
Efficient Metadata Indexing for HPC Storage
Systems

Arnab K. Paul∗, Brian Wang†, Nathan Rutman†, Cory Spitz†, Ali R. Butt∗
∗Virginia Tech, †Cray Inc.

{akpaul, butta}@vt.edu, {bwang, nrutman, spitzcor}@cray.com

Abstract—The increase in data generation rate along with
the scale of today’s high performance computing (HPC) storage
systems make finding and managing files extremely difficult.
Efficient file system metadata indexing and querying tools are
needed to ease file system management. Current metadata index-
ing techniques either use spatial trees or an external database to
index metadata. Both approaches have their drawbacks which
reduce the performance of indexing and querying the metadata
on large scale file systems.

In this paper, we have developed BRINDEXER, a metadata
indexing and search tool specifically designed for large-scale
HPC storage systems. BRINDEXER is mainly designed for system
administrators to help them manage the file system effectively.
It uses a leveled partitioning approach to partition the file
system namespace, and has an in-tree design to reduce resource
utilization from an external database. BRINDEXER uses RDBMS
for efficient querying of the metadata index database, also
uses a changelog-based approach to effectively handle real-time
metadata changes and re-index the metadata at regular intervals.
We implement and evaluate BRINDEXER on a 4.8 TB Lustre store
and show that it improves the indexing and querying performance
by 69% and 91% when compared to state-of-the-art metadata
indexing tools.

Keywords-Hierarchical Partitioning, High Performance Com-
puting, Metadata Changelog, Leveled Partitioning, Lustre File
System

I. INTRODUCTION

From life sciences and financial services to manufacturing
and telecommunications, organizations are finding that they
need not just more storage, but high-performance storage to
meet the demands of their data-intensive workloads. This has
resulted in a massive amount of data generation (order of
petabytes), creation of billions of files, and thousands of users
acting on HPC storage systems. According to a recent report
from National Energy Research Scientific Computing Center
(NERSC) [5], over the past 10 years, the total volume of data
stored at NERSC has grown at an annual rate of 30 percent.
This ever-increasing rate of data generation combined with
the scale of HPC storage systems make efficiently organizing,
finding, and managing files extremely difficult.

HPC users and system administrators need to query the
properties of stored files to efficiently manage the storage
system. This data management issue can be addressed by an
efficient search of the file metadata in a storage system [16].
Metadata search is particularly helpful because it not only
helps users locate files but also provides database-like analytic
queries over important attributes. Metadata search involves

indexing file metadata such as inode fields (for example, size,
owner, and timestamps) and extended attributes (for example,
document title, retention policy, and provenance), represented
as <attribute, value> pairs [15]. Therefore, metadata search
can help answer questions like “Which application’s files
consume the most space in the file system?” or “Which files
can be moved to second tier storage?”.

Metadata indexing on large scale HPC storage systems
presents a number of challenges. First, scaling metadata
indexing technology from local file systems to HPC storage
systems is very difficult. In local file systems, the metadata
index has to index only a million files, and thus can be
kept in-memory. However, in HPC systems, the index is too
large to reside in-memory. Second, the metadata indexing tool
should be able to gather the metadata quickly. The typical
speed for file system crawlers is in the range of 600 to 1,500
files/sec [8]. This translates to 18 to 36 hours of crawling for
a 100 million file data set. A large scale HPC storage system
can often contain a billion files, which implies crawl time
in the order of weeks [8]. Third, the resource requirements
should be low. Existing HPC storage system metadata indexing
tools such as LazyBase [9] and Grand Unified File-Index
(GUFI) [3] require dedicated CPU, memory, and disk hard-
ware, making them expensive and difficult to integrate into the
storage system. Fourth, metadata changes must be quickly re-
indexed to prevent a search from returning inaccurate results.
It is difficult to keep the metadata index consistent because
collecting metadata changes is often slow [26] and therefore,
search applications are often inefficient to update.

Current state-of-the-art metadata indexing techniques on
HPC storage systems include Spyglass [16], SmartStore [12],
Security Aware Partitioning [19], and GIGA+ [20]. All of
these techniques use a spatial tree, such as k-d tree [30],
or R-tree [11] to index metadata. However, both these trees
have poor performance in handling high dimensional data
sets [7], they handle missing values inefficiently, and do not
perform well for data which have multiple values for one
field [27]. These drawbacks reduce their ability to index
metadata efficiently. Other metadata indexing techniques, like,
GUFI [3], Robinhood Policy Engine [14], and BorgFS [1], use
a popular approach for metadata indexing where an external
database is maintained for indexing outside the HPC storage
system. This approach involves a major issue of maintaining
consistency because the metadata is managed outside the file
system which is being indexed.



To address these issues in HPC storage system metadata in-
dexing, we present an efficient and scalable metadata indexing
and search system, BRINDEXER. BRINDEXER enables a fast
and scalable indexing technique by using a leveled partitioning
approach to the file system. Leveled partitioning is different
and more effective than the hierarchical partitioning approach
used in state-of-the-art indexing techniques discussed above.
BRINDEXER uses an in-tree indexing design and thus mitigates
the issue of maintaining metadata consistency outside the file
system. BRINDEXER also uses RDBMS to store the index
which makes querying easier and more effective. To overcome
the drawback of slow re-indexing process, BRINDEXER uses a
changelog-based approach to keep track of metadata changes
in the file system.

We present BRINDEXER and the scalable metadata
changelog monitor that helps track the metadata changes
in HPC storage system. The HPC storage system that we
choose for our implementation is Lustre. According to the
latest Top 500 list [6], Lustre powers ∼ 60% of the top 100
supercomputers in the world. While the implementation and
evaluation for BRINDEXER is shown in the paper as applied
to Lustre storage system, its design makes it applicable to
other HPC storage systems, such as IBM’s Spectrum Scale,
GlusterFS and BeeGFS. We compare indexing and querying
performance of BRINDEXER with a hardware-normalized ver-
sion of the state-of-the-art GUFI indexing tool and show that
the indexing performance of BRINDEXER is better by 69%,
querying performance is better by 91%. Resource utilization
by BRINDEXER is lower than that of GUFI by 46% during
indexing and 58% during querying 22 million files on a 4.8 TB
Lustre store.

