Regional Consistency: Programmability and Performance for Non-Cache-Coherent Systems

Bharath Ramesh, Calvin J. Ribbens
Center for High-End Computing Systems
Department of Computer Science, Virginia Tech, Blacksburg, VA 24061
Email: {bramesh,ribbens}@cs.vt.edu

Srinidhi Varadarajan
Dell Inc.
Email: {Srinidhi_Varadarajan@dell.com}

Abstract—Parallel programmers face the often irreconcilable goals of programmability and performance. HPC systems use distributed memory for scalability, thereby sacrificing the programmability advantages of shared memory programming models. Furthermore, the rapid adoption of heterogeneous architectures, often with non-cache-coherent memory systems, has further increased the challenge of supporting shared memory programming models. Our primary objective is to define a memory consistency model that presents the familiar thread-based shared memory programming model, but allows good application performance on non-cache-coherent systems, including distributed memory clusters and accelerator-based systems. We propose regional consistency (RegC), a new consistency model that achieves this objective. Results on up to 256 processors for representative benchmarks demonstrate the potential of RegC in the context of our prototype distributed shared memory system.

Keywords—memory consistency models; cache coherence; weak consistency models; distributed shared memory;

I. INTRODUCTION

A fundamental issue on all high performance computing platforms is how best to share data among concurrent tasks. For example, parallel applications may share data between physically distributed nodes of a cluster, between processor and coprocessor or accelerator on a single node, among multiple coprocessors attached to a single node, between cores of a single processor or accelerator, and among various components of a cluster-on-a-chip. Each of these scenarios presents unique challenges and opportunities to the system designer; but each has one important feature in common, namely that there is a distinction between local and remote memory. Application developers use local “cached” data to gain performance by exploiting spatial and temporal locality.

From a programmer’s point of view, the key question is what programming model should be used to orchestrate concurrency and data sharing across these memories. The most straightforward model is probably the traditional shared memory model, e.g., as offered by POSIX Threads (Pthreads) over cache-coherent shared-memory hardware. On such platforms data sharing is transparent, and simple synchronization mechanisms allow programmers to write correct and performant codes. This traditional shared memory model is dominant for platforms with the largest market share, e.g., portable devices, laptops, servers. Hence, there is a growing ecosystem of shared memory parallel programs, tools and design practices.

Unfortunately, two dominant trends in high-end computing—scalable clusters and heterogeneous nodes—work against the traditional shared memory model. Distributed memory clusters offer no physically shared memory at all. The dominant programming model on clusters is explicit message-passing. Other proposed models and systems for clusters come closer to the traditional shared memory model, including Partitioned Global Address Space (PGAS) languages and distributed shared memory (DSM) systems [1]–[12]. Meanwhile, emerging heterogeneous node architectures generally do offer shared memory. However, they do not provide cache coherence across all components of the system, and the best programming model for these systems is still an open question.

Resolving this tension—between a programmer’s desire for a strong shared memory consistency model and an architect’s need to sacrifice cache-coherence for scalability and heterogeneity—requires a new look at memory consistency models. The consistency model defines the semantics of memory accesses; it determines both the performance and programmability of the programming model. In this paper we propose regional consistency (RegC), a new consistency model that gives programmers the strong shared memory programming model they prefer, and can be implemented efficiently over modern non-cache-coherent systems.

The common approach to providing shared memory semantics over non-cache-coherent architectures is to relax the consistency model to allow greater parallelism in data access, but at the cost of some ease of programming. Table I compares three popular relaxed consistency models with RegC in terms of four defining properties: 1) whether shared data must be explicitly associated with synchronization primitives; 2) whether critical and non-critical section memory accesses are distinguished; 3) the granularity at which consistency updates are typically done; and 4) to what extent consistency is maintained for non-critical memory updates. The entry consistency model [5] requires explicit association between shared data and synchronization primitives; it does not provide any memory consistency guarantee for non-critical-section data. Although entry consistency has performance advantages, the association restriction and its lack of consistency for updates to shared data done outside of critical sections make it difficult to use. Scope consistency [13] removes the explicit association requirement and makes non-critical section

