefore, we can back-propagate to differentiate the exact
conditional likelihood, i.e., Equation 1, and optimize all the
c-Glow parameters using gradient methods.

4.2. Inference

Given a model, we can perform efficient sampling with a
single forward pass through the c-Glow. We first calculate
the transformation functions given x and then sample the
latent code z from pZ(z). Finally, we propagate the sampled
z to the model, and we get the corresponding sample y. The
whole process can be summarized as

z ∼ pZ(z), y = gx,φ(z), (2)

where gx,φ = f−1x,φ is the inverse function.

The core task in structured output learning is to predict
the best output, i.e., y∗, for an input x. Many existing ap-
proaches solve the most-probable explanation (MPE) prob-
lem: y∗ = argmaxy p(y|x). However, MPE can be diffi-
cult for c-Glow because the likelihood function p(y|x) is
non-convex with a highly multi-modal surface. Optimiza-
tion over y converges to a local optimum. In our experi-
ments, we find the local optima to be only slightly better
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than conditional samples. Therefore, we use sample aver-
ages to estimate marginal expectations of output variables.
Let {z1, ..., zM} be samples drawn from pZ(z). Estimated
marginal expectations for each variable can be computed
from the average

y∗ ≈ 1

M

M∑
i=1

gx,φ(zi). (3)

In the general form of c-Glow, the y variables are defined
as continuous variables. In some tasks like semantic seg-
mentation, the space of y is discrete. Following previous
literature (Belanger & McCallum, 2016; Gygli et al., 2017),
we relax the discrete output space to a continuous space
during training. When we do prediction, we simply round y
to discrete values.

5. Empirical Study
We test c-Glow on image segmentation. We use the Weiz-
mann Horses database (Borenstein & Ullman, 2002), which
contains 328 images of horses and their segmentation masks
indicating whether pixels are part of horses or not. The train-
ing and test sets contain 200, and 128 images, respectively.
We resize the images and their masks to 64×64 pixels. Due
to the space limit, detailed experiment settings are in the
appendix.

5.1. Semantic Segmentation

We compare our method with non-linear transformations
(NLStruct) by Graber et al. (2018) and FCN-VGG1 (Long
et al., 2015). We use pixel-wise accuracy and mean
intersection-over-union (IOU) as metrics. We reproduce
NLStruct’s performance reported by Graber et al. (2018).
In their experiments, they set the input image size to be
224×224, and the mask size to be 64×64, which is slightly
different from our setting. Since they did not report the ac-
curacy of NLStruct, we leave that cell blank. Our c-Glow
model generates higher quality segmentations than the base-
lines. Figure 1 shows some segmentation results.

Table 1. Segmentation metrics comparing c-Glow with others.

c-Glow NLStruct FCN-VGG

Accuracy 0.927 — 0.850
IOU 0.830 0.755 0.670

5.2. Conditional Sampling

Given an input x, we are interested in generating possible
explanations for it. Doing so requires the model to have the

1We use code from https://github.com/wkentaro/pytorch-fcn.

Figure 1. Sampled segmentation results. The top row contains the
input images, the second row contains the ground truth masks, and
the third row contains the c-Glow predictions.

ability to draw conditional samples, i.e., y ∼ p(y|x). We
can directly use the generative process, i.e., Equation 2, to
generate conditional samples. Figure 2 contains examples
of these samples of segmentations for the horse image data.

Figure 2. Conditional sampling from a learned C-Glow. The first
column is the input images, the second column is the labels, and
the last five columns are samples.

6. Conclusion
In this paper, we propose conditional generative flows (c-
Glow), which are flow-based conditional generative models
for structured output learning. The model is developed to
allow the change-of-variables formula to transform condi-
tional likelihood for high-dimensional variables. We show
how to convert the Glow model to a conditional form by in-
corporating conditioning networks. In contrast with existing
deep structured models, our model can be trained by directly
minimizing the exact negative log-likelihood, so it does not
need a surrogate objective or approximate inference. With a
learned model, we can efficiently draw conditional samples
from the exact learned distribution. In our experiments, we
test c-Glow on image segmentation, finding that c-Glow
can generate reasonable conditional samples and predictive
abilities is comparable to recent deep structured prediction
approaches.
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A. Experiment Settings
In this section, we introduce more details of our experi-
ments.

