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Abstract
In network classification problems such as those
found in intelligence gathering, public health,
and viral marketing, one is often only interested
in inferring the labels of a subset of the nodes.
We refer to this subset as the query set, and define
the problem as query-driven collective classifica-
tion. We study this problem in a practical active
learning framework, in which the learning algo-
rithm can survey non-query nodes to obtain their
labels and network structure. We derive a survey-
ing strategy aimed toward optimal inference on
the query set. Considering both feature and struc-
tural smoothness, concepts that we formally de-
fine, we develop an algorithm which adaptively
selects survey nodes by estimating which form
of smoothness is most appropriate. We evalu-
ate our algorithm on several network datasets and
demonstrate its improvements over standard ac-
tive learning methods.

1. Introduction
Collective classification, the task of labeling nodes in a net-
work, is an important problem in many domains, such as
analysis of social networks, biological networks, and ci-
tation databases (Macskassy & Provost, 2007; Sen et al.,
2008). While traditional learning aims to learn a predictor
for all available data, we consider the case in which one is
primarily interested in labeling a particular subset of nodes,
which we refer to as the query set. For example, when la-
beling a social network, we may only be interested in the
labels of key high-ranking or influential individuals; classi-
fying the rest of the network may only be desired to aid in
collectively classifying the targeted nodes. We refer to this
problem as query-driven collective classification.

In many practical scenarios, labels and network structure
may not be immediately available for all nodes, and cer-
tainly are not available for the nodes in the query set. In-
stead, there is a cost for acquiring this information. We
therefore explore the problem of query-driven collective
classification in an active learning setting. In traditional
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active learning, the learner controls the sequence of train-
ing examples received. Unlike previous work (Bilgic et al.,
2010; Kuwadekar & Neville, 2011; Macskassy, 2009; Set-
tles, 2009), we do not restrict the training examples to
simple instance-label pairs; we instead explicitly consider
other information that is inherent to relational domains.
This leads to a more general view of information acquisi-
tion, which we refer to as active surveying. Whereas prior
work in active surveying (Sharara et al., 2011) was geared
specifically to the problem of identifying opinion leaders,
here we present a more general view. In our setting, a sur-
vey returns not only the label(s) of a node, but also any
missing links incident on that node (i.e., the node’s ego net-
work). Our work is also related to work in active sampling
(Pfeiffer III et al., 2012) which similarly acquires both label
and edge information but for the distinct task of discovering
all nodes with a specific label value.

We assume that the algorithm cannot directly survey a
query node. For various reasons in practice, surveying a
query node may incur a prohibitive cost (e.g., query nodes
may be uncooperative or unreachable). Thus, the challenge
is to identify the optimal subset of non-query nodes to sur-
vey, subject to budget constraints, that will enable us to
correctly predict the labels of the query set.

We analyze the surveying problem using a distributional
“smoothness” assumption, where we define a query-driven
problem to be smooth if the distribution of labels, condi-
tioned on some measurable distance function, changes pro-
portionally to the distance. This distance function can be
computed using features or network structure, depending
on the problem domain. If the smoothness property holds
for a given dataset and metric, then surveying nodes based
on their proximity to the query nodes should minimize
the deviation between the query and survey node distribu-
tions. Therefore, the smoothness assumption theoretically
implies that minimizing this distance thereby minimizes
the average loss over the query set. Based on this analy-
sis, we develop several active surveying strategies: one that
leverages feature smoothness; one that leverages structural
smoothness; and a novel adaptive algorithm that automat-
ically chooses between the two, based on an empirical es-
timate of the so-called assortativity in the current observed
graph. We evaluate these strategies on several real-world
networks using an iterative classification algorithm to per-
form collective classification.
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2. Motivating Examples
In this section, we present three real-world examples of ac-
tive surveying for query-driven collective classification.

Intelligence Gathering The query-driven active setting
is particularly apt for intelligence gathering, specifically
for analyzing organized crime and terrorist networks. In
this scenario, we may be interested in ascertaining the af-
filiation, disposition, or role (i.e., label) of key individu-
als (i.e., query nodes) in a population. For context specific
reasons, these individuals may be inaccessible, making it
difficult, if not impossible, to acquire this information di-
rectly. Moreover, the full network may be largely unob-
served. Through surveillance, we can acquire information
about the network, including the labels of less important
people, who may be more accessible. Surveillance or in-
vestigation, however, are expensive in terms of both time
and resources, and so we aim to identify the optimal set of
people to investigate, given a budget.