II. BACKGROUND & MOTIVATION

In this section, we describe the different partitioning ap-
proaches for indexing a file system, the metadata attributes
motivated by some examples of file system search queries, the
architecture of HPC storage system with an emphasis on Lus-
tre file system, and finally we explain the different approaches
to collecting metadata changes along with a motivation for
BRINDEXER to use changelog-based approach.

A. Partitioning Techniques

To exploit metadata locality and improve scalability, HPC
storage system’s indexing tools partition the file system names-
pace into a collection of separate, smaller indexes. There are
two main approaches to partitioning.

1) Hierarchical Partitioning: This is one of the most com-
mon approaches used in state-of-the-art metadata indexing
tools. Hierarchical partitioning is based on the storage system’s
namespace and encapsulates separate parts of the namespace
into separate partitions, thus allowing more flexible, finer
grained control of the index. An example of hierarchical
partitioning is shown in Figure 1a. As seen in the figure, the
namespace is broken into partitions that represent disjoint sub-
trees. However, hierarchical partitioning faces an important

challenge when the disjoint sub-trees are skewed, that is, some
trees have more files than others.

2) Leveled Partitioning: This approach creates index nodes
at a particular level in the storage system tree. An example
of leveled partitioning is shown in Figure 1b. In the figure,
leveled partitioning is done at level 2. Therefore, the file
system namespace is divided into disjoint sub-trees from
level 2, with index nodes at the root of each sub-tree. This
mitigates the issue of hierarchical partitioning where some
trees may be skewed which affects indexing performance.
In the leveled approach, all directories up to the next index
level are indexed at the root of the current level. Another
major issue of hierarchical partitioning is that a file system
crawler should be used before indexing to partition the file
system namespace into uniformly-sized disjoint sub-trees. This
requires extra resource consumption which can be overcome
by leveled partitioning where no such crawler is needed before
indexing. BRINDEXER uses the leveled partitioning approach
to partition the file system namespace into smaller indexes.

B. Metadata Attributes

File metadata can be of two types.

• Inode Fields: They are generated by the storage system
itself for every file, and are shown in Table I.

• Extended Attributes: These are typically generated by
the users and applications. These may include mime
type attribute, which defines the file extensions, and per-
mission attribute specifying the read, write and execute
permissions set by the application.

All attributes are typically represented in <attribute, value>
pairs that describe the properties of a file. For each POSIX file
there will be at least 10 attributes, and for a large scale HPC
storage system with a billion files, there will be a minimum of
1010 attribute pairs. The ability to search this massive dataset
of metadata attributes pairs effectively gives rise to metadata
indexing.

Attribute Description Attribute Description
ino inode number size file size

mode access permissions blocks blocks allocated
nlink number of hard links atime access time
uid owner of file mtime modification time
gid group owner of file ctime status change time

TABLE I: Metadata Attributes.

Some common metadata attributes used are shown in Ta-
ble I. The atime attribute is affected when a file is handled by
execve, mknod, pipe, utime, and read (of more than zero bytes)
system calls. mtime is affected by the truncate and write calls.
ctime is changed by writing or by setting inode information.

Some sample file management questions and the queries
used to search the metadata attributes are shown in Table II.
These show the importance of fast and scalable metadata
indexing and querying that can help HPC storage system
administrators.



(a) Hierarchical Partitioning (b) Leveled Partitioning

Fig. 1: Comparison between hierarchical partitioning and leveled partitioning approaches using the same file structure.

Storage System Administrator Question Metadata Search Query
Which files should be migrated to secondary storage? size >100 GB, atime >1 year

Which files have expired their legal compliances? mode = file, mtime >10 years
How much storage do each user consume? Sum size where mode = file, group by uid

Which files grew the most in the past one week? Sort difference (size [today] - size [1 week before]) in descending order, group by uid

TABLE II: Some sample file management questions and the metadata search queries used.

C. HPC Storage System

HPC storage systems are designed to distribute file data
across multiple servers so that multiple clients can access
file system data in parallel. Typically, they consist of clients
that read or write data to the file system, data servers where
data is stored, metadata servers that manage the metadata
and placement of data on the data servers, and networks to
connect these components. Data may be distributed (divided
into stripes) across multiple data servers to enable parallel
reads and writes. This level of parallelism is transparent to the
clients, for whom it seems as though they are accessing a local
file system. Therefore, important functions of a distributed
file system include avoiding potential conflicts among multiple
clients and ensuring data integrity and system redundancy. The
most common HPC file systems include Lustre, GlusterFS,
BeeGFS, and IBM Spectrum Scale. In this paper, we have
built BRINDEXER on the Lustre file system.

Lustre Clients

. . .

Management Server (MGS) Metadata Server (MDS)
Management
Target (MGT)

Metadata
Target (MDT)

. . .

Object Storage Servers (OSS) &
Object Storage Targets (OSTs)

direct, parallel file access

Lustre Network (LNet)

Fig. 2: An overview of Lustre architecture.

1) Lustre File System: The architecture of the Lustre file
system is shown in Figure 2 [22], [21], [29]. Lustre has a
client-server network architecture and is designed for high
performance and scalability. The Management Server (MGS)
is responsible for storing the configuration information for the
entire Lustre file system. This persistent information is stored
on the Management Target (MGT). The Metadata Server
(MDS) manages all the namespace operations for the file
system. The namespace metadata, such as directories, file
names, file layout, and access permissions are stored in a
Metadata Target (MDT). Every Lustre file system must have a

minimum of one MDT. Object Storage Servers (OSSs) provide
the storage for the file contents in a Lustre file system. Each
file is stored on one or more Object Storage Target (OST)s
mounted on the OSS. Applications access the file system data
via Lustre clients which interact with OSSs directly for parallel
file accesses. The internal high-speed data networking protocol
for the Lustre file system is abstracted and is managed by the
Lustre Network (LNet) layer.

