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ABSTRACT
Function-as-a-Service (FaaS) and the serverless computing model
offer a powerful abstraction for supporting large-scale applications
in the cloud. A major hurdle in this context is that it is non-trivial
to transform an application, even an already containerized one,
to a FaaS implementation. In this paper, we take the first step to-
wards supporting easier and efficient application transformation
to FaaS. We present a systematic scheme to transform applications
written in Python into a set of functions that can then be automat-
ically deployed atop platforms such as AWS Lamda. We target a
Bioinformatics cyberinfrastructure pipeline, CIWARS, that provides
waste-water analysis for the identification of antibiotic-resistant
bacteria and viruses such as SARS-CoV-2. Based on our experience
with enabling FaaS-based CIWARS, we develop a methodology that
would help the conversion of other similar applications to the FaaS
model. Our evaluation shows that our approach can correctly trans-
form CIWARS to FaaS, and the new FaaS-based CIWARS incurs
only negligible (≤ 2%) overhead for representative workloads.
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1 INTRODUCTION
The serverless computing, or Function-as-a-Service (FaaS), model
is popularized by its desirable ease-of-use and its ability to scale the
deployments in a cost-effective on-demand fashion. The model re-
duces the time and cost to migrate applications across deployments,
and relieves developers from the cumbersome task of provisioning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HiPS ’21, June 25, 2021, Virtual Event, Sweden
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8388-2/21/06. . . $15.00
https://doi.org/10.1145/3452413.3464787

server resources for hosting their applications. As a result, the mar-
ket share of serverless computing is projected to grow significantly
in the near future [9, 13, 17].

The model holds promise for scientific workflows and appli-
cations as well [10], especially as innovative tasks such as deep
learning and dynamic data analysis are incorporated into the appli-
cations. However, there is a fundamental disconnect between the
underlying assumptions, e.g., containerized or virtualized resources,
etc. in the design of existing applications and the abstractions sup-
ported by the serverless model. From the resource-provider (plat-
form) point of view, traditional applications are typically stateful,
resource-intensive, and run for long periods of time. In contrast, the
serverless model creates ephemeral, stateless instances of pieces
of code that are strung together to create applications. From the
application developer’s point of view, their existing applications
need to be decomposed into lightweight functions that can be run
atop the serverless computing substrate. This yields complex ap-
plication decomposition and resource management challenges for
the developers and the resource providers, respectively. There has
been work in converting some applications to the new serverless
model [6, 11, 13, 27], but such works have typically focused on
particular components only. What is needed is a set of techniques
and tools that can help developers efficiently decompose their appli-
cations and automatically create serverless implementations ready
for deployment.

In this paper, we take the first steps in designing a systematic
approach for complete application decomposition into functions
for serverless computing. Our focus application is a bioinformatics
workflow pipeline, Cyberinfrastructure for Waterborne Antibiotic
Resistance Risk Surveillance (CIWARS), that identifies antibiotic-
resistant bacteria in wastewater. For each analyzed wastewater
sample, the application assembles and annotates genetic sequences
therein, and then scores the genomes for anomalous behavior. The
pipeline is a large monolithic application with a number of compo-
nents (data and compute-intensive) [7, 8, 22] integrated into a rigid
and fixed workflow. While the application is generally executed
end-to-end, users may stop the pipeline at arbitrary points between
components, analyze the output, and tweak the information before
forwarding it to the next component. This interruption and need to
examine intermediate data makes CIWARS well-suited for a FaaS
implementation.

While we are starting with CIWARS to demonstrate the efficacy
of our approach, our proposed approach will be applicable to a set
of similar scientific workflows. There are two reasons for this. First,
many workflows are essentially represented by directed acyclic
graphs (DAGs) of components as in CIWARS, and thus amenable to
a FaaS implementation should the components be transformed to
handle the mismatch discussed above. Second, all applications can
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benefit from having the agility of light-weight FaaS functions dy-
namically allocated to large computing substrates. A FaaS instance
can perhaps be used to fill small unused resources in the popular
FCFS with back-filling schedulers, letting traditional HPC and new
serverless applications co-exist, and thus provide higher efficiency
for HPC resources.

We build a systematic approach to enable fully functional decom-
position. For starters, we manually split CIWARS’s components
into individual functions, and containerize them using Docker [20].
Doing so also makes the pipeline flexible as users can now pick
and choose components that should be assembled into the appli-
cation pipeline, e.g., by replacing one kind of anomalous behavior
detector with another, and provide customized inputs and sample
any communication between components for intermediate analysis.
Once the pipeline of functions is identified, it is instantiated auto-
matically to create the end-to-end application instance. Through
the decomposition of CIWARS, we also identify a number of op-
timizations that can be achieved in the future, such as exploiting
parallelism among functions, or reducing the transactional costs
between function executions by tuning decomposition granular-
ity. We plan to also automate the decomposition process itself by
compiler-assisted program analysis to identify function boundaries.
For this exploration, we deployed our own FaaS backend as we
needed detailed low-level runtime information to fine-tune our
approach, which is not readily available in platforms such as AWS
Lambda. However, as we improve our tools, we will not need a local
FaaS backend and will be able to use AWS Lambda, etc.