Disease Transmission Consider the task of monitoring
the spread of an infectious disease in a partially observed,
potentially noisy social network. In this context, the goal is
to determine the infection status of “at-risk” individuals in a
population. This may comprise only a small portion of the
overall network. What’s more, this subpopulation may not
have access to healthcare, or may be reluctant to get tested,
so this portion of the network may be unobservable. Yet we
can survey the observable network to identify contributing
factors for infection, such as an demographics, genetics and
medical history, which may be exhibited in the query set.
Moreover, since there is an undeniable causal link between
infection and one’s proximity to and interaction with those
infected, identifying the infection status of related or con-
nected individuals may offer insight about the query set.

Viral Marketing Suppose we are introducing a new
product and are interested in creating awareness of it
through viral marketing. Given the recent proliferation of
online social networks, there are various means of identi-
fying key opinion leaders and information hubs (i.e., the
query set), who comprise the optimal entry points into a
market. Yet before advertising to them, we must predict
whether these individuals are likely to adopt and promote
our product. Receiving positive reviews would be benefi-
cial, but having opinion leaders disseminate negative feed-
back would be especially detrimental to sales. As before,
we can survey a less influential test market to model the
behavior of the target market without risk of negative pub-
licity. We can also look at how people that are connected to
the opinion leaders react to the product, with the assump-
tion that they likely share similar opinions. Using their es-
timated reactions to the product, we can target our market-

ing to the subset of opinion leaders likely to give positive
reviews, while minimizing the overall marketing cost.

3. Background
For the following, let X ⊆ Rd denote a d-dimensional in-
stance space, Y a finite set of labels, and Z , X × Y their
cross-product. We are given a relational graph G = (V, E),
in which the nodes V represent individuals and the edges E
represent relationships between them. We assume that V is
fully-specified, although E is presumably incomplete. Each
node is associated with a vector of attributes v.X ∈ X and
a label v.Y ∈ Y , which initially unknown.

We define a relational learning algorithm A as a function
mapping an input graph G to a hypothesis space F . Let
fG denote a hypothesis returned by running A on G, and
note that fG can leverage any information revealed during
training to perform collective inference. Accordingly, we
denote the prediction of a single instance v ∈ V by fG(v).
If fG is real-valued (confidence-rated or probabilistic), we
will use fG(v; y) to denote the predicted confidence (or
probability) that v.Y = y. (If fG outputs a probability dis-
tribution, then we require that

∑
y∈Y fG(v; y) = 1.) Ac-

cordingly, we use hG(v) to denote the maximum a posteri-
ori (MAP) assignment hG(v) , argmaxy∈YfG(v; y).

We measure the error (or loss) of fG by a function ` :
F × V → R, which returns a real-valued measure of the
discrepancy between fG(v) and v.Y . Denote by L(U) ,
1
|U|
∑

u∈U `(fG(u)) the average loss over a subset of nodes
U ⊆ V . This can be equivalently stated as Eu∈U [`(fG, u)].

3.1. Collective Classification

The task of inferring node labels of network data using lo-
cal and global structural information is generally known
as collective classification. The underlying assumption of
collective classification models is that the relationships be-
tween nodes can be used to supplement local information
(attributes) used in prediction. For instance, a node’s la-
bel might be positively or negatively correlated with that
of its neighbors. Some collective methods rely solely on
this structural information to propagate labels (Macskassy
& Provost, 2007). A number of collective classification
models have been proposed (Sen et al., 2008) and shown
to outperform their non-relational counterparts in relational
domains. This is especially true in semi-supervised settings
like ours, in which labeled and unlabeled instances are con-
nected in the same network (Bilgic et al., 2010).

3.2. Active Learning and Inference

While most prior work in collective classification has fo-
cused on the “passive” setting, in which labeled data is
drawn randomly from an unknown distribution, we con-
sider the “active” setting, in which the learning algorithm
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(or predictor) can determine the sequence of examples. The
learner is given an initial set of annotations with which
to bootstrap learning (or inference), after which it is al-
lowed to request additional examples (subject to some bud-
get constraint) to improve performance. In active learning,
the benefit is two-fold: by selecting the most informative
examples, the learner can refine the model for problem-
atic or ambiguous instances, while potentially reducing the
sample complexity of the learning algorithm (Bilgic et al.,
2010; Macskassy, 2009). In the transductive setting, where
the labeled and unlabeled instances belong to the same net-
work, additional labeled instances can inform the predic-
tions of related nodes, in a process commonly referred to
as active inference (Bilgic & Getoor, 2010; Rattigan et al.,
2007).