D. Collecting Metadata Changes

After metadata indexing is done, regular re-indexing needs
to be performed so that metadata search queries do not
return out-of-date results. Re-indexing of the metadata can be
performed by running the indexing tool at regular intervals
to index the entire file system afresh. This is an approach
that most state-of-the-art indexing techniques (GUFI [3], and
BorgFS [1]) use which maintain the index in an external
database outside the file system. However this is a very
expensive approach for large filesystems as the size of the
external database must scale with the size of the indexed
filesystem. Another approach is to keep track of metadata
changes and re-index based on the changes. There are two
ways to collect metadata changes: Snapshot-based approach
and Changelog-based approach.

• Snapshot-Based Approach: In this approach periodic
snapshots are taken of the file system metadata. Snapshots
are created by making a copy-on-write (CoW) clone of
the inode file. Given two snapshots at time instant Tn

and Tn+1, this approach will calculate the difference
between these two snapshots and identify the files that
have changed during the time interval between the two
snapshots. The metadata index crawler can only crawl
over the changed files to re-index them. This is much
faster than periodic walks of the entire file system.
However, this approach depends on a filesystem design
incorporating CoW metadata updates.

• Changelog-Based Approach: This approach logs the
metadata changes as the changes occur on the file system.



Event ID Type Timestamp Datestamp Flags Target FID Parent FID Target Name
11332885 01CREAT 22:27:47.308560896 2019.11.28 0x0 t=[0x300005716:0x626c:0x0] p=[0x300005716:0xe7:0x0] hello.txt
11332886 17MTIME 22:27:47.327910351 2019.11.28 0x7 t=[0x300005716:0x626c:0x0] hello.txt
11332887 08RENME 22:27:47.416587265 2019.11.28 0x1 t=[0x300005716:0x17a:0x0] p=[0x300005716:0xe7:0x0] hello.txt

s=[0x300005716:0x626b:0x0]
sp=[0x300005716:0x626c:0x0] hi.txt

11332888 02MKDIR 22:27:47.421587284 2019.11.28 0x0 t=[0x300005716:0x626d:0x0] p=[0x300005716:0xe7:0x0] okdir
11332889 06UNLNK 22:27:47.438587347 2019.11.28 0x0 t=[0x300005716:0x626b:0x0] p=[0x300005716:0xe7:0x0] hi.txt

TABLE III: A sample Changelog record showing Create File, Modify, Rename, Create Directory, and Delete File events.

This is done by recording the modifying events that occur
on the file system. Every HPC storage system maintains
an event changelog (used for auditing purposes) [23],
example mmaudit in IBM Spectrum Scale, and Lustre
Changelog in Lustre file system. Thus, building a scalable
monitor that monitors the changelog could be a very
efficient solution for collecting metadata changes. Only
the files on which any modification event occurs need
re-indexing. In BRINDEXER, we use a variant of the
changelog-based approach to track modified directories,
allowing us to reduce the tracking load by 90%.

Next, we explain the Lustre changelog which is used to
keep track of file system events on Lustre file system.

1) Lustre Changelog: Table III shows sample records in
Lustre’s Changelog. We ran a simple script to see the events
recorded in the Changelog. The script first creates a file,
hello.txt, then the file is modified. The file is then renamed
to hi.txt. A directory named okdir is then created. Finally, we
delete the file.

Each tuple in Table III represents a file system event.
Every row in the Changelog has an EventID – the record
number of the Changelog; Type – the type of file system
event that occurred; Timestamp, Datestamp – the date time of
the event occurrence; Flags – masking for the event; Target
FID – file identifier of the target file/directory on which the
event occurred; Parent FID – file identifier of the parent
directory of the target file/directory; and the Target Name –
the file/directory name which triggered the event. It is evident
that the Parent and Target FIDs need to be resolved to their
original names before they can be processed by BRINDEXER.
The following events are recorded in the Changelog:

• CREAT: Creation of a regular file.
• MKDIR: Creation of a directory.
• HLINK: Hard link.
• SLINK: Soft link.
• MKNOD: Creation of a device file.
• MTIME: Modification of a regular file.
• UNLNK: Deletion of a regular file.
• RMDIR: Deletion of a directory.
• RENME: Rename a file or directory.
• IOCTL: Input-output control on a file or directory.
• TRUNC: Truncate a regular file.
• SATTR: Attribute change.
• XATTR: Extended attribute change.
Note in Table III that Target FIDs are enclosed within t = [],

and parent FIDs within p = []. MTIME event does not have a

parent FID. RENME event has additional FIDs, s = [] denoting
a new file identifier to which the file has been renamed, and
sp = [] gives the file identifier for the original file. These
features are important when resolving FIDs.

2) Motivation for using Lustre Changelog: We analyze a
24-hour Lustre Changelog obtained from a production sys-
tem’s petascale Lustre file system in Los Alamos National
Laboratory (LANL).

Some observations from the analysis are:
• There are more than 34 million file system events which

occur per day in a large-scale production-level HPC
storage system.

• The number of unique files that get affected in 24 hours
is ∼ 10.5 million.

• The number of unique directories on which metadata
events occur is ∼ 110,000.

• The number of events for each individual event is shown
in Table IV.

Event Type # Events Event Type # Events
CREAT 1,322,010 MKDIR 67,791
HLINK 8,841 SLINK 94,711
MTIME 10,098,485 UNLNK 750,480
RMDIR 59,841 RENME 97,227
SATTR 3,432,589 XATTR 164

TABLE IV: Number of file system events for each metadata
event in a 24-hour Lustre Changelog.