Specifically, we make the following contributions:

• We discuss recent works in converting applications to the
FaaS model, and identify techniques that can be leveraged
in our tool for automatic decomposition.

• We present the design of our tool to decompose traditional
application workflows into function sets that maintain cor-
rectness while preserving performance. We show that the
resulting functions can be deployed on serverless platforms
such as AWS Lambda.

• We evaluate manually decomposing the CIWARS Bioinfor-
matics application into AWS-Lambda-ready function sets,
comparing two versions of the application to better under-
stand the trade-offs between performance and scalability of
the proposed transformation techniques.

• We discuss future steps needed for implementing our tool
and optimizing it for performance and scalability.

2 BACKGROUND
Decomposing a legacy (or traditionally developed) application into
serverless ready function sets is a complex problem requiring iden-
tifying the function boundaries within an application and matching
of the application characteristics to that of the target serverless
platforms. A number of works have started exploring this transfor-
mation, which we categorize and discuss in the following.

2.1 Serverless Performance Analysis
Wang et al. [28] surveyed the performance of a large number of
function instances on a major commercial FaaS platform (up until

2018). It systematically measured the architectural, resource sched-
uling, and performance isolation characteristics of AWS Lambda,
Azure Functions, and Google Cloud Functions. The work found
that none of the three platforms completely hide tenants’ runtime
information from each other, exposing potential vulnerabilities to
dedicated attacks. However, container warming technique can help
reduce the cold start overhead and resource utilization. Further-
more, the work showed that resource contention can be caused
by failed performance isolation among instances or even tenants,
those who have more pre-configured resources, mainly memory,
will get better resources while in resource contention.

In contrast, Yu et al. [29] proposes an all-in-one benchmark
for serverless platforms. The function splitting strategies here are
crucial: applications can be decomposed based on periods of consis-
tent resource consumption to avoid pre-configured resources being
wasted; and serverless platforms tend to limit allowed concurrency
in one instance. Thus, splitting parallelizable regions into different
functions could help the overall performance. The work also shows
that sequential chaining of function instances generally requires
less resource and execution time than nested chaining. Saving im-
plicit states (runtime information, code, etc) of the instances of one
function can be later used to optimize the overall performance of
all the instances of the same function.

2.2 HPC FaaS Platforms
SAND [5] identifies the main problem of applying existing com-
mercial FaaS platforms onto functionized HPC applications as the
startup and communication latency among functions from the same
application. The work shows that the function calls from the same
application demonstrate the pattern that the outputs of one func-
tion are usually immediately fed into another, therefore isolating
function invocations of the same application with processes instead
of the stronger isolation through containers is viable. SAND also
implements a hierarchical message bus that routes the output of one
function to the next if the next function is hosted on the same node,
reducing the global message passing latency. However, the work
does not provide a solution for isolation among different users.

The problem of scientific applications’ deployment on FaaS plat-
form is explored in [10], which recognized that current serverless
platforms do not integrate the HPC resources well and the reliance
on Docker requires super user privileges, creating security con-
cerns. A FaaS platform is designed for scientific computing, which
allows users to register Python code snippets as functions, takes
a JSON object as inputs, invoke registered functions, and monitor
execution via REST API exposed by a funcX service. FuncX uses
different container technologies that fit different resource types.
Singularity [19] and Shifter [16] are used to ensure better isolation
on larger-scale HPC facilities, while Docker [20] works better on
local and cloud deployments [10].

Faasm [24] argues that the problems with current serverless com-
puting mainly arise from data access latency and resource footprint.
The data access latency is constrained by the stateless nature of
serverless computing: states have to be moved from/to computation,
and between function invocations. Similarly, the resource footprint
is constrained by the container technologies the current platforms
embrace, cold-starting containers is still quite expensive. The work
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proposes a stateful serverless abstraction, Faaslets and its runtime
Faasm. All Faaslets instances on the same host are placed within
one address space, and share states through shared memory regions.
Faaslets also employ a two-tier state architecture, with the first tier
being the local sharing, and the second tier being a distributed
state sharing across hosts. This model reduces cold-start latency
through firing up new instances from snapshots of pre-run Faaslets
functions. One disadvantage with this model is that it requires user
code changes to invoke Faasm specific APIs to fully make use of
the two-tier state sharing mechanism. The work helps reinforce
our thesis that the placement of function instances on hosts would
affect the communication efficiency, and in turn would affect our
proposed code decomposition policies.