Prior work in active learning (Bilgic et al., 2010;
Kuwadekar & Neville, 2011; Macskassy, 2009) for rela-
tional data has focused on acquiring only label information,
with the assumption that the network and all other attributes
are observed. Here, we make no such assumptions; instead,
we explicitly assume that the available network is largely
incomplete. We therefore allow the learner (or classifier) to
obtain a richer form of feedback, including (but not limited
to) labels, attributes, and network structure. In the con-
text considered herein, we begin with a partially labeled
network, with partially specified neighborhoods; surveying
any node returns its label, along with any edges connected
to it. There may also be contexts in which a survey returns
the ground truth for missing or noisy attribute values. Be-
cause this form of data acquisition is more general than tra-
ditional active learning, we refer to it as “active surveying”
(Sharara et al., 2011).

3.3. Active Strategies

The effectiveness of active methods is largely predicated on
the strategy for acquiring new information. The goal is to
select a sequence of surveys that maximizes the quality of
the learned model, while minimizing the amount, or cost,
of the acquired information. Since determining an optimal
solution is often intractable (Bilgic & Getoor, 2010; Roy &
McCallum, 2001), active methods typically rely on heuris-
tics. Popular strategies for active learning and inference
are uncertainty sampling and structure-based sampling, re-
spectively.

Reasoning that instance ambiguity leads to error, uncer-
tainty sampling focuses attention on those instances that
the current model finds most difficult to classify. In classi-
fication, this requires either confidence-rated prediction or
an ensemble of classifiers. There are numerous measures
of uncertainty (e.g., entropy). Since deterministically se-
lecting the most uncertain instances can sometimes result
in exploring outlier regions of the instance space (Saar-

Tsechansky & Provost, 2004), uncertainty-based methods
typically perform random sampling, weighted by uncer-
tainty, which increases robustness to outliers.

Another broad category of strategies leverages the structure
of the network (Bilgic et al., 2010; Rattigan et al., 2007).
These approaches rely on the assumption that, during infer-
ence, the true labels of nodes with certain structural prop-
erties are likely to propagate and positively impact the in-
ference of the most nodes. One heuristic, for example, is to
survey the nodes with highest degree, with the intuition that
these nodes have the greatest influence over the connected
nodes. In other words, the labels of high degree nodes are
likely to correlate with those of their neighbors (Rattigan
et al., 2007). Other common heuristics include various cen-
trality measures such as closeness and betweenness central-
ity (Macskassy, 2009) with the assumption that nodes most
central to a given connected component are most likely to
provide the most influence over nodes in that connected
component.

4. Query-driven Active Surveying
In this section, we define the problem of query-driven col-
lective classification with active surveying. We motivate
the discussion of surveying strategies by introducing the
notion of smoothness. We then leverage the smoothness
assumption to derive several active surveying strategies.

4.1. Problem Definition

The learning problem is defined as follows. In query-driven
applications, we are given a specified (proper) subset of the
full vertex set,Q ⊂ V . We refer to this set as the query set.
Let Q denote the distribution over this subset and note that
it is assumed to be different from the global distribution P.
The labels of the query set are hidden and assumed to be
unobtainable; thus our primary objective is to predict the
labels of this subset. To do so, we will train a transductive
model, leveraging the label and structural information from
the rest of the network.

We obtain training data via a sequence of surveys. Each
survey returns the label of, as well as all edges adjacent to,
a specified node. Let Ψ denote the survey operator. Thus,
surveying a node completely reveals all information about
the node; until a node is surveyed, one cannot assume that
its adjacent edge set is completely specified. Let S de-
note the set of nodes that have been surveyed and U denote
the nodes that have yet to be surveyed. When considering
which nodes to survey, we may refer to a subset Uc ⊆ U as
the survey candidates.

Acquiring complete information is considered expensive;
we therefore assume some cost structure associated with
surveying. Let ϕ : V → R+ denote a real-valued cost
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function. For the nodes in the query set, the cost is infinite1;
for all other nodes, the cost is a positive real number. For
the purposes of this research, since our study focuses on
the efficacy of our survey strategies, we will assume that
the cost of a survey is uniform for all non-query nodes.