1Memory consistency and coherence are related but distinct concepts. Coherence defines what can be read from a memory location; consistency defines when a write to a memory location is visible to subsequent reads.
updates consistent at barriers. Scope consistency unburdens the programmer from the explicit shared data to synchronization primitive association but consistency updates are done at the granularity of a page, which has performance implications. Release consistency [14] does not require any explicit association nor does the programmer have to use barriers to make non-critical section data consistent. In this sense, release consistency is easier to program than either entry or scope consistency. However, since release consistency does updates at the granularity of a page, and since it does consistency updates at page granularity for both critical sections and non-critical sections it can still suffer from performance problems.

Our new RegC memory consistency model is motivated by these observations. It explicitly distinguishes between modifications to memory protected by synchronization primitives and those that are not, allowing for a more performant and scalable implementation. In this paper we give performance results for two implementations of RegC—one that takes full advantage of this distinction and one that does not—in order to emphasize and evaluate the relative benefits of this feature. In our first implementation of RegC all updates are done at the granularity of a page. In the more sophisticated implementation we use fine grain (object level) updates for modifications to shared data protected by synchronization primitives and use page invalidations for modifications to data not protected by synchronization primitives. In essence, RegC is similar to entry consistency for critical-section shared data accesses and similar to release consistency for non-critical section accesses.

Our current implementations of RegC are part of Samhita, a portable user-level distributed shared memory (DSM) system. Samhita/RegC provides cache-coherent shared memory semantics over the physically distributed memory of a cluster. Compared to other platforms where such a programming model is desired but not directly supported by the hardware (e.g., processor+coprocessor, cluster-on-a-chip), a distributed memory cluster is in some sense the hardest case, since there is no shared memory at all, and network latency and bandwidth can be a significant bottleneck. However, we believe the rapid and steady improvements in high-end interconnect performance (relative to memory latency and bandwidth) allow us to treat DSM primarily as “just” another cache management problem, and as an excellent testbed for evaluating the potential of the RegC memory consistency model.

RegC provides a sufficiently strong consistency model, which allows Samhita’s API to correspond directly to the familiar Pthreads API. In addition, Samhita presents the programmer with the familiar fork-join model as is commonly used in threaded codes. Pthreads codes can be ported to RegC/Samhita trivially. In fact, in our performance evaluation, the benchmarks use the same code base, with Pthreads and Samhita calls simply selected by macro substitution.

The architecture of Samhita and early performance results are described in [15]. The focus of this paper is on regional consistency. We give performance results that evaluate Samhita’s implementation of RegC, and also identify how the runtime system can support additional performance-enhancing extensions. The remainder of the paper is organized as follows. In Section II we present an overview of related work on memory consistency models. We define and describe the regional consistency model in Section III. A brief overview of Samhita and its implementation appears in Section IV. Performance results from one computational kernel and two applications are presented and discussed in Section V. We conclude and discuss future work in Section VI.

II. RELATED WORK

For a programmer to write correct concurrent applications, the results of memory operations need to be predictable. Memory consistency models describe the rules that guarantee memory accesses will be predictable. There are several memory consistency models that have been proposed, including sequential consistency (SC) [16], weak consistency (WC) [17], processor consistency (PC) [18], release consistency (RC) [14], entry consistency (EC) [5], scope consistency (ScC) [13].

Sequential consistency (SC) has two important properties: (1) program order is maintained at each processor, (2) global order is an interleaving of all the sequential orders at each processor. The SC model, though conceptually simple, is extremely strong and imposes restrictions that negatively affect performance. To alleviate the performance limitations of SC other consistency models have been proposed that relax or weaken the restrictions.