2.3 Serverless Function Decomposition
FaaSter [26] compares FaaS computing model with monolithic ap-
plication execution through conducting FaaS transformation on a
series of scientific computations. It proposes the idea of splitting
functions based on the potential timeout cutoff of a function. The
partial functions after splitting are connected through a nested
chain. This way even if the previous partial functions are timed
out, the following partial functions will proceed to execute in other
instances, thus preserving the semantic of the original function.
The work also introduces the categorization of different levels of
FaaSification: shallow FaaSification, splitting the application into
the units of functions; medium FaaSification, splitting the applica-
tion into code snippets; deep FaaSification, splitting the application
into the units of instructions. The work is complementary to our
approach in designing our decomposition strategies.

Spillner [25] offers the bases for systems such as FaaSter, and
targets a problem similar to ours, i.e., how to automate the process
of lambdafication on Python cloud applications? They propose Lam-
bada, a tool to automate the transformation of cloud applications to
be lambda-ready. The tool recursively scans the modules according
to function dependencies and transforms them into corresponding
Lambda modules, with Lambda runtime as the gateway across mod-
ule boundaries. Functions are transformed into remote functions
with stub functions at the local as the entry point. Classes are de-
composed into functions, deployed with a similar tactic that a local
proxy class and a remote proxy class exchange call arguments and
function states. The transformation proposed in Lambada is useful
as a skeleton reference for general transformation from cloud appli-
cation to FaaS function. However, in contrast to such works, we also
consider performance optimizations and general FaaS platforms,
and not only a solution tailored solution AWS Lambda.

3 METHODOLOGY
The initial CIWARS pipeline is composed of a number of monolithic
tools [7, 8, 22] as shown in Figure 1. The pipeline forms a DAG, but
the boundaries of the individual components are only conceptu-
ally defined. The existing implementation still packs everything
into one monolithic unit. The domain scientists and users of CI-
WARS ideally would like to have an ability to replace/exchange the
pipeline components and extract intermediate data from various
points in the pipeline—something that cannot be supported in the
monolithic version without significant redesign—to enable analysis

Figure 1: The CIWARS cyberinfrastructure pipeline, which
employs tools such as MetaCompare [22], MetaStorm [7],
and DeepARG [8]. Note that given the monolithic nature of
individual components, some functionalities such as short
reads and annotations are repeated in the components.

and tweaking/curating of data between components (§1). There-
fore, the general guideline we follow in transforming CIWARS to
a function set is to modularize all the functions with boundaries
defined by the designers, i.e., as close to the conceptual DAG as
possible.

We perform a shallow decomposition [26] of the CIWARS pipeline,
which can help us create functions that can be used in the server-
less context. The challenge we faced is that the components are all
packed into a single application, which entails manual splitting. We
consider the relations between the components for this purpose. For
instance, MetaCompare [22] contains the “Annotation” component,
as well as a component for scoring an “Alignment” File. However,
this overlaps with DeepARG’s [8] functionalities of “Annotation”.
The input, expressed as a FASTA file [23] by the “Assembly” compo-
nent, can either go into DeepARG’s annotation component, or Meta-
Compare’s annotation section. The output from either of these can
be scored by MetaCompare’s “Alignment” component. Therefore,
we need to separate the “Annotation” and “Alignment” components
of MetaCompare into two functionizable code snippets. As a de-
sign rule for modularizing components, we separate a functionality
from a monolithic component if the functionality can be used by
multiple other components and support the same input and output
formats. Thus, a modularized component can be instantiated as
needed to support multiple processing pipelines. The modularized
component model also provides for trade-offs in the pipeline. For
instance, we can have an annotation component that is fast but not
as accurate, or vice versa a very accurate but slow one. The model
provides users with the ability to pick and choose to meet their
overall application needs.

Once the application is modularized into a function set, the
next step is to support a large-scale deployment to speed up the
process and to support more users. We target AWS Lambda [15]
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for this purpose, and design automatic mechanisms to deploy the
functions atop the computing substrate. To coordinate among the
decomposed function instances, automate the execution of the
designated partial pipeline according to users’ specifications, and
manage the implicit and explicit states of instances [29], we create
our own AWS Lambda-ready lightweight serverless architecture.

Figure 2: The proposed framework for instantiating decom-
posed functions created by our approach atop AWS Lambda.

