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We propose a natural generalization of Regularized Maximum Entropy Density Estimation
(maxent) to handle input data with unknown values. While standard approaches to handling miss-
ing data usually involve estimating the actual unknown values, then using the estimated, complete
data as input, our method avoids the two-step process and handles unknown values directly in the
maximum entropy formulation.

The maxent method was recently proposed as an excellent method of presence-only prediction
[2, 3]. In a presence-only framework, we are given a set, X , of data in which some of the data
are labeled as positive. However, unlike the typical classification framework, the remaining unla-
beled instances are not necessarily negative. Instead, they are considered of unknown class. The
regularized maxent method treats the positively labeled points as random draws from some hidden
distribution overX and attempts to estimate that distribution. Specifically, regularized maxent tries
to find a distribution over X with maximum entropy such that the expected values of each feature
are close to the observed means of the features with a positive label.

Let F be anN×D matrix of features such that Fij is the i’th datum’s j’th feature. Let vectorm
be the means of the D features of the labeled positive data. Then the standard regularized maxent
optimization is:
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Here, the β terms are regularization parameters. To handle the missing values, we first compute
the empirical means (m1, . . . ,mD) using only values we actually know. In particular, rather than
imputing values for unknown features, we simply omit the unknowns from the averages. Next, we
introduce an indicator matrix O such that entry Oij is 1 if we know the value of Fij and it is zero
if Fij is missing. In addition, WLOG, we set all unknown Fij to zero. Now we can write term for
a normalized expected value of a feature with missing values:

E[F•j] =
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As before, we want to keep these expectations close to the empirical means, while maximizing
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entropy. This gives our proposed optimization:
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There are various methods to solve this optimization, but as an initial implementation we performed
a dual optimization similar to [2] but using a Newton update to optimize each dimension iteratively.
Experimentally, this method converged to the maximum for non-degenerate cases.

We compared the performance of our algorithm against running standard regularized maxent
with either mean imputation or Gaussian EM imputation [4]. We hand picked four databases
from the UCI ML Repository [1] that had real missing features and removed the most complete
half of the features to exacerbate the incompleteness. Giving each algorithm a training subset of
the positive class, we compare their area under ROC curves with respect to the remaining testing
positives. Table 1 lists the results, with the highest AUC in bold.

While our method’s performance on these datasets is only slightly better, we find its simplicity
and elegance attractive. The algorithm makes no attempt to solve a harder problem than it is given,
which seems to follow nicely from the maximum entropy principle itself.

Proposed Mean Imputation EM Imputation
horse-colic 0.7853± 0.0316 0.7770±0.0306 0.7748±0.0296

house-votes-84 0.7416± 0.0182 0.7430 ± 0.0176 0.7420± 0.0182
echocardiogram 0.7079± 0.0421 0.6948± 0.0410 0.6909± 0.0389

hepatitis 0.8541± 0.0367 0.8467± 0.0379 0.8496± 0.0381

Table 1: Average and standard deviation of best AUC after cross-validation for β parameters.
Averaged over 50 random splits of training and testing positive labeled points.
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