The weak consistency (WC) model, one of the earliest weak models, differentiates shared data into two categories: data that has no effect on concurrent execution, and data that includes synchronization variables to protect access to shared data or provide synchronization. WC has three main characteristics: (1) access to all synchronization variables is sequentially consistent, (2) no operation on synchronization variables is permitted until all previous accesses to shared data are performed, and (3) no access to shared data is allowed until all previous operations on a synchronization variable have been performed. WC enforces consistency a set of accesses rather than individual accesses as in SC. WC improves performance
One of the biggest drawbacks in WC is that when a synchronization variable is accessed, the processor has no knowledge if the access to the shared data is complete or about to start. This requires the processor to perform a memory consistency operation every time a synchronization variable is accessed. Release consistency (RC) extends WC by categorizing accesses to shared data as ordinary or special accesses, which are equivalent to accesses to data and synchronization variables, respectively. RC further categorizes special accesses as sync and nsync accesses. Finally, sync access are further categorized as either release or acquire accesses (analogous to the corresponding mutex lock operations). The RC model enforces the following rules: (1) before any ordinary read or write access is performed, all previous acquire accesses must be performed, (2) before a release access is performed all previous reads and writes done by the processors must be performed, and (3) all accesses to synchronization variables are processor consistent. At every release the processor propagates its modifications to shared data to all other processors. This entails a significant data transfer overhead. To reduce the amount of data transfer, propagation of modified data is postponed in a variant known as lazy release consistency (LRC) [19]. In LRC the acquiring processor determines the modification it requires to meet the requirements of RC. However, the modifications are still propagated at page granularity (see Table I).

Both the WC and RC models use synchronization primitives to ensure ordering of access to shared data. Entry consistency (EC) exploits this relationship between synchronization primitives and access to shared data by requiring all shared data to be explicitly associated with at least one synchronization primitive. Whenever a synchronization primitive is acquired all updates to the shared data associated with that synchronization primitive are performed. In EC each synchronization primitive has a current owner that last acquired the primitive. When the ownership changes because another processor acquires the synchronization primitive, all updates to the shared data associated with the primitive are sent to the acquiring processor. To reduce performance impact, synchronization primitives can exist in two modes—exclusive and non-exclusive. In the non-exclusive mode, though the synchronization primitive is owned by one processor it can be replicated at others. Only a single processor is allowed to acquire a synchronization primitive in exclusive mode. To modify the shared data associated with a synchronization primitive a processor must own the synchronization primitive in exclusive mode.

Though association of shared data with synchronization primitives reduces the overhead of data transfer among processors, EC is hindered by the increased complexity of explicitly associating shared data with synchronization primitives. Programming using EC is complicated and can be error prone.

Scope consistency (ScC) alleviates the explicit association of shared data with synchronization primitives. ScC detects the association dynamically at the granularity of pages, thus providing a simpler programming model. The implicit association of memory accesses to synchronization primitives is termed the consistency scope. The ScC model defines the following rules: (1) before a new session of a consistency scope is allowed to be open at a processor, all previous writes performed with respect to the scope need to be performed at the processor and (2) access to memory is allowed at a processor only after all the associated consistency scopes have been successfully opened. Though ScC presents a relaxed consistency model, the programming model exposed to the user is complex when compared to RC or LRC. Iftode et al. [13] mention that precautions need to be taken to ensure that a program runs correctly under ScC, the primary challenge being that all accesses to shared data must be made inside critical sections.

All of the previously discussed consistency models are sequentially consistent for data race free codes. The authors of location consistency (LC) [20] present a model that is not sequentially consistent, i.e., writes to the same location are not serialized and not necessarily observed in the same order by any processor. LC represents the state of a memory location as a partially ordered multiset of write and synchronization operations. For the LC model to be able to provide this partial ordering of writes and synchronization operations it requires an accompanying cache consistency model which is not provided by traditional multi-processor systems. Because writes to the same location are not serialized the programming model associated with using LC is complicated and adds a significant burden on the programmer.

To summarize, programmability and performance are two ends of a spectrum. The traditional approach in the past to enable performance on parallel platforms was to use a relaxed consistency model. However, weaker consistency models achieve performance by sacrificing programmability. In our approach, to support the familiar memory consistency model expected by today’s shared memory programmers, we provide a strong consistency model. However, we believe most of the performance can be recovered by a consistency model that enables one to develop intelligent runtime system that support it and by providing programmers with extensions to the programming model that can leverage intrinsic information available only at runtime.

