
A Short Introduction to Probabilistic Soft Logic

Angelika Kimmig1,2, Stephen H. Bach1, Matthias Broecheler3, Bert Huang1, Lise Getoor1
1University of Maryland, 2KU Leuven, 3Aurelius LLC

Abstract

Probabilistic soft logic (PSL) is a framework for collective, probabilistic reason-
ing in relational domains. PSL uses first order logic rules as a template language
for graphical models over random variables with soft truth values from the inter-
val [0, 1]. Inference in this setting is a continuous optimization task, which can
be solved efficiently. This paper provides an overview of the PSL language and
its techniques for inference and weight learning. An implementation of PSL is
available at http://psl.umiacs.umd.edu/.

1 Introduction

Many problems in AI require to deal with both relational structure and uncertainty. As a conse-
quence, there is a growing need for tools that facilitate the development of complex probabilistic
models with relational structure. These tools should combine high-level modeling languages with
general purpose algorithms for inference in the resulting probabilistic models or probabilistic pro-
grams. A variety of such frameworks has been developed recently, based on ideas from graphical
models, relational logic, or programming languages [6, 5]. In this paper, we provide an overview of
recent work on probabilistic soft logic (PSL) [4], a framework for collective, probabilistic reasoning
in relational domains. PSL models have been developed in various domains, including collective
classification [3], ontology alignment [4], personalized medicine [2], opinion diffusion [1], trust in
social networks [7], and graph summarization [8]. A key distinguishing feature of PSL is its use of
soft truth values in the interval [0, 1]. This allows one to directly incorporate similarity functions,
both on the level of individuals and on the level of sets. For instance, when modeling opinions in
social networks, PSL allows one to not only model different types of relations between users, such as
friendship or family relations, but also multiple notions of similarity, for instance based on hobbies,
beliefs, or opinions on specific topics. Technically, PSL represents the domain of interest as logical
atoms. It uses first order logic rules to capture the dependency structure of the domain, based on
which it builds a joint probabilistic model over all atoms. Each rule has an associated non-negative
weight that captures the rule’s relative importance. Due to the use of soft truth values, inference in
PSL is a continuous optimization problem, which can be solved efficiently. In the following, we
provide an overview of the PSL modeling language and its efficient algorithms for most probable
explanation and marginal inference.

2 PSL Semantics

A PSL program consists of a set of first order logic rules with conjunctive bodies and single literal
heads. Rules are labeled with non-negative weights. The following example program encodes a
simple model to predict voter behavior based on a social network with two types of links denoting
friend and spouse relationships:

0.3 : friend(B,A) ∧ votesFor(A,P )→ votesFor(B,P ) (1)
0.8 : spouse(B,A) ∧ votesFor(A,P )→ votesFor(B,P ). (2)

Consider any concrete persons a and b and party p instantiating logical variables A, B, and P
respectively. The first rule states that if a is a friend of b and votes for party p, there is a chance that

1



b votes for p as well, whereas the second makes the same statement for spouses. The rule weights
indicate that spouses are more likely to vote for the same party than friends.

While PSL shares the syntax of its rules with first order logic, it uses soft truth values from the inter-
val [0, 1] instead of the extremes 0 (false) and 1 (true) only. Given a set of atoms ` = {`1, . . . , `n},
we call the mapping I : `→ [0, 1]n from atoms to soft truth values an interpretation. PSL defines a
probability distribution over interpretations that makes those satisfying more ground rule instances
more probable. In the example above, we prefer interpretations where a person’s vote agrees with
many friends, that is, satisfies many groundings of Rule (1), and in case of a tradeoff between a
friend and a spouse, agreement with the spouse is preferred due to the higher weight of Rule (2).

To determine the degree to which a ground rule is satisfied, PSL uses the Lukasiewicz t-norm and
its corresponding co-norm as the relaxation of the logical AND and OR, respectively. These relax-
ations are exact at the extremes, but provide a consistent mapping for values in-between. Given an
interpretation I , the formulas for the relaxation of the logical conjunction (∧), disjunction (∨), and
negation (¬) are as follows:

`1 ∧̃ `2 = max{0, I(`1) + I(`2)− 1},
`1 ∨̃ `2 = min{I(`1) + I(`2), 1},
¬̃ l1 = 1− I(`1),

where we use ˜ to indicate the relaxation from the Boolean domain. For a ground PSL rule r ≡
rbody → rhead ≡ ¬̃ rbody ∨̃ rhead, an interpretation I over the atoms in r determines whether r
is satisfied, and, if not, its distance to satisfaction. Abusing notation, we expand the usage of I
to logical formulas. The truth value of a formula is obtained by applying the above definitions of
the logical operators starting from the truth values of atoms as specified by I . Given I , a rule r is
satisfied, i.e., I(r) = 1, if and only if I(rbody) ≤ I(rhead), that is, the head has at least the same
truth value as the body. Again, this coincides with the usual definition of satisfaction of a rule when
truth values are restricted to 0 and 1. The rule’s distance to satisfaction under interpretation I then
measures the degree to which this condition is violated:

dr(I) = max{0, I(rbody)− I(rhead)}. (3)