Our learning objective can be stated as the cost of the
queries and the expected loss over the query set:

argminS Eq∈Q [`(fG, q) |G← G ∪ S] +
∑
s∈S

ϕ(s).

Determining the optimal set of surveys is obviously hard,
since we cannot measure the expected error term. Even
if we could measure the objective, the problem is equiva-
lent to exactly solving a knapsack problem, which is NP-
hard. As such, we consider an iterative greedy approach, in
which we survey a fixed number of nodes at each time step.
Without loss of generality, assume for the moment that we
survey one node at a time; at each iteration, the objective is

argminu∈U Eq∈Q [`(fG, q) |G← G ∪Ψ(u)] + ϕ(u).

Still, we cannot measure this objective. We discuss heuris-
tics to approximate it in the following section, and address
surveying strategies based on these heuristics in subsec-
tion 4.3.

4.2. The Smoothness Assumption

To motivate the discussion of survey strategies, we exam-
ine the following scenario. Recall thatQ is the set of query
nodes and S the surveyed nodes, and let Q and S denote
their respective empirical distributions. That is, for a ran-
dom variable Z taking values in Z , Q(Z) = Pr[Z ∈ Q],
and similarly for S. If the loss is bounded by M for any
z ∈ Z , then by the triangle inequality, we have that

Eq∈Q [`(fG, q) |G]

=
∑
z∈Z

`(fG, z) (Q(z |G)− S(z |G) + S(z |G))

≤ Es∈S [`(fG, s) |G] +M
∑
z∈Z
|Q(z |G)− S(z |G) |

= Es∈S [`(fG, s) |G] +M ||Q(Z |G)− S(Z |G) ||TV ,
(1)

where || · ||TV is the total variation norm. We interpret
Equation 1 to mean that the difference between the aver-
age errors over Q and S is a function of the statistical dis-
tance between their respective distributions. Furthermore,
note that Es∈S [`(fG, s) |G] is an empirically measurable
quantity, which is (typically) minimized by the learning al-
gorithm. Thus, in order to minimize the error over Q, we

1While in certain settings query nodes may trivially be sur-
veyed directly, we focus on the more challenging setting where
nodes in the query set cannot be surveyed.

must not only minimize the empirical error over S, but also
survey nodes such that the S becomes “close” to Q.

Since the labels of Q and the unsurveyed set U are hid-
den, deciding which subset S will minimize the distance
between Q and S is hard. Fortunately, intuition offers a
solution in the form of distributional smoothness. A com-
mon assumption in semi-supervised learning is that the
distribution over the instance space is “smooth”—that is,
high density areas are likely to exhibit the same labels.
This assumption has been used to explain the effective-
ness of instance-based methods, such as k-nearest neigh-
bors (Cover & Hart, 1967) and various semi-supervised ap-
proaches (Zhu & Goldberg, 2009). We can adapt this rea-
soning to the query-driven setting. Let P be some property
associated with each node, taking values in a space P . For
instance, a specific feature value, or perhaps its encoded
location in the network. We say that a query-driven prob-
lem is smooth with respect to a distance function d if there
exists a constant β ≥ 0 such that, for any p, p′ ∈ P ,∣∣∣∣∣∣∣∣ Pr

v∈V
[v | v.P = p]− Pr

v∈V
[v | v.P = p′]

∣∣∣∣∣∣∣∣
TV
≤ β d(p, p′).

(2)
In other words, the statistical distance2 between the condi-
tional distributions of a node with property p versus a node
with property p′ should be bounded by a constant multi-
plier of the distance between p and p′. Equation 2 suggests
a strategy for minimizing the distance between Q and S
without having access to the labels: if the smoothness prop-
erty holds for a given distance function, then survey nodes
in U that have minimal distance to nodes in Q.

Identifying a distance function for which the smoothness
assumption holds is a fundamental challenge in the query-
driven setting. There are a number of metrics to choose
from, and the appropriateness of any given one depends on
the data. We emphasize the fact that smoothness is an as-
sumption that we make about a particular problem. Indeed,
in certain applications, this assumption may not hold for
any metric. Yet it is reasonable to assume that it does hold
in certain cases, given insight into the problem domain.

Feature Smoothness A common assumption in data
analysis is that the distribution exhibits smoothness with
respect to a similarity or distance function in feature space.
In the query-driven setting, we can assume that nodes that
are similar (or close) in feature space will exhibit similar
label distributions; in other words, the problem is smooth
with respect to attribute similarity (or distance).

