Learning a Degree-Augmented Distance Metric from a Network

Bert Huang, U of Maryland Blake Shaw, Foursquare Tony Jebara, Columbia U

Beyond Mahalanobis: Supervised Large-Scale Learning of Similarity NIPS Workshop, Sierra Nevada, Dec. 16, 2011

Motivation: Similarity in Networks

- Homophily occurs in natural networks: neighbors are similar
- Learning must account for structural nature of networks

Outline

- Problem formulation
- <u>Structure</u> Preserving <u>Metric</u> Learning
- <u>Degree</u> <u>Distributional</u> <u>Metric</u> <u>Learning</u>
- Analysis
- Experiments

Problem Formulation

- Given: node feature matrix X and adjacency matrix A
- Learn the inherent distance metric related to the homophily of the network

Structure Preserving Metric Learning

- Connectivity algorithms: k-nn,
 b-matching, MST, ε-neighborhoods
- Distances are *structure-preserving* if the connectivity algo outputs the true connectivity [SJ09]
- Parameterize distances

 $D_{\mathbf{M}}(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i - \mathbf{x}_j)^{\top} \mathbf{M}(\mathbf{x}_i - \mathbf{x}_j)$

Structured Prediction Motivation

- Constraints: true A must score higher than any feasible adjacency matrix \tilde{A}
- Frobenius regularization -> SVM
- Cutting plane doesn't scale: requires iterating SDP and separation oracle
- Relaxation:
 - (Optional) drop PSD constraint
 - only consider small changes to A

Stochastic SPML (k-nn)

 Consider only changes along nodeneighbor-impostor triplets

 $T = \{(i, j, k) | A_{ij} = 1, A_{ik} = 0\}$

 Difference between scores is only along triplet edges

 $\frac{\lambda}{2} ||\mathbf{M}||_{\mathrm{F}}^{2} + \frac{1}{|T|} \sum_{(ijk)\in T} h(D_{\mathbf{M}}(\mathbf{x}_{i}, \mathbf{x}_{j}) - D_{\mathbf{M}}(\mathbf{x}_{i}, \mathbf{x}_{k}) + 1)$

- Randomly sample triplets and follow stochastic subgradients
- (Periodically project to PSD)

Out-of-Sample Extension

- Connectivity algorithm is fixed: structural parameters must be known
 - e.g., k = degree of training nodes
- What degree should new nodes have?
 - Feature-dependent *degree* preference functions

Degree Distributional Metric Learning

- Simultaneously learn feature-dependent degree preference functions such that the connectivity algorithm maximizes
 F(A|X; M, S) = \sum_{ij} A_{ij} D_M(x_i, x_j) + \sum_{i} g(c[i]|x_i; S)
- Linear deg. pref. score $g(k|\mathbf{x}; \mathbf{S}) = \sum_{k'=1}^{n} \mathbf{x}^{\top} \mathbf{s}_{k'}$
- Regularizing w/ ||S||²_F, DDML can also be a structural SVM

Stochastic DDML

- Triplet-based loss function: $\min_{\mathbf{M},\mathbf{S}} \frac{\lambda}{2} (||\mathbf{M}||^2 + ||\mathbf{S}||^2) + \frac{1}{|T|} \sum_{ijk\in T} h(F(\mathbf{A}|\mathbf{X};\mathbf{M},\mathbf{S}) - F(\mathbf{A}^{(ijk)}|\mathbf{X};\mathbf{M},\mathbf{S}) + 1)$
- Score difference cancels except for four quantities:

 $F(\mathbf{A}|\mathbf{X};\mathbf{M},\mathbf{S}) - F(\mathbf{A}^{(ijk)}|\mathbf{X};\mathbf{M},\mathbf{S}) = D_{\mathbf{M}}(\mathbf{x}_i,\mathbf{x}_k) - D_{\mathbf{M}}(\mathbf{x}_i,\mathbf{x}_j) + \mathbf{x}_k^{\top}\mathbf{s}_{(c[k]+1)} - \mathbf{x}_j^{\top}\mathbf{s}_{(c[j]-1)}$

(Project toward concave degree prefs)

Learner Running Time

- Limit the maximum degree so the number of parameters for degree preference function is constant
- Subgradient computation: $O(d^2)$ for SPML and $O(d^2 + c_{max})$ for DDML
- Learner reduces to PEGASOS algorithm (Shalev-Shwartz et al. '07) On one-class SVM:

$$O\left(\frac{1}{\epsilon\lambda}\right)$$
 – time for ϵ -convergence

Link Prediction from DDML

- For concave degree preferences, the connectivity algorithm reduces to an $O(N^3)$ combinatorial algorithm (Huang & Jebara, '09)
- Or rank edges by degree-augmented distance

 $D_{M}(b, c)$ g(b, 2) - g(b, 1)g(c, 3) - g(c, 2)

Experiments

- Wikipedia: word counts and hyperlinks
- Facebook: status, gender, major, dorm, year, and friendship links [Traub, et al., '11]
- Randomly hold out 20% of nodes and incident edges for testing

Experiment Results

		n	т	d	Euclid.	RTM	SVM	SPML	DDML
Wikipedia	Graph Theory	223	917	6695	0.624	0.591	0.610	0.722	0.691*
	Philosophy Concepts	303	921	6695	0.705	0.571	0.708	0.707	0.746^{*}
	Search Engines	269	332	6695	0.662	0.487	0.611	0.742	0.725^{*}
	Philosophy Crawl	100k	$4\mathrm{m}$	7702	0.547		_	0.601	0.562
Facebook	Harvard	1937	48k	193	0.764	0.562	0.839	0.854	0.848
	MIT	2128	95k	173	0.702	0.494	0.784	0.801	0.797
	Stanford	3014	147k	270	0.718	0.532	0.784	0.808	0.810
	Columbia	3050	118k	251	0.717	0.519	0.796	0.818	0.821

Summary + Open Problems + Thanks!

- SPML: metrics consistent with structural behavior of networks
- DDML: explicit degree preference functions that are feature-dependent
- Linear constraints and Frobenius regularization: constant time convergence
- Other applications of structure-preserving metric
- More natural regularizer?
- Stopping criterion
- Large-scale prediction