III. REGIONAL CONSISTENCY

Before giving a formal definition of our new consistency model, we describe the basic idea and how it compares to similar models. The idea behind regional consistency (RegC) is to divide an application’s memory accesses into two kinds of regions—consistency regions and ordinary regions—as depicted in Figure 1. These regions are demarcated by synchronization primitives utilizing mutual exclusion (mutex) locks and barriers. More specifically, a consistency region is demarcated by a mutex lock acquire and release. All memory
The RegC rule for barriers is simple: all modifications made in the preceding ordinary region are made consistent for the processors participating in that barrier. To describe the RegC rules for consistency regions, we first define a span as one instance of a consistency region that executes at a given processor. A span starts at the acquire of a mutex lock and ends on the successful release of that lock. Any modification to data made in a span will be visible to processors that subsequently enter spans corresponding to the same mutex lock. Note that spans corresponding to different locks are independent, i.e., they can execute concurrently. Different spans can also be nested, corresponding to nested critical sections. Finally, modifications made in the preceding ordinary region are propagated on the start of a span. RegC guarantees that these updates will be visible at other processors before the start of any span corresponding to any consistency region.

Regional consistency can be viewed as an amalgamation of release consistency and scope consistency. Similar to ScC, we transparently detect data modification within a consistency region and implicitly associate it with corresponding locks, thereby creating the dichotomy of ordinary and consistency accesses. Similar to RC, we ensure that updates from ordinary regions are propagated on lock acquisition/release, not just on explicit barrier operations. We believe that performing updates from ordinary regions only on explicit barriers is unduly restrictive, i.e., it limits parallel problem decomposition to block synchronous codes. For other common parallel decompositions (e.g., producer/consumer, pipeline) superimposing barrier semantics creates unnecessary synchronization between unrelated threads and increases false sharing.

The general view is that relaxing consistency models improves performance but at the cost of programmability. Since our goal with RegC is to maintain the familiarity of the strong consistency model expected by thread-based programs, the challenge is to allow for a performant implementation of the consistency model. Both RegC and RC provide a sufficiently strong model for writing correct threaded code compared to ScC. The differences between RegC and RC allow significant performance opportunities for RegC. Explicitly distinguishing between memory modifications made inside a critical section and those made outside allows an implementation of RegC to delay updates made in ordinary regions, which RC cannot (LRC, which makes a similar optimization, is less intuitive to programmers than RegC). Furthermore, the distinction allows a RegC implementation to use different update policies to propagate the modifications in ordinary and consistency regions, i.e., page-based invalidation policy for ordinary regions and fine grained updates for consistency regions.

A. Formalizing RegC

To define RegC formally we use the formal definitions for the memory access transitions presented in [21]. For the purpose of completeness we include these definitions here:

Definition 1. Performing with respect to a processor. A LOAD by processor P_i is considered performed with respect to P_k at a point in time when the issuing of a STORE to the same address by P_k cannot affect the value returned by the LOAD. A STORE by P_i is considered performed with respect to P_k at a point in time when an issued LOAD to the same address by P_k returns the valued defined by this STORE (or a subsequent STORE to the same location).

Definition 2. Performing an access globally. A STORE is globally performed when it is performed with respect to all processors. A LOAD is globally performed if it is performed with respect to all processors and if the STORE that is the source of the returned value has been globally performed.

In addition to the above two standard definitions we propose the following new definition.

Definition 3. Subsequently after. A span for any consistency region at P_i is said to start subsequently after a span for any consistency region at P_j if and only if the span has successfully started at P_i before the span at P_j successfully starts. Note that a span only successfully starts when the corresponding lock acquisition succeeds.

Before we define the RegC model formally, we distinguish a STORE performed with respect to the regions of memory accesses as follows:

- A STORE performed within a consistency region is defined as a consistent STORE.
- A STORE performed outside of a consistency region is defined as an ordinary STORE.