The exact nature of the similarity or distance function is
context-specific. One popular similarity measure for arbi-

2One could define smoothness using an alternate notion of sta-
tistical distance. In this case, the total variation norm fit nicely
with the preceding analysis.



Query-driven Active Surveying for Collective Classification

trary vectors is cosine similarity, with Euclidean distance
as the associated distance function. This has been shown
particularly effective with text data represented as TF/IDF-
weighted word frequencies (Manning et al., 2008).

Structural Smoothness A common assumption in rela-
tional domains is that the labels of related (i.e., connected)
nodes are correlated. Collective methods have been shown
to outperform traditional local models because they can ex-
ploit these correlations (e.g., (Sen et al., 2008)). Conse-
quently, a natural similarity criterion for network data is
adjacency.

Since the structure of the network may be only partially
observed, there may be few direct adjacencies to the query
set. One can address this problem by also applying a link
predictor to the graph. Much work has been done on this
topic, resulting in learning algorithms to infer the existence
of missing edges. In practice, we found these techniques
to be too computationally expensive to apply in the itera-
tive active setting. If these methods are too expensive, one
can use a simpler, path-based link predictor instead. One
such method (Liben-Nowell & Kleinberg, 2003) is the Katz
score. Note that this is a purely structural measure, whose
effectiveness cannot be explained by attribute similarity.
Furthermore, since it will tend to assign higher scores to
directly adjacent nodes, it provides an easy way to integrate
observed edges; one can therefore use the Katz score as a
single indicator of both observed and inferred adjacency.

4.3. Survey Strategies

Given a budget of k surveys, we use the idea of smoothness
to decide which nodes to survey. Under the smoothness as-
sumption, we expect high utility from nodes that are close
(with respect to a metric d) to the query nodes Q. This in-
vokes two questions: (1) how to compute utility for each
unsurveyed node; (2) how to sample within the budget.

To address the first question, we could compute an aggre-
gate utility value for each u ∈ U by summing d(q, u) over
all q ∈ Q. However, since Q may exhibit high variance,
the aggregated utility may yield little overall benefit. For
example, suppose that Q lies on the surface of a multidi-
mensional sphere (in feature space); applying an aggregate
feature similarity will result in selecting nodes at the middle
of the sphere, which, while equidistant to all query nodes,
may not be as informative as those closer to the perime-
ter. As such, instead of computing an aggregate utility, we
could sample from the full cross-product ofQ×U accord-
ing to which u is the best proxy for each q. For each q ∈ Q,
we compute the utility of every u ∈ U with respect to q,
then add the highest scoring u to a pool of survey candi-
dates Uc. The usefulness of each survey candidate is thus
conditioned on a particular query node, instead of over all

Algorithm 1 Adaptive Query-driven Active Surveying for
Collective Classification (QDAdapt)

Input: Initial network G = (V, E); set of query nodes Q;
cost function ϕ; feature similarity dfs; structural similarity dss;
survey budget B; survey batch size k.
Output: the surveyed network G.
S ← ∅, U ← V
while B > 0 do
α← (Re-)Estimate assortativity of G
With probability p = |α|, d← dss; else d← dfs
Uc ← ∅
for q ∈ Q do
uq ← argmaxu∈U\(Uc∪Q)d(q, u)

Add uq to Uc with weight d(q, uq)
end for
Us ←Weighted sampling of k nodes from Uc

for u ∈ Us do
G← G ∪Ψ(u)
S ← S ∪ u, U ← U \ u
B ← B − ϕ(u)

end for
fG ← A(G)

end while

query nodes. Interpreted differently, the utility measures
the amount of proxy information for a specific query node.

Given Uc and a budget constraint of k surveys, we must
determine how to sample from this set. Assuming the util-
ity function is perfect, we could just select the top-k nodes.
Yet since the utility is predicated on an assumption about
the data, a deterministic selection might yield suboptimal
results. For this reason, we propose introducing stochastic-
ity by performing a weighted random sampling according
to utility.

To summarize, for each query node, we select its proxy
from the pool of unsurveyed nodes, based on the given util-
ity (i.e., distance) function, and flag it as a survey candi-
date. From the pool of survey candidates, we then perform
a weighted sampling, proportional to the utility. The fol-
lowing section introduces an adaptive surveying strategy to
combine feature- and structure-based criteria.