For instance, consider the interpretation I = {spouse(b, a) 7→ 1, votesFor(a, p) 7→
0.9, votesFor(b, p) 7→ 0.3}, and let r be the corresponding ground instance of Rule (2) above.
We get I(rbody) = max{0, 1+0.9−1} = 0.9 and thus dr(I) = max{0, 0.9−0.3} = 0.6, whereas
the distance would be 0 if the head had truth value 0.9 or greater.

Given a set of ground atoms ` of interest, a PSL program induces a distribution over possible inter-
pretations I . Let R be the set of all ground rules that are instances of a rule in the program and only
mention atoms in `. The probability density function f over I is:

f(I) =
1

Z
exp[−

∑
r∈R

λr(dr(I))
p] ; Z =

∫
I

exp[−
∑
r∈R

λr(dr(I))
p], (4)

where λr is the weight of the rule r, Z is the continuous version of the normalization constant used in
discrete Markov random fields, and p ∈ {1, 2} provides a choice of two different loss functions. In-
formally, the linear loss function (p = 1) favors interpretations that completely satisfy one rule at the
expense of higher distance from satisfaction for conflicting rules, whereas the quadratic loss function
(p = 2) favors interpretations that satisfy all rules to some degree, which typically have truth values
farther away from the extreme values. The values of individual atoms `i can be further restricted by
linear equality and inequality constraints. We set f(I) = 0 whenever any such constraint is violated
and constrain the domain of integration for the normalization constant Z accordingly. This allows
one to encode additional domain knowledge, such as a predicate being functional. For instance, in
the voter example, each voter a cannot vote for more than one of the participating parties p1, . . . , pn,
leading to a functionality constraint on votesFor(·, ·).

3 Inference and Learning in PSL

The PSL system provides efficient inference methods for the two key tasks of (a) inferring most
likely values for a set of propositions given values of the remaining propositions as evidence (most

2



probable explanation or MPE inference) and (b) computing marginal distributions. The form of PSL
programs together with the use of soft truth values ensure that the space of interpretations with non-
zero density forms a convex polytope. Inference algorithms for both settings exploit this convexity
to achieve efficiency. Additionally, PSL provides methods for learning weights from labeled data.
We summarize the main ideas here and refer to the corresponding technical papers for full details.

MPE Inference The first common inference task in PSL is to find the most probable interpretation
given evidence, that is, the most likely interpretation extending a given partial interpretation. This
means maximizing the density function f(I) in Equation (4), which is equivalent to minimizing the
summation in the exponent, subject to both the evidence and the equality and inequality constraints.
For instance, in the voting example, given the social network and the true voting behavior of a few
persons obtained in a poll, MPE inference derives the most likely voting behavior of all others.

As shown by Broecheler et al. [4], this constrained optimization problem can be cast as a second
order cone program (SOCP). The SOCP can be solved in time O(n3.5), where n is the number
of relevant rule groundings, that is, those with non-zero distance to satisfaction. In order to avoid
manipulation of non-relevant rules, PSL follows an iterative approach that determines the set of
relevant rules based on the truth values of the evidence atoms and the current truth values of non-
evidence atoms before constructing the SOCP. Initially, a truth value of 0 is used for non-evidence
atoms. After constructing and solving the SOCP, the set of relevant rules is updated based on the
current MPE interpretation. This process is repeated until no more rules get activated.

Recently, Bach et al. [1] demonstrated that MPE inference based on consensus optimization can
achieve linear scalability while being only marginally less accurate than standard cubic time SOCP
solvers used in the approach discussed above. Consensus optimization splits the optimization prob-
lem into independent, small problems tied together by additional constraints. In PSL, separate sub-
problems are created for each ground rule. Each such subproblem uses its own local copies of
literals, and introduces constraints that equate the truth values of these local copies with those of
the corresponding original literal. For instance, for a given person a and party p, all groundings
of Rules (1) and (2) are dependent through votesFor(a, p) in the original optimization problem,
but are made independent by using different copies of this atom in consensus optimization. Con-
sensus optimization then iterates between (a) optimizing truth values of local copies as a trade-off
between minimizing their contribution to the original objective and their agreement with the original
atom, and (b) updating truth values of original atoms to the average of their local copies, where all
subproblems have closed form solutions.