Furthermore, we distinguish a consistent STORE being performed with respect to a consistency region from a STORE being performed with respect to a processor as follows:

- A consistent STORE is performed with respect to a consistency region when the current span of that consistency region ends.
A STORE is performed with respect to P_i if a subsequent LOAD issued by P_i returns the value defined by this STORE (or a subsequent STORE to the same memory location).

The rules for regional consistency are as follows:

1. Before a span is allowed to start on P_j, any ordinary STORE performed at P_i before that span on P_i must be performed with respect to P_j.
2. Before a new span of a consistency region is allowed to successfully start at P_i, any consistent STORE previously performed with respect to that consistency region must be performed with respect to P_j.
3. A STORE performed at P_i must be performed with respect to P_j, for all P_i and P_j participating in a barrier.

The first rule determines when an ordinary STORE is performed with respect to a processor. An ordinary STORE is performed with respect to a processor P_j before any span is allowed to start at P_j, provided this span starts subsequently after the span immediately following the STORE at processor P_i. The second rule ensures that when a new span starts at a processor, any consistent STORE performed previously with respect to that consistency region is guaranteed to be performed with respect to the processor. The third rule guarantees that any STORE performed before the start of a barrier is performed with respect to all processes participating in that barrier.

IV. OVERVIEW OF SAMHITA

Samhita solves the problem of providing a shared global address space by casting it as a cache management problem. This motivates our approach of separating the notion of serving memory from the notion of consuming memory for computation. Each Samhita thread is associated with a local cache; the entire shared global address space is accessed through this local cache. This cache can be considered another level in the memory hierarchy. Efficient cache management can hide the latency difference between accessing local memory and remote memory.

Samhita’s architecture consists of compute servers, memory servers and resource managers. These three components execute on the physical nodes of a cluster. The compute servers execute one or more threads of control from one or more applications. Samhita exposes a fork-join execution model similar to POSIX threads. It is important to note that individual threads of an application correspond to traditional processes in Samhita. The runtime system transparently share the data segment of a program across different processes. This sharing enables processor cores of physically different node appear as individual cores of a shared memory system. The memory servers combine to provide the global shared address space. To mitigate the impact of hot spots, memory allocations are strided across multiple memory servers. The total size of the global address space is equal to the combined amount of memory exported by the memory servers. The resource manager is responsible for job startup, thread placement, memory allocation, and synchronization.

To highlight and evaluate the benefits of distinguishing between ordinary and consistency regions, we consider two implementations of RegC in Samhita. In the first version, though we distinguish between ordinary and consistency region stores, there are still performance limitations due to the consistency granularity being a page for both ordinary and consistency region updates. For example, if only a small amount of data on a given page is updated in a consistency region, we must still invalidate the entire page on the corresponding lock acquisition in any thread. Using fine grain updates on lock acquire, similar to entry consistency, is a better approach in this scenario and is implemented in our second version. When using fine grain updates we need to propagate only the changes made to individual shared variables in a consistency region. However, this requires us to track individual stores. We do this by instrumenting all the stores an application performs using the LLVM compiler framework [22]. We insert a function call to the runtime system before each store is performed. The runtime tracks stores performed within a consistency region, and ignores those performed in an ordinary region. On lock release we are then able to propagate the changes made in the consistency region. Our experimental evaluation suggests that the overhead incurred by such store instrumentation is modest for most applications.

V. PERFORMANCE EVALUATION

In this section we describe performance studies that demonstrate that Samhita and RegC provide a programmable, scalable, and efficient shared memory programming model. We present scalability results on up to 256 cores, which to our knowledge is the largest scale test by a significant margin for any DSM system reported to date. We report both scaling results and a comparison with Pthreads implementations (the standard for performant shared-memory programming) because that allows us to see both the overhead of RegC, and the potential for scaling across multiple physical nodes. The results demonstrate that for scalable algorithms, our Samhita implementation achieves good weak scaling on large core counts. Strong scaling results for Samhita are very similar to equivalent Pthreads implementations on a single node. For less scalable algorithms, scalability is limited by synchronization overhead. We identify extensions to the programming model that transparently leverage information about data placement and consistency requirements to improve performance. We compare our two implementations of RegC to underline the performance benefits achieved by using fine grain updates for consistency regions and page based invalidation for ordinary regions. In the rest of this section samhita refers to the implementation that uses fine grain updates for consistency regions and page invalidation for ordinary region, and samhita page refers to the implementation that uses page invalidation for both consistency and ordinary regions.