The analysis shows that performing a snapshot-based ap-
proach for keeping track of metadata changes in the file system
may be very expensive for large, active filesystems. Also, to
determine the directories for the affected 10.5 million files
is time-consuming. The Lustre changelog, however, already
reports the parent directories, which are also the directories
which need to be re-indexed. This will improve the perfor-
mance of BRINDEXER immensely because it does not need
to keep track of all the 10.5 million files for re-indexing, but
only the 110,000 unique directories. The challenge is to design
an efficient and scalable changelog processing engine to get
the parent FIDs (directories) of more than 10 million MTIME
and more than 3 million SATTR files which are not already
recorded in the changelogs. This is discussed in Section III-B.

III. SYSTEM DESIGN

The overall architecture of BRINDEXER is shown in Fig-
ure 3. BRINDEXER runs on the file system clients. It consists
of the indexer, crawler and the metadata query interface. The



Fig. 3: Overall architecture of BRINDEXER.

indexer and crawler are responsible for crawling the entire
file system, collecting the inode details from the metadata
servers and indexing the file system metadata. The re-indexer
is part of the indexer in BRINDEXER and interacts with the file
system changelog to keep track of the metadata changes. Users
and applications interact with the the metadata query interface
provided by BRINDEXER to query the metadata index database
on the storage servers. Next, we describe each component of
BRINDEXER in more details.

A. Indexer

The overview of the indexing process of BRINDEXER is
shown in Algorithm 1. BRINDEXER uses a leveled partitioning
technique to partition the file system namespace. This is
described earlier in Section II. BRINDEXER performs the
leveled partitioning approach in parallel, where the indexing
task can be distributed on multiple client indexers for fast and
scalable indexing. Each client node can be assigned a set of
sub-trees and independently manages the file system indices
under those sub-trees. This is shown in Figure 4a and this
paralleled approach improves the performance of BRINDEXER.
Crawler is responsible for doing the directory walk of the file
system namespace.

(a) Parallelism in leveled partitioning
of BRINDEXER.

(b) 2-level database
sharding in
BRINDEXER.

Fig. 4: Optimization strategies used in BRINDEXER.

The input to Indexer is the indexing level where all the
directories at that level need to be indexed. The root directory

1 Function Indexing
Input: Indexing Level: indexLevel
Output: Metadata Index Database: indexdb

2 for Directory dir in directoryWalk do
3 if dir in Level indexLevel then
4 Setup database in Index Directory
5 processIndexDir(dir)
6 end
7 end
8 processRootDir(level)
9 return (indexdb)

10 Function processIndexDir
Input: Index Directory: dir

11 for Directory subdir in recursive read of ll readdir(dir) do
12 hash = Calculate hash of subdir
13 for File file in stat(subdir) do
14 new lstat(file)
15 Place inode information of file in the database shard

with the hash value as hash
16 end
17 end
18 Function processRootDir

Input: Indexing Level: indexLevel
19 Setup database in Root Directory
20 for Directory dir in directoryWalk do
21 if dir < Level indexLevel then
22 for Directory subdir in recursive read of

ll readdir(dir) do
23 hash = Calculate hash of subdir
24 for File file in stat(subdir) do
25 new lstat(file)
26 Place inode information of file in the

database shard with the hash value as hash
27 end
28 end
29 end
30 end

Algorithm 1: Indexing function in BRINDEXER.

is responsible to index all directories above the indexing level.
For each indexed directory, a recursive readdir() is performed
to find all sub-directories. For every sub-directory, a stat() call
is made to get the files in that directory, and to get the inode
information for every file, new lstat call is performed on the
file.

Each individual index directory is set to a 2-level database
sharding approach to keep the database shards to a reasonable
size. This is done to maximize the database performance by
querying an optimum number of files per database. This is
shown in Figure 4b. The number of databases per index node
is limited to 64 (0x40). This number is based on experiments
to measure the time to index and query BRINDEXER for 1
billion files. 64 gives the optimum performance by having
the optimal resource utilization. Within each database in the
index node, there are database shards. Each database shard
holds metadata information of one or more sub-directories of
the index directory. To find the placement of the metadata
information for a file, first MD5 hashing is done on the parent
directory of the file to get the database shard. Next, MD5 hash
is done on the index directory to find the database within which
the database shard is placed. This 2-level sharding is done by
BRINDEXER to maximize the query performance.

B. Re-Indexer

The architecture of re-indexer is shown in Figure 5.



Fig. 5: Design of Re-Indexer in BRINDEXER.

BRINDEXER’s re-indexer is a multi-threaded set of pro-
cesses running on filesystem clients. One thread is responsible
for processing the file system changelogs gathered from the
metadata servers, which are processed in parallel on the
clients. A fast and efficient caching mechanism is used to
store the mappings of FIDs to paths to improve performance
of processing of the changelogs. Another thread maintains a
suspect file which has a collection of all suspect directories
(directories which have been modified and need to be re-
indexed) for a particular time period. This suspect file is given
as an input to the indexer which then does a stat() for only
the suspect directories.

1) Processing Changelogs: The re-indexer collects events
from changelog in batches. Every event that is collected needs
to be processed to collect the directory name in order to be
placed in the suspect file. In particular, FIDs are not necessarily
interpretable by BRINDEXER, and thus must be processed and
resolved to absolute path names [24]. In Lustre file system,
to process the FIDs, Lustre fid2path tool is provided which
resolves FIDs to absolute path names. However, the fid2path
tool is slow and can delay the reporting of events. For example,
in Section IV-F1 we show that this delay can cause a decrease
of 31.7% in the event reporting rate compared to the events
generated in the file system. To minimize this overhead, re-
indexer implements a Least Recently Used (LRU) Cache to
store mappings of FIDs to source paths.