4.4. An Adaptive Survey Strategy

Any smoothness assumption—be it feature-based, struc-
tural, or otherwise—is only an assumption, and is wholly
data-dependent. There is no single distance function that
will always work. That said, given a set of potentially use-
ful metrics, one can adaptively select the best one for the
given problem and current information.

We develop an active surveying algorithm to adaptively
choose between feature-based and structural metrics. This
algorithm uses a novel mechanism for determining when to
trust structural measures by using the assortativity (New-
man, 2003) of the currently observed graph. Let ey be the
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fraction of edges in the network that connect two nodes of
class y. Let sy be the fraction of edges with source nodes
that are in class y. Similarly, let ty be the fraction of des-
tination nodes in class y. The assortativity of a graph is
defined as:

assortativity(G) =

∑
y∈Y ey −

∑
y∈Y syty

1−
∑

y∈Y syty
.

Informally, assortativity is a measure of how correlated the
nodes in a network are. We use this as an indicator of when
there is sufficient correlation to use the structural similarity
as the distance function. More specifically, with probability
equal to the absolute value3 of the assortativity, we decide
to exploit the structural smoothness; otherwise, we use the
feature smoothness. Note that because the labels of most
nodes and edges are initially unobserved, we cannot com-
pute assortativity of the fully observed graph exactly. We
instead estimate the assortativity of the currently observed
graph using the observed edges and both the observed and
predicted labels. The rest of the algorithm follows the strat-
egy outlined in subsection 4.3. The details of the QDAdapt
algorithm are shown in Algorithm 1.

5. Empirical Evaluation
We evaluate our approach using several benchmark col-
lective classification datasets. We begin by describing the
characteristics of these networks, and our general experi-
mental setup. We evaluate our active surveying strategies
on these networks and compare the performance to active
learning approaches.

5.1. Experimental Setup

In these experiments, we use four real-world networks:
CORA, CITESEER, WIKIPEDIA, and PUBMED4. The first
two, CORA and CITESEER, are benchmark collective clas-
sification networks of computer science publications. In
these publication networks, each node represents a publi-
cation and each edge a citation. Each node is annotated
with a vector of binary word indicators (i.e., whether it
contains each word) and a label indicating the paper topic.
The WIKIPEDIA network consists of Wikipedia articles,
wherein each node represents an article and each edge a
hyperlink between articles. Each node is annotated by a
vector of TF/IDF-weighted word frequencies and a label
specifying the general category. Finally, the PUBMED cita-
tion network is a set of articles related to diabetes from the
PubMed database. Node attributes are TF/IDF-weighted

3The assortativity ranges from −1 to 1: positive scores indi-
cate correlation, and negative scores indicate anticorrelation. In
either case, the magnitude is the quantity we are interested in, as
it indicates the level of structural smoothness.

4Datasets available from: http://www.cs.umd.edu/
projects/linqs/projects/lbc.

word frequencies and the labels specify the type of diabetes
addressed in the publication.

For each dataset, we limit our experiments to the largest
connected component. For the purposes of collective clas-
sification, we ignore the directionality of hyperlinks and
citations. To prepare the word attribute data, we use stem-
ming, stop-word removal, and filter for the highest TF/IDF-
weighted words to reduce the size of the dictionary to 500.
In all of our experiments, the learning algorithm receives a
partially observed network where the node labels are hid-
den, but the node features, a random 10% of the edges, and
attributes are observed. Whenever a node is surveyed, the
learner acquires the node’s label and its incident edges.

5.2. Methodology

We compare our adaptive query-driven approach (QDAdapt)
to two commonly used active learning baseline strate-
gies: uniform random sampling (RAND) from the unsur-
veyed nodes U , and weighted uncertainty sampling (UNC)
over the U based on entropy (Saar-Tsechansky & Provost,
2004). We also compare to variants of QDAdapt which only
exploit one of the smoothness types each: QDFS for fea-
ture smoothness and QDSS for structural smoothness. As
mentioned in Section 4.2, we use cosine similarity for fea-
ture smoothness and the approximate Katz score for struc-
tural smoothness. We perform active surveying in batch-
mode (Settles, 2009), common in active learning problems,
where k nodes are surveyed in parallel. We set the survey
batch size k = 10 and allow the algorithm to run for 30
iterations (yielding an effective budget of 300 surveys).