Computing Marginal Distributions The second common inference task in PSL is to calculate
the probability P (l ≤ I(`i) ≤ u) that an atom `i takes a truth value from a given interval [l, u].
Broecheler and Getoor [3] introduce a sampling algorithm to approximate such marginal distribu-
tions, which is a #P-hard problem in the number of ground atoms in general. Intuitively, calculating
P (l ≤ I(`i) ≤ u) corresponds to computing the volume of the corresponding slice of the con-
vex polytope of non-zero density interpretations. In PSL, marginal distributions are approximated
by collecting a histogram of sampled points following the hit-and-run Markov chain Monte Carlo
scheme. Starting from a MAP state, which can be obtained efficiently as discussed above, the al-
gorithm explores the convex polytope by first sampling a direction uniformly at random, followed
by sampling a point on the line segment within the polytope. As the general scheme can get stuck
in corners of the polytope, where most directions do not point towards the interior, these cases are
detected, and a relaxation method is applied to restrict direction sampling to feasible directions.

Weight Learning The weights of rules can be learned with maximum-likelihood estimation [4].
The gradient of the log-likelihood with respect to a weight λi is

∂

∂λi
log f(I) = −

∑
r∈Ri

(dr(I))
p + E

[∑
r∈Ri

(dr(I))
p

]
, (5)

where Ri is the set of ground rules parameterized with weight λi. Computing the expectation
E
[∑

r∈Ri
(dr(I))

p
]

is intractable, so a common approximation is used:
∑

r∈Ri
(dr(I

?))p where
I? is the most probable interpretation given the current weights. Additionally, new weight learning
methods for PSL are an active area of research.

3



4 Related Work

Among the variety of probabilistic relational formalisms developed recently, Markov Logic Net-
works (MLNs) [9] is perhaps the most closely related to PSL. We therefore briefly summarize the
key commonalities and differences here. Both PSL and MLNs use first order logic as a template lan-
guage to specify undirected graphical models, where ground atoms correspond to random variables
and first order formulas encode dependencies among these variables and induce the features of the
graphical model. However, there are two important differences. First, PSL relaxes the Boolean truth
values of MLNs to continuous, soft truth values in the interval [0, 1]. This allows for easy integration
of similarity functions into models. Second, PSL restricts the syntax of first order formulas to that
of rules with conjunctive bodies. Together, these two characteristics ensure that inference in PSL
is a convex optimization problem in continuous space and therefore enable the efficient inference
approaches discussed above.

Acknowledgements This work is supported by the National Science Foundation under Grant
No. CCF0937094 and by the Intelligence Advanced Research Projects Activity (IARPA) via De-
partment of Interior National Business Center (DoI/NBC) contract number D12PC00337. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon. Disclaimer: The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of IARPA, DOI/NBA, or the U.S. Government.
A. Kimmig is a postdoctoral fellow of the Research Foundation Flanders (FWO Vlaanderen).

References

[1] Stephen H. Bach, Matthias Broecheler, Lise Getoor, and Dianne P. O’Leary. Scaling MPE
inference for constrained continuous Markov random fields with consensus optimization. In
Advances in Neural Information Processing Systems (NIPS), 2012.

[2] Stephen H. Bach, Matthias Broecheler, Stanley Kok, and Lise Getoor. Decision-driven models
with probabilistic soft logic. In NIPS Workshop on Predictive Models in Personalized Medicine,
2010.

[3] Matthias Broecheler and Lise Getoor. Computing marginal distributions over continuous
Markov networks for statistical relational learning. In Advances in Neural Information Pro-
cessing Systems (NIPS), 2010.

[4] Matthias Broecheler, Lilyana Mihalkova, and Lise Getoor. Probabilistic similarity logic. In
Conference on Uncertainty in Artificial Intelligence, 2010.

[5] L. De Raedt, P. Frasconi, K. Kersting, and S. Muggleton, editors. Probabilistic Inductive Logic
Programming - Theory and Applications, volume 4911 of Lecture Notes in Computer Science.
Springer, 2008.

[6] Lise Getoor and Benjamin Taskar. Introduction to Statistical Relational Learning. The MIT
Press, 2007.

[7] Bert Huang, Angelika Kimmig, Lise Getoor, and Jennifer Golbeck. Probabilistic soft logic for
trust analysis in social networks. In International Workshop on Statistical Relational Artificial
Intelligence (StaRAI 2012), 2012.

[8] Alex Memory, Angelika Kimmig, Stephen H. Bach, Louiqa Raschid, and Lise Getoor. Graph
summarization in annotated data using probabilistic soft logic. In Proceedings of the Interna-
tional Workshop on Uncertainty Reasoning for the Semantic Web (URSW), 2012.

[9] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learning, 62(1-
2):107–136, 2006.

4