Algorithm 2 shows the processing steps for re-indexer.
Changelog events are processed in batches. A LRU cache is
used to resolve parent FIDs (directories) to absolute paths.
Whenever an entry is not found in the cache, we invoke the
fid2path tool to resolve the FID and then store the mapping
(FID – path) into the LRU cache. MTIME and SATTR events
do not have a parent FID and thus they are processed in the
catch block, where the target FIDs are processed. The file
name from the absolute path is removed to get the directory
name and then the path is added to the cache, so that fid2path
tool is not called on the file again. It should be noted that the
cache only needs to track modified parent directories, so only
110,000 entries are present in a 24-hour suspect file rather
than 10.5 million files. All of the resolved directory paths
are added to the suspect file (not adding duplicates). After
processing a batch of file system events from the Changelog,
re-indexer will purge the Changelogs. A pointer is maintained

Input: Lustre path lpath, Cache cache, MDT ID mdt
Output: SuspectF ile

1 while true do
2 events = read events from mdt Changelog
3 for event e in events do
4 resolvedPath = processEvent(e)
5 SuspectF ile.add(resolvedPath)
6 end
7 Clear Changelog in mdt
8 return (SuspectF ile)
9 end

10 Function processEvent
Input: Event e
Output: resolvedPath

11 Extract event type, time, date from e
12 try:
13 path = cache.get(parentFID)
14 if parentFID not found in cache then
15 path = fid2path(parentFID)
16 cache.set(parentFID, path)
17 end
18 catch fid2pathError:
19 path = cache.get(targetFID)
20 if targetFID not found in cache then
21 path = fid2path(targetFID)
22 Remove file name from path
23 cache.set(targetFID, path)
24 end
25 end
26 return (path)

Algorithm 2: Processing Changelog events in Lustre
file system.

to the most recently processed event tuple and all previous
events are cleared from the Changelog. This helps reduce the
overburdening of the Changelog with stale events.

Indexer periodically reads the suspect file and re-indexes
the file system based on the suspect directories. Once indexer
acts on a suspect file, a timestamp is given to the re-indexer
and a new suspect file is written to add suspect directories
from that time stamp.

C. Metadata Query Interface

Metadata query interface in BRINDEXER interacts with the
metadata index database which is stored on the storage servers
in the file system. The metadata index database uses RDBMS
to store the index information of large-scale HPC storage
systems. There are few reasons for selecting RDBMS for our
implementation. First, we are not concerned with scalability of
a single database because our design of indexer and re-indexer
limits the database size. We use parallel leveled partition
approach for speed and 2-level database sharding in the index
level directory for scalability and optimal query performance.
RDBMS therefore serves its purpose of providing a nice API
for the users to query the database. Second, RDBMS is very
efficient in handling bulk writes and appends which is needed
during the re-indexing process. Also, doing bulk reads on
RDBMS is efficient. Third, the limitation of RDBMS is when
it has to handle continuous stream of inputs. In BRINDEXER,
the metadata index database only has periodic input stream
and RDBMS works efficiently in this case. Fourth, RDBMS
also lowers performance when it has to handle contended
writes as it has to deal with multiple locking issues. The 2-level



sharding and the namespace partition to handle disjoint sub-
trees in BRINDEXER does not involve metadata index database
to handle contended writes.

IV. EVALUATION

We evaluate the performance of BRINDEXER by analyzing
each component in detail. In this section, we describe the
experimental setup for the evaluation, workloads that were
used for analyzing the performance, and evaluate indexer, re-
indexer, and metadata query interface.

A. Experimental Setup

To evaluate BRINDEXER, we use a Lustre file system cluster
of 9 nodes with 4 MDSs, 3 OSSs and 2 clients. All nodes run
CentOS 7 atop a machine with an AMD 64-core 2.7 GHz
processor, 128 GB of RAM, and a 2.5 TB SSD. All nodes are
interconnected with 10 Gbps bandwidth ethernet. Each MDS
has a 128GB MDT associated with it. Furthermore, each OSS
has 3 OSTs, with each OSS supporting 1.6 TB attached storage
on OSTs. Therefore, our analysis is done on a 4.8 TB Lustre
store.

B. Workloads

We use 2 kinds of workloads to test the performance of
BRINDEXER as shown in Tables V and VI.

#Files #Directories Avg #Files per Dir Total Size (MB)
400,000 (400k) 1,000 400 1.08

1,200,000 (1.2M) 1,000 1200 43.05
5,700,000 (5.7M) 5,700 1000 90.07
8,500,000 (8.5M) 8,500 1000 140.78
22,000,000 (22M) 222,000 1000 373.9

TABLE V: Workload 1: Flat directory structure: Smaller
number of directories with higher average number of files per
directory.

#Files #Directories Avg #Files per Dir Total Size (GB)
400,254 (400k) 43,189 9.26 4.4

1,200,762 (1.2M) 129,565 9.27 13.3
5,736,974 (5.7M) 619,029 9.27 63.4
8,530,405 (8.5M) 815,753 10.46 95.1
22,013,970 (22M) 2,375,341 9.27 243.2

TABLE VI: Workload 2: Hierarchical directory structure:
Large number of directories with lower average number of
files per directory.

Both workloads have 5 different numbers of files (400k,
1.2M, 5.7M, 8.5M, and 22M). However, the workloads differ
in the number of directories. Workload 1 has a flat directory
structure with just one level consisting of lower number of di-
rectories with higher number of files per directory. Workload 2
has a hierarchical structure (with maximum directory depth
of 17) consisting of higher number of directories with lower
number of file per directory. Therefore, workload 1 represents
ideal case while workload 2 takes care of the real-world use
case.

We compare BRINDEXER with state-of-the-art indexing tool
GUFI [3] for indexing. For workloads 1 and 2, BRINDEXER

sets an indexing level of 1 and 3 respectively. This is because,
workload 1 has only one level, and for workload 2, it turns
out that number of directories at level 3 equals the average
number of directories per level.

To evaluate querying performance of BRINDEXER, besides
GUFI, we also compare BRINDEXER with Lustre’s default lfs
find tool [4] and Robinhood policy engine [14].

For evaluation of re-indexer, we evaluate the performance
of Lustre changelog processing and compare it with Robin-
hood [14], as these are the only tools which use changelog-
based approach to keep track of metadata changes.

All experiments are run five times and the evaluation shows
the average of these runs. All caches are cleared between runs.