The performance evaluation was carried out on System G, a 2600 core cluster (325 nodes). Each node is a dual quad-core 2.8GHz Intel Xeon (Penryn Harpertown) with 8GB of main memory. The cluster is interconnected over a quad
data rate (QDR) Infiniband switched fabric. We first present results for a synthetic benchmark consisting of our thread based implementation of the STREAM TRIAD [23]. We then present results from two application benchmarks: Jacobi and molecular dynamics applications based on codes from the OmpSCR [24] repository. We chose these benchmarks because they achieve reasonably good parallel performance in their Pthreads implementation, and are known to scale well. This allows us to measure the overhead of RegC and Samhita for applications that achieve good parallel performance using other programming models. We ported the OmpSCR benchmarks from OpenMP to the equivalent threaded code. To emphasize the similarity between the Pthreads API and the Samhita API our two implementations for each benchmark are derived from the same code base. Memory allocation, synchronization and thread management calls are represented by macros, which are processed using the n4 macro processor. The performance evaluation includes both strong and weak scaling experiments. The strong scaling experiments use a single memory server. The weak scaling experiments use 20 memory servers to accommodate the largest problem size.

A. STREAM TRIAD

The STREAM benchmark is a synthetic benchmark that measures sustained memory bandwidth for a set of simple vector kernels. We implemented a thread based version of the TRIAD operation. This operation is a simple vector update (or DAXPY), a level 1 operation from the BLAS package. The TRIAD kernel computes \(A = B + \alpha C \), where \(A, B \) and \(C \) are vectors of dimension \(n \) and \(\alpha \) is a scalar. Each run of the benchmark consists of 400 iterations of the TRIAD operation with a barrier between each iteration.

Figure 2 compares the strong scaling bandwidth achieved by the Pthreads and the two Samhita implementations. The Samhita implementations achieve a reasonable sustained bandwidth, which scales as we increase the number of cores. The bandwidth achieved by the samhita implementation is close to 85\% of that achieved by the Pthreads implementation for the 8 core run, while samhita_page achieves 74\% of the memory bandwidth. We note that the bandwidth achieved for 1–4 cores is similar due to the fact that our physical nodes are dual socket and our placement policy fills the first socket before filling the second.

Figure 3 presents weak scaling results for up to 256 processors. The performance of both Samhita implementations tracks Pthreads up to 8 cores and continues to scale well up to 128 cores for samhita_page and 256 cores for samhita, before synchronization costs begin to constrain scalability.

In the weak scaling results shown in Figure 3 the data associated with each process fits entirely in the Samhita cache associated with that process. Figure 4 shows the same results for samhita, along with results for a problem size twice as big. The larger problem no longer fits in the local Samhita cache, which results in capacity misses; the entire data must be streamed in for each iteration. We see that when the resulting data spills occur there is a clear impact on the achieved bandwidth. However, we also notice that the Samhita implementation still continues to scale reasonably well; we lose at
most a factor of two despite having to refill the cache on each iteration with data served from remote memory servers. This illustrates the benefit of our optimization for fetching remote pages and the benefits of the simple prefetching strategy used in our current implementation.