Our algorithm is largely agnostic to the underlying collec-
tive classification model. For our experiments, we use a
semi-supervised variant of the Iterative Classification Al-
gorithm (ICA) (Bilgic et al., 2010) to perform the collec-
tive classification. In ICA, each node is annotated with
a vector of its attribute values (i.e., words), its label, and
the label distribution of its neighbors. ICA learns two base
classifiers: a local classifier and a relational classifier. The
local classifier, trained on the observed labels using only
the attribute values, is used to bootstrap the unobserved
labels prior to learning the relational classifier. The local
classifier is also used to bootstrap the unobserved labels
prior to applying the relational classifier during inference.
The relational classifier, trained on the observed labels us-
ing the attribute values and neighbor label distribution, is
then iteratively applied during inference to propagate the
labels. Any classifier (e.g., logistic regression, naı̈ve bayes,
support vector machines) can be used for the base classi-
fiers. We use support vector machines with a linear kernel
(Chang & Lin, 2001) for both base classifiers.

To evaluate our approaches under different conditions, we
explore various query set generating processes. We evalu-

http://www.cs.umd.edu/projects/ linqs/projects/lbc
http://www.cs.umd.edu/projects/ linqs/projects/lbc


Query-driven Active Surveying for Collective Classification

ate both on query sets that are generated by uniform ran-
dom sampling and query sets generated by targeting a par-
ticular structural or attribute characteristics, described in
greater detail below.

5.3. Sampled Query Sets

For our first set of experiments, we create query sets by
randomly sampling (uniformly and without replacement)
5% of the nodes. Table 1 lists the number of iterations
that QDAdapt outperforms each other method on average,
and lists in parentheses the number of times the improve-
ment by QDAdapt is statistically significant via a paired t-
test. First, we find that for all networks, our query-driven
approaches typically outperform RAND and UNC, the two
non-query-driven baselines. QDAdapt performs best for over
a majority of the budgets considered, with most of these
gains deemed statistically significant. Specifically, QDAdapt
achieves performance improvements of up to 17% over
RAND and UNC. It is important to note that neither QDFS
nor QDSS performs uniformly well on all datasets, thus
motivating the adaptive strategy of QDAdapt. We also find
that the structural distance criterion works well for CORA,
CITESEER, and PUBMED; this is likely due to the fact that
paper topic is typically correlated across citations. In these
datasets, attribute similarity is not as strong an indicator,
and so QDFS does not perform as well. However, in the
WIKIPEDIA dataset, we find that QDFS performs very well,
while QDSS performs the worst; this is likely due to the fact
that WIKIPEDIA articles often link to a large number of un-
related articles, whereas their word frequencies are better
indicators of topic. Analyzing the true assortativity of these
datasets supports this claim. We find that CORA, CITE-
SEER, and PUBMED have high assortativities with respec-
tive values of 0.79, 0.67 and 0.69; meanwhile, WIKIPEDIA
has a low assortativity of 0.36.

Focusing on the query-driven strategies, we find that
QDAdapt generally outperforms both QDFS and QDSS on all
citation networks by as much as 12% and 8% respectively.
Only on the WIKIPEDIA dataset did a non-adaptive strat-
egy generally outperform our adaptive approach, typically
in the early iterations (i.e., low survey budgets); and even
in this case, QDAdapt is still competitive. We note, however,
that the non-adaptive strategies are only useful if we know
a priori which metric to use in advance, which is rarely the
case in practice.

5.4. Targeted Query Sets

In practice, query sets are selected for some context-
specific reason, and thus may have certain targeted char-
acteristics. For example, in the disease transmission ex-
ample of Section 2, where physical contact is a signifi-
cant factor, query nodes may tend to be highly intercon-

Table 1. Number of iterations (out of 30) where QDAdapt scores
higher on average (wins) or lower (losses) than each other method.
Of those, the number of significant wins and losses, using paired
t-tests with 90% significance, are listed in parentheses.

# of Wins # of Losses
CORA RAND 29 (28) 1 (0)

UNC 29 (27) 1 (0)
QDFS 30 (25) 0 (0)
QDSS 24 (21) 6 (0)

CITESEER RAND 30 (20) 0 (0)
UNC 30 (23) 0 (0)
QDFS 30 (18) 0 (0)
QDSS 24 (23) 6 (2)

WIKIPEDIA RAND 24 (9) 6 (1)
UNC 26 (11) 4 (1)
QDFS 4 (0) 26 (7)
QDSS 28 (26) 2 (0)

PUBMED RAND 27 (17) 3 (0)
UNC 26 (18) 4 (1)
QDFS 26 (14) 4 (1)
QDSS 22 (1) 8 (0)

nected. Similarly, in the viral marketing example of Sec-
tion 2, query nodes may share a common characteristic
such as being popular or prolific. To study the impact of
more targeted generating processes, we next generate query
sets with two types of targeted queries: neighbor-based and
characteristic-based queries.