Next we give a brief description of GUFI and Robinhood.
GUFI stands for Grand Unified File Index. It uses breadth

first traversal to traverse the entire file system tree in a parallel
manner. GUFI uses one index database per directory to have
the same security permission as that of the directory. This
entire database tree is done outside the file system. Although
GUFI is meant for indexing into an external database, we
modify GUFI to run in-tree and perform metadata indexing
inside Lustre file system itself. This allows us to compare the
two techniques - GUFI and BRINDEXER, without any differ-
ence in hardware. BRINDEXER is not concerned with directory
permissions because it is meant for system administrators.

Robinhood collects information from the filesystem it mon-
itors and inserts this information into an external database. It
makes use of the Lustre changelog to monitor and keep track
of file system events. For multiple MDSs, Robinhood uses a
round-robin approach to keep track of changelogs.

C. Comparison of System Calls

Both BRINDEXER and Gufi were used to index 1.2 million
files in hierarchical directory structure and the system calls
were traced in a CPU flame graph [2]. This is shown in
Figure 6. In a flame graph, each box represents a function
in the stack. On the y-axis, the depth of the stack is shown
and x-axis spans the sample population. The width of each box
shows the amount of time a system call spends on CPU. The
major observation from the flame graphs is that sys newlstat()
which is used for getting a file’s inode information is repre-
sented as one block in BRINDEXER (Figure 6a) and multiple
individual stack calls in GUFI (Figure 6b). Also, cumulative
width of the boxes for sys newlstat() in GUFI exceeds the
width in BRINDEXER, which means that GUFI spends more
time in CPU for retrieving file information. This shows that
BRINDEXER is more effective in using the system call to
retrieve file information than GUFI.

D. Evaluation of Indexer

1) Time Taken to Index: The time taken to index both
workloads by BRINDEXER and GUFI is shown in Figure 7. As
seen in the figure, GUFI performs better than BRINDEXER for
workload 1 where there is a flat directory structure. This is be-
cause the design of GUFI enables optimization for a directory
level of just 1 where each directory has a large number of files.



(a) Flame Graph for indexing with BRINDEXER. (b) Flame Graph for indexing with GUFI.

Fig. 6: Comparison of system call stack for indexing 1.2M files in hierarchical directory structure by BRINDEXER and GUFI.

However, for the real world case in workload 2, BRINDEXER
outperforms GUFI. As the number of files increase, the time
to index in GUFI increases exponentially, with the maximum
difference between BRINDEXER and GUFI of 69% in the time
taken to index seen for 22M files.

Fig. 7: Time taken to index by BRINDEXER and GUFI.

2) Resource Utilization: Figure 8 shows the resource uti-
lization of BRINDEXER and GUFI when indexing the file
system for both workloads. The legend used in Figure 8a
is consistent for all the graphs in Figure 8. We only show
the resource utilization of Lustre client and MDS. The be-
havior shown is similar on the OSSs. The CPU utilization of
BRINDEXER during indexing is lesser than GUFI by 46.6% on
clients and 86.04% on the MDSs. It can be further seen that
GUFI is much more CPU intensive than BRINDEXER on MDS.
This is because of the multiple individual stat calls that GUFI
makes to the MDS as seen in Figure 6b. Even for workload 1,
where GUFI takes less time to index than BRINDEXER, the
CPU utilization is much more than BRINDEXER. Similar
behavior as CPU is shown on other resources like network
and disk. However, in case of memory, both BRINDEXER and
GUFI have a similar memory utilization on clients and MDS
as seen in Figures 8c and 8d.

E. Evaluation of Metadata Query Interface

To evaluate the metadata query interface of BRINDEXER,
we run a query to find all files whose size is greater than
10 MB. We compare the query performance of BRINDEXER
with GUFI, Lustre’s lfs find tool, and Robinhood policy engine.

1) Time Taken to Query: Figure 9 shows the time taken to
run the query and get the results back from the index database
from BRINDEXER, GUFI, lfs find, and Robinhood. GUFI
performs worse than BRINDEXER for both the workloads. This
is because BRINDEXER makes use of parallel search on all the
index nodes. The 2-level database sharding in BRINDEXER
helps optimize queries further. We compare BRINDEXER with
lfs find and Robinhood using queries on only workload 2. lfs
find traverses the entire file system to get the results without
using indexing and performs the worst. The difference in
query performance between BRINDEXER and Lustre’s default
lfs find tool is proportional to the number of index nodes at
the indexing level. The query performance of BRINDEXER
and Robinhood is similar, though Robinhood uses an external
database to index the file system. Therefore, BRINDEXER
reaches an ideal query performance in the file system itself
and improves upon the hardware-normalized version of the
state-of-the-art GUFI by 91%.

2) Resource Utilization: Figure 10 shows the resource
utilization of BRINDEXER and GUFI when querying the file
system for both workloads. The legend used in Figure 10a
is consistent for all the graphs in Figure 10. The resource
utilization during querying is shown on OSSs instead of MDS
because metadata index database resides in the OSSs of the file
system. It is seen that GUFI’s query task is much more CPU
intensive than that of BRINDEXER. The memory utilization is
similar for both. Therefore, BRINDEXER helps reduce CPU
utilization during queries by 91.8% on clients and 57.8% on
OSSs compared to GUFI.

F. Evaluation of Re-Indexer

The analysis of 24-hour Lustre changelog that was described
in Section II-D2 shows that on a large scale production level
Lustre store, more than 34 million events occur per day which
corresponds to ∼400 events per second. We write a script
that operates on the 22 million file dataset in workload 2 and
generates 766 random events (create, modify and remove) per
second per MDS. We then evaluate the performance of re-
indexer in reporting these events.

1) Event Reporting Analysis: The event reporting rates
(rate at which the suspect file is created) of BRINDEXER
and Robinhood are shown in Table VII. Lustre’s fid2path
tool is resource intensive and slow. Therefore, there is a
28.7% improvement in event reporting rate when LRU cache



(a) CPU% of Client. (b) CPU% of MDS. (c) Memory% of Client. (d) Memory% of MDS.