A.1. Experiment Setup

For c-Glow, we use Adam (Kingma & Ba, 2014) to tune the
learning rates, with α = 0.0002, and default βs. We set the
mini-batch size to be 2. Based on our empirical results, it is
enough for the model to converge in reasonable amount of
time. We follow (Kingma & Dhariwal, 2018) to preprocess
the masks. That is, we copy each mask three times and tile
them together, so y has three channels. We find that this
transformation can improve the model performance. We run
the program for 20000 iterations to guarantee it has fully
converged.

A.2. Network Architectures

For c-Glow, we use the same multi-scale architecture as
Glow to connect the layers, and we set L = 3, and K = 8.
To specify a c-Glow architecture, we need to define condi-
tioning networks that generate weights for the conditional
actnorm, 1×1 convolutional, and affine layers.

For the conditional actnorm layer, we use a six-layer con-
ditioning network. The first three layers are convolutional
layers that downscale the input x to a reasonable size. The
last three layers are then fully connected layers, which trans-
form the resized x to the scale s and the bias b vectors.
For the downscaling convolutional layers, we use a simple
method to determine their kernel size and stride. Let Hi and
Ho be the input and output sizes. Then we set the stride to
Hi/Ho and the kernel size to 2× padding + stride.

For the conditional 1×1 convolutional layer, we use a sim-
ilar six-layer network to generate the weight matrix. The
only difference is that the last fully connected layer will
generate the weight matrix W . For the actnorm and 1×1
convolutional conditional networks, the number of channels
of the convolutional layers, i.e., nc, and the width of fully
connected layers, i.e., nw, will impact the model’s perfor-
mance. In our experiments, we set nc = 8, and nw = 32,
which can get th best performance.

For the conditional affine layer, we use a three-layer condi-
tional network to extract features from x, and we concate-
nate it with v1. Among the three layers, the first and the last
layers use 3 × 3 kernels. The middle layer is a downscal-
ing convolutional layer. We vary the number of channels
of this conditional network to be {8, 16, 32}, and we find
that the model is not very sensitive to this variation. In our
experiments, we fix it to have 16 channels. The affine layer
itself is composed of three convolutional layers with 256
channels.

For all layers, we use the same zero initialization as (Kingma
& Dhariwal, 2018), and for every layer except for the last
one, we use ReLU to activate the output. The architectures
of conditioning networks are in Figure 3.
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Figure 3. The networks we use to generate weights. The compo-
nent “3x3 Conv-256” is a convolutional layer and the kernel size is
3×3, and the number of channels is 256. The component “FC-32”
is a fully connected layer, and its width is 32. The parameter d
depends on other variable sizes. In the conditional affine layer, d
equals the number of channels of v1. In the conditional actnorm
layer, d = 2c, where c is the size of the scale. In the conditional
1x1 convolutional layer, W is a c × c matrix, so d = c2. The
“RConv” component is the convolutional layer for downscaling the
input.
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A.3. More Experiment Results

In this section, we show more results of conditional sam-
pling, and semantic segmentation. The Figure 4 shows
conditional samples, and the Figure 5 shows some sampled
segmentation results. The images are from test set.

(a) Conditional samples.

(b) Conditional samples.

Figure 4. The conditional samples from test set. The first column
is the input image, the second column is the true label, and the
remaining columns are samples.

(a) Prediction results.

(b) Prediction results.

Figure 5. The sampled segmentation results. The first row is input
images, the second row is ground-truth labels, and the last row is
segmentation results.

A.4. Conditional Likelihoods

To the best of our knowledge, c-Glow is the first deep struc-
tured prediction model whose exact likelihood is tractable.
Figure 6 plots the evolution of minibatch negative log likeli-
hoods during training.
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Figure 6. Evolution of negative log-likelihood during training.


