

Beyond Visual: Shape, Haptics and Actuation in 3DUI

Welcome, introduction, & roadmap 3DUIs in a nutshell 3DUI new directions introduction New directions I New directions II Video Games: 3DUIs for the Masses Beyond Visual: shape, haptics and actuation in 3DUI From Hack to Pack Conclusion

Overview

RINTERFACES: FROM LAB TO LIVING ROOM

CHI 2008

overview | introduction | mobile devices | environment | robotics | integration | conclusion

Virtual versus Real interaction

- virtual: mostly visual interaction
- real: visual, sound, smell, touch, kinesthesia

Haptics: Feeling of touch + kinesthesia

- <u>touch</u>: sensation resulted from stimulating human skin
- kinesthesia: sensation resulted from bodily movements and tensions

Interacting with physical objects

- perception of shapes
- perception of surface properties
- adjust and self-regulate body motion, especially 3D object manipulation
 - blind manipulation
- sense of immersion and realism
 - ability to touch = really exist

is an nount may I have und viewal

Overview String Roce String R

Two approaches to create realistic artificial environment

- Simulate every perceivable aspect of the physical environment
- Dynamically modify the physical world itself to communicate information
 - Ivan Sutherland "Ultimate Display"

Shape displays and actuated interfaces

- Influenced by robotics, haptics and tangible UI research
- Presenting 3D information by directly reconfiguring physical environment

"Source"

ivan poupyrev | beyound visua

Overview

CHI 2008

This lecture will overview

- 1. Interfaces that produce feeling of interacting with 3D physical objects by simulating sense of touch
 - 1. Force feedback devices
 - 2. Tactile user interfaces
- 2. Interfaces that use physical actuation and physical re-configurability to communicate information to the user
- 3. Discussed in relation to 3D interfaces and spatial interaction

ivan poupyrey l beyound visu

Haptic interfaces

ser interfaces: from Lab to Living Room

CHI 2008

Net force displays

- has been extensively developed and relatively successful
 - requires net just single force and net torque computed
 - product released e.g. Phantom by Senseble
- response matches some of the basic properties of human sensor-motor performance

Underlying technology

motors, pneumatic actuators, magnetic break particles

ivan poupyrev | beyound visua

Shape and actuated displays

CHI 2008

Direct shape creation and interaction through physical motion of the device

- creating 3D structures dynamically
- creating 3D relief structures with or without visual overlay
 - different scales from building to hand-held device
 - touchable and not touchable
- creating creature-like structures
 - entertainment robots

Source by Greyworld

ivan poupyrev | beyound visual

11

Conclusions

CHI 2008

3D interaction is more then visual information, its also force and tactile feedback and tactile feedback

- improve understanding and interaction with 3D virtual environments
- Increase, realism, immersion and enjoyment

The physicality of interaction can be achieved by two different means

- simulating forces and sensations communicated to the user
- create actuated physical devices that directly simulate some properties of the virtual world
 - shape displays can be considered very primitive "Ultimate Display"

Current research barely scratches the surface more interesting work is going to appear

ivan nounviev Theyound visual

15