To generate neighbor-based queries, we select nodes us-
ing snowball sampling. In snowball sampling, we initial-
ize the query set using a seed node. We then proceed to
sample each of its neighbors with probability pneigh; if we
do not sample a neighbor (which occurs with probability
1 − pneigh), then we select a random node from the re-
maining unsampled network. We repeat this process for
each node currently in the query set, until the number of
query nodes reaches 5% of the overall network. We per-
form this procedure for pneigh = 0.1, 0.5, 0.9. Note that,
for higher values of pneigh, the query set tends to be a con-
nected component. Conversely, for lower values of pneigh,
the query set tends to be randomly distributed throughout
the network. We test this neighbor-based setup using the
CITESEER network repeating the experiment for 40 runs
by sampling query sets using different random seeds.

To recreate a query sets based on common characteristic,
we first identify a set of words such that the probability of
occurrence is low (below 5%) and which a domain expert
may find interesting. We then generate the query set from
all documents that contain the word. For this set of ex-
periments, we focus on the PUBMED network. We used
domain knowledge to select words such as “death”, “hypo-
glycemia”, and “suppress” as the criteria for adding a paper
to the query set.

Examining the results, we see similar trends as before, with
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QDAdapt showing even greater improvement over the base-
lines. Two important observations when comparing the
targeted query-sets setting with the random query-set set-
ting. First, while QDAdapt is still overall the best perform-
ing, there are cases where either QDFS or QDSS outper-
form QDAdapt on targeted query sets. We see this change
when comparing low and high values of pneigh and when
comparing the results between the randomly generated
and attribute-based query sets. The effectiveness of the
non-adaptive smoothness heuristics is especially noticeable
when the number of surveyed nodes is particularly small
(i.e., the learner’s budget is small). This effect implies that
when budget is particularly low for query sets that exhibit
clear biases, and there is domain knowledge that can iden-
tify in advance whether feature or structure smoothness is
more likely, using either QDFS or QDSS alone can poten-
tially yield better results. For most greater budgets, how-
ever, and in the absence of prior knowledge about the gen-
eral characteristics of the data, QDAdapt generally yields the
best performance.

Next, we observe a general upward trend when comparing
the results from the randomly generated query sets to tar-
geted query sets. In both cases, the stronger the bias for the
query set sampling, the greater the improvement over the
non-query-driven strategies. For example, while the per-
cent improvements of QDAdapt over RAND and UNC reach
up to 12% and 17% for uniformly random query sets, we
find improvement as great as 22% and 68% accuracy for
high values of pneigh. Similarly, in the PUBMED experi-
ments, where we reach up to 10% and 11% improvement
over RAND and UNC on a uniformly random query set,
using QDAdapt on query sets defined by the word attributes
improves accuracy by up to 28% and 44%. Consequently,
while QDAdapt already yields significant improvements in
the uniformly random query-set setting from the previous
section, the results from tests in this section indicate that
the more realistic setting where the query nodes are se-
lected based on some measurable criteria will benefit even
more.

6. Conclusion
Query-driven collective classification is an important but
understudied problem, applicable to a variety of domains.
The query-driven setting, when coupled with active survey-
ing for partially observed networks, is natural in practice. It
provides an opportunity to develop high impact algorithms
for maximizing predictive performance, over a range of an-
notation budgets. We identify two forms of data smooth-
ness, feature-based and structure-based, and demonstrate
how to exploit them for query-driven active surveying. We
then develop an adaptive algorithm to automatically deter-
mine the optimal smoothness assumption, given the ob-
served information. We evaluate these survey strategies on

real network data and show that our query-driven methods
exhibit significant advantages over traditional (non-query-
driven) active learning heuristics. There is much room for
further exploration: for example, query-driven active sur-
veying in which surveys may return incomplete or noisy in-
formation; exploring non-uniform cost structures; and ap-
plication in dynamic networks. Nevertheless, this paper
identifies this important and challenging problem setting,
and represents a major first step in addressing it.
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