Fig. 8: Resource utilization during indexing by BRINDEXER and GUFI.

Fig. 9: Time taken to query by BRINDEXER, GUFI, lfs find,
and Robinhood.

is used in BRINDEXER’s re-indexer to store parent FID and
path mappings. BRINDEXER performs better than Robinhood
when it come to event reporting comparison because of
Robinhood’s round-robin approach to processing changelogs
from the MDSs. BRINDEXER uses a parallel and scalable
approach which improves the event reporting rate.

#Events per second
Events generated 766

Events reported by BRINDEXER without cache 523
Events reported by BRINDEXER with cache 734

Events reported by Robinhood 710

TABLE VII: Event Reporting Rates by BRINDEXER and
Robinhood.

2) Resource Utilization: Table VIII shows the effect of
varying LRU cache size in re-indexer. The best event reporting
rate with an optimal resource utilization is achieved when
cache size is set to 5000. Therefore, re-indexer does not utilize
a lot of cpu (2.94%) and memory (62.4 MB) and can run
continuously to keep track of the metadata events in real-time.

Cache Size
(#fid2path)

CPU%
on client

Memory (MB)
on client

Events/sec reported
by BRINDEXER

200 4.8 88.7 578
500 3.5 84.3 624
1000 2.98 75.6 659
2000 2.95 61.3 698
5000 2.94 62.4 734
7500 2.92 60.7 720

TABLE VIII: BRINDEXER performance and resource utiliza-
tion vs. cache size.

V. RELATED WORK

Inversion [18] is one of the first systems to propose inte-
grating indexes into the file system. It uses a general-purpose
DBMS as the core file system structure, rather than traditional
file system inode and data layouts. BRINDEXER uses file
system inode information to build the metadata index database.
BeFS [10] uses B+tree to index file system metadata. However,
it suffers from scalability issues.

Recent metadata indexing techniques include, Spyglass [16],
SmartStore [12], Security Aware Partitioning [19], and
GIGA+ [20] which use a spatial tree, such as k-d tree [30],
or R-tree [11] to index metadata. BRINDEXER instead uses
RDBMS with 2-level database sharding to efficiently store
metadata index information. Other recent metadata index-
ing tools, GUFI [3], Robinhood Policy Engine [14], and
BorgFS [1], use an external database for indexing. The
metadata snapshot is taken to an external node where the
indexing is performed. BRINDEXER uses an in-tree design
so that no external resources are used that compromises
scalability of the indexing approach. PROMES [17] is another
recent approach which uses provenance to efficiently improve
metadata searching performance in storage systems. However,
provenance depends on building relationship graph which is
infeasible on large-scale HPC storage systems. Therefore, this
technique serves well for single node file systems.

Dindex [31] is a distributed indexing technique which com-
prises hierarchical index layers, each of which is distributed
across all nodes. It builds upon distributed hashing, hierar-
chical aggregation, and composite identification. BRINDEXER
uses leveled partitioning technique so that every disjoint sub-
tree can be indexed in parallel. TagIt [25], Someta [28],
and EMPRESS [13] are metadata management systems that
enable “tag and searching”. The metadata can be enriched by
using custom tags for filtering, pre-processing or automatics
metadata extraction. However, this is inbuilt into the storage
system. Client nodes have more power and faster intercon-
nect, therefore the indexing tool can leverage that power like
BRINDEXER to index metadata from the file system clients.

VI. CONCLUSION

In this paper, we have presented BRINDEXER, a meta-
data indexing tool for large-scale HPC storage systems.
BRINDEXER has an in-tree design where it uses a paral-
lel leveled partitioning approach to partition the file system
namespace into disjoint sub-trees. BRINDEXER maintains an



(a) CPU% of Client. (b) CPU% of OSS. (c) Memory% of Client. (d) Memory% of OSS.

Fig. 10: Resource utilization during querying by BRINDEXER and GUFI.

internal metadata index database which uses a 2-level database
sharding technique to increase indexing and querying perfor-
mance. BRINDEXER also uses a changelog-based approach
to keep track of the metadata changes and re-index the
file system. BRINDEXER is evaluated on a 4.8 TB Lustre
storage system and is compared with state-of-the-art GUFI
and Robinhood engines. BRINDEXER improves the indexing
performance by 69% and the querying performance by 91%
with optimal resource utilization.

In future, we plan to implement the re-indexer within the
indexer of BRINDEXER so that there is no overhead from
reading and writing entries to suspect files. We also plan to
implement BRINDEXER for other HPC storage systems like
BeeGFS and IBM Spectrum Scale.

ACKNOWLEDGMENTS

We thank Brad Settlemyer and Scott White at LANL for
providing us the knowledge about GUFI and giving us a
snapshot of a 24-hour Lustre changelog.

This work is sponsored in part by the National Science
Foundation under grants CCF-1919113, CNS-1405697, CNS-
1615411, CNS-1565314/1838271 and OAC-1835890.

REFERENCES

[1] BorgFS. https://www.snia.org/educational-library/
borgfs-file-system-metadata-index-search-2014. Accessed: December
7 2019.

[2] Flame Graph. http://www.brendangregg.com/flamegraphs.html. Ac-
cessed: December 7 2019.

[3] GUFI. https://github.com/mar-file-system/GUFI. Accessed: November
30 2019.

[4] LFS Find. http://manpages.ubuntu.com/manpages/precise/man1/lfs.1.
html. Accessed: December 10 2019.

[5] NERSC Report. https://www.nersc.gov/
news-publications/nersc-news/nersc-center-news/2017/
new-storage-2020-report-outlines-future-hpc-storage-vision/.
Accessed: November 30 2019.

[6] Top 500 List. https://www.top500.org/lists/2019/11/. Accessed: Novem-
ber 30 2019.

[7] S. Berchtold, C. Böhm, D. A. Keim, and H.-P. Kriegel. A cost model
for nearest neighbor search in high-dimensional data space. In Proceed-
ings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, PODS ’97, pages 78–86, New York,
NY, USA, 1997. ACM.