B. Jacobi

The Jacobi benchmark application is a threaded implementation of the Jacobi OpenMP code found in OmpSCR [24]. It corresponds to a simple Jacobi sweep as commonly used in multigrid solvers, for example. Figure 5 compares the strong scaling speedup of Pthreads and four Samhita implementations of the Jacobi benchmark. The Pthreads implementation and two Samhita implementation use a mutex variable to protect the global variable that accumulates the residual error on each iteration. Barrier synchronizations are required at three points of each iteration as well. We notice that the lock-based Samhita implementation does not speed up as the number of processors increases for the `samhita_page` implementation. The reason for the performance degradation is the strong memory consistency provided by RegC. Performance profiling shows that the majority of the time is spent in one of barriers, which follows the consistency region, and requires expensive memory consistency operations to reflect the memory updates made in the preceding ordinary region. The `samhita` lock based implementation on the other hand shows good strong scaling results up to 16 processors. This improvement in performance can be solely attributed to the fine grain updates to propagate the changes made in a consistency region.

Relaxing the consistency model would improve performance, but programmability would be sacrificed. Instead, we extend the programming model by providing a reduction operation (as in OpenMP) that replaces the operation performed in the consistency region but is implemented by the Samhita runtime system. The second set of Samhita results in Figure 5 show the dramatic improvement in performance. Using the reduction operation extension, the `samhita_page` implementation achieves just over 79% of the speedup achieved by Pthreads for the 8-core run. Using the reduction extension in the `samhita` case also yields performance improvement achieving just over 69% of the speedup achieved by Pthreads, but the improvement is not as dramatic as in the `samhita_page` case. This once again underlines the importance of having different update mechanisms for ordinary and consistency regions.

Figure 6 presents weak scaling results for Jacobi on up to 256 processors. We see that all the Samhita implementations of Jacobi track the Pthreads case very well up to 8 cores. Beyond 128 cores the scalability of this algorithm is limited, i.e., as problem size and core counts grow, the cost of synchronization eventually outweighs the computation.

C. Molecular dynamics

The molecular dynamics application benchmark is a simple n-body simulation using the velocity Verlet time integration method. The particles interact with a central pair potential. The OpenMP code from OmpSCR uses reduction operations for summing the kinetic and potential energy of the particles. Similar to the Jacobi benchmark, our threaded implementations use a mutex variable to protect the global kinetic and potential energy variables. Barrier synchronization is used
during various stages of the computation for synchronization. Figure 7 compares the strong scaling speedup of Pthreads and the Samhita implementations.

We see that the two different Samhita implementations, one using mutex variables and the other using reduction variables, track the Pthreads implementation very closely for the \textit{samhita page} implementation. For the \textit{samhita} case, we notice that though the application scales well there is a visible impact of the cost associated with the store instrumentation. In this application the cost associated with synchronization is significantly lower than the computational cost. Most of the stores are performed in ordinary regions but the instrumentation function is still called. We can use static analysis of the application code to avoid instrumenting most ordinary region stores. We believe that with this approach we can reclaim most of the lost performance due to instrumentation overhead. This benchmark result clearly indicates that applications that are computationally intensive (the computation per particle is $O(n)$) can easily mask the synchronization overhead of Samhita enabling the application to scale very well.

VI. CONCLUSIONS

We have defined regional consistency (RegC), a new memory consistency model that allows programs written using familiar threading models such as Pthreads to be easily ported to a non-cache-coherent system. We evaluated the performance of two implementations of RegC using Samhita, a system that provides shared memory over a distributed memory cluster supercomputer. Recent advances in high performance interconnects allow us to implement a relatively strong consistency model (easier programmability) while still achieving acceptable application performance using a sophisticated runtime system.

Performance results show that our Samhita implementations achieve computational speedup comparable to the original Pthreads implementations on a single node with trivial code modifications, and illustrate the performance improvements achieved by a simple programming model extension and by distinguishing ordinary and consistency region stores. Weak scaling results on up to 256 processor cores demonstrate that scalable problems and algorithms scale well over Samhita.

A promising future enhancement is to use static analysis to avoid instrumenting most ordinary region stores, thus reclaiming most of the performance overhead associated with store instrumentation in our current implementation. We also plan to investigate providing a shared memory programming model using RegC by extending Samhita to other non-cache-coherent platforms like accelerators, cluster-on-chip and coprocessors.

REFERENCES