[8] T. Bisson, Y. Patel, and S. Pasupathy. Designing a fast file system crawler
with incremental differencing. ACM SIGOPS Operating Systems Review,
46(3):11–19, 2012.

[9] J. Cipar, G. Ganger, K. Keeton, C. B. Morrey, III, C. A. Soules, and
A. Veitch. Lazybase: Trading freshness for performance in a scalable
database. In EuroSys, pages 169–182, New York, NY, USA, 2012. ACM.

[10] D. Giampaolo. Practical file system design with the Be file system.
Morgan Kaufmann Publishers Inc., 1998.

[11] M. Hadjieleftheriou, Y. Manolopoulos, Y. Theodoridis, and V. J. Tsotras.
R-trees: A dynamic index structure for spatial searching. Encyclopedia
of GIS, pages 1805–1817, 2017.

[12] Y. Hua, H. Jiang, Y. Zhu, D. Feng, and L. Tian. Smartstore: a
new metadata organization paradigm with semantic-awareness for next-
generation file systems. In SC, pages 1–12, Nov 2009.

[13] M. Lawson and J. Lofstead. Using a robust metadata management
system to accelerate scientific discovery at extreme scales. In 2018
IEEE/ACM PDSW-DISCS, pages 13–23. IEEE, 2018.

[14] T. Leibovici. Taking back control of hpc file systems with robinhood
policy engine. arXiv preprint arXiv:1505.01448, 2015.

[15] A. Leung, I. Adams, and E. L. Miller. Magellan: A searchable metadata
architecture for large-scale file systems. University of California, Santa
Cruz, Tech. Rep. UCSC-SSRC-09-07, 2009.

[16] A. W. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. L. Miller.
Spyglass: Fast, scalable metadata search for large-scale storage systems.
In FAST, volume 9, pages 153–166, 2009.

[17] J. Liu, D. Feng, Y. Hua, B. Peng, and Z. Nie. Using provenance to
efficiently improve metadata searching performance in storage systems.
Future Generation Computer Systems, 50:99–110, 2015.

[18] M. A. Olson et al. The design and implementation of the inversion file
system. In USENIX Winter, pages 205–218, 1993.

[19] A. Parker-Wood, C. Strong, E. L. Miller, and D. D. Long. Security
aware partitioning for efficient file system search. In 2010 IEEE 26th
MSST, pages 1–14. IEEE, 2010.

[20] S. Patil and G. A. Gibson. Scale and concurrency of giga+: File system
directories with millions of files. In FAST, pages 13–13, 2011.

[21] A. K. Paul, R. Chard, K. Chard, S. Tuecke, A. R. Butt, and I. Foster.
Fsmonitor: Scalable file system monitoring for arbitrary storage systems.
In 2019 CLUSTER, pages 1–11. IEEE, 2019.

[22] A. K. Paul, O. Faaland, A. Moody, E. Gonsiorowski, K. Mohror, and
A. R. Butt. Understanding hpc application i/o behavior using system
level statistics. SC, 2019.

[23] A. K. Paul, A. Goyal, F. Wang, S. Oral, A. R. Butt, M. J. Brim, and
S. B. Srinivasa. I/o load balancing for big data hpc applications. In
2017 IEEE Big Data, pages 233–242. IEEE, 2017.

[24] A. K. Paul, S. Tuecke, R. Chard, A. R. Butt, K. Chard, and I. Foster.
Toward scalable monitoring on large-scale storage for software defined
cyberinfrastructure. In 2nd PDSW-DISCS in SC, pages 49–54, 2017.

[25] H. Sim, Y. Kim, S. S. Vazhkudai, G. R. Vallée, S.-H. Lim, and A. R.
Butt. Tagit: an integrated indexing and search service for file systems.
In SC, page 5. ACM, 2017.

[26] C. A. Soules, K. Keeton, and C. B. Morrey, III. Scan-lite: Enterprise-
wide analysis on the cheap. In EuroSys, New York, USA, 2009. ACM.

[27] D. A. Talbert and D. Fisher. An empirical analysis of techniques for
constructing and searching k-dimensional trees. In Proceedings of the
sixth ACM SIGKDD, pages 26–33. ACM, 2000.

[28] H. Tang, S. Byna, B. Dong, J. Liu, and Q. Koziol. Someta: Scalable
object-centric metadata management for high performance computing.
In CLUSTER, pages 359–369. IEEE, 2017.

[29] B. Wadhwa, A. K. Paul, S. Neuwirth, F. Wang, S. Oral, A. R. Butt,
J. Bernard, and K. Cameron. iez: Resource contention aware load
balancing for large-scale parallel file systems. In IPDPS, 2019.

[30] X. Yang, Q. Liu, B. Yin, Q. Zhang, D. Zhou, and X. Wei. k-d tree con-
struction designed for motion blur. In Proceedings of the Eurographics
Symposium on Rendering: Experimental Ideas & Implementations, pages
113–119. Eurographics Association, 2017.

[31] D. Zhao, K. Qiao, Z. Zhou, T. Li, Z. Lu, and X. Xu. Toward efficient
and flexible metadata indexing of big data systems. IEEE Transactions
on Big Data, 3(1):107–117, 2017.

https://www.snia.org/educational-library/borgfs-file-system-metadata-index-search-2014
https://www.snia.org/educational-library/borgfs-file-system-metadata-index-search-2014
http://www.brendangregg.com/flamegraphs.html
https://github.com/mar-file-system/GUFI
http://manpages.ubuntu.com/manpages/precise/man1/lfs.1.html
http://manpages.ubuntu.com/manpages/precise/man1/lfs.1.html
https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2017/new-storage-2020-report-outlines-future-hpc-storage-vision/
https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2017/new-storage-2020-report-outlines-future-hpc-storage-vision/
https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2017/new-storage-2020-report-outlines-future-hpc-storage-vision/
https://www.top500.org/lists/2019/11/