Figure 2 shows the overall architecture of our approach. Users
upload their input files, select the desired pipeline components, and
specify the configurations for the components using a front-end1.
The configurations are then uploaded to our server—aDjango server
that captures the configuration and metadata, parses them into
JSON, and creates a temporary directory for this user on the server
storage. A workload manager then processes the JSON files, creates
a run script with user configurations in the user directory, and
coordinates the designated functions to run. The workload manager
manages the execution order of the functions/instances through
Kubernetes [3]. The functions are pre-registered and containerized
through Docker [20], function-proprietary libraries and databases
are shared among functions and are exposed to the containers. The
Django server will notify users through the front-end when the
execution is done. Thus completing the process.

4 DESIGN
The exercise of manually faasifying a monolithic application gives
us insights on how to devise an automated program refactoring tool
capable of identifying code regions, at both coarse- (i.e., function
or class level) and fine- (statement level) level granularity, best
suited to be ported to a serverless platform. This section proposes
a tool that takes as input a monolithic pipeline and a sample input
data, and outputs a decomposed set of functions to be deployed
on serverless platforms. While searching for possible candidates in
an application for FaaS, our objective is to increase performance
from undiscovered parallelism in the program and, to a great extent,
utilize the available scalability of the serverless platform.

To identify candidate code regions in a given program, we first
have to define the granularity at which our approach will decom-
pose the program. We resort to a greedy approach by starting
1Currently, we use manually created XML/JSON objects to specify the setup. In the
future, we envision a visual tool that will help users to make this step easier.

with the most coarse granularity, i.e., at the function level, and
then applying finer granularity decomposition, i.e., statement-level,
while preserving the sequential order of statements. This approach
helps manage the search space of all possible decompositions of
a program rather than experiencing search-space explosion from
fine-grained-level that may arise from statement re-ordering.

Starting with the most coarse-grained level in the first stage, we
construct a program decomposition at the function level. We pass
the decomposition candidates to the second stage and generate a
control-flow graph (CFG) at the level of function calls. Then, we
identify branching locations in the CFG where the execution path
splits (§4.2), leading to two possibly independent code blocks. These
code blocks are considered as possible candidates for faasification.
For each of those code blocks, we expand data flow boundaries by
adding statements present in the hierarchy of the block’s data de-
pendency graph (DDG) but independent of the rest of the program
execution (§4.3). These two decomposition steps are iteratively ap-
plied at a finer-grained level until we find the local maxima for
performance. For each candidate decomposition, we perform con-
crete execution on the sample input to document the resulting
performance gains/loss. We formalize our decomposition mecha-
nism with the following terms:

• Decomposition set D represents a set of locations in the origi-
nal pipeline code where the suggested decomposition bound-
aries can be established.

• Generation D(X) represents the number of stages of decom-
position that have been applied to the current decomposition
set. 𝑋 represents the total rounds of control-flow decompo-
sition and data-flow analysis that have already been applied.
For example, D(0) represents the original application with
function boundaries as decomposition boundaries. D(1) is
the set after the first round of control-flow decomposition
and data-flow analysis.

• Code snippet is a piece of code to be decomposed, and one
generation can contain multiple code snippets.

4.1 Baseline Granularity
In our experience of transforming CIWARS pipeline §3, we ob-
serve that although the pipeline does not have user-annotated sub-
pipeline boundaries, it is compartmentalized in independent func-
tions. A similar observation was reported by FaaSter [26], which
describes a shallow level of Faasification with functions as the
atomic unit of the decomposition. Our insight is that such computa-
tional pipelines may already be partially modularized into functions,
capturing the implicit computational boundaries intended by the
developer and, hence, can easily be transformed into FaaS. As a first
step, we leverage the already existing functions as a possible de-
composition and deploy them as FaaS to measure the performance
gains over baseline application. We define this initial baseline de-
composition as D(0).

However, relying on the user to define decomposition locations
in a program would lead to many missed opportunities to improve
performance. Each user-defined function may contain parallelizable
computation, which can be decomposed into multiple smaller FaaS.
For instance, in Figure 3, the convolution operation (lines 1–13)
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13.

kl = len(kernel) 

ks = (kl-1)/2 

  imx = len(matrix) 

imy = len(matrix[0]) 

for i in range(imx): 

 for j in range(imy): 

  acc = 0

  for ki in range(kl): 

     for kj in range(kl): 

      if 0 <= i-ks <= kl: 

       acc = acc + (matrix[i-ks+ki][j-ks+kj] * kernel[ki][kj]) 

    matrix[i][j] = acc

acc = 0

for ki in range(kl): 

 for kj in range(kl): 

  if 0 <= i-ks <= kl: 

   acc = acc + (matrix[i-ks+ki][j-ks+kj] * kernel[ki][kj])

return acc

Control-flow-based Decomposition

Data-flow-based Analysis

def decomposed(i,j,kl,matrix, kernel): 

 acc = 0

 for ki in range(kl): 

  for kj in range(kl): 

   if 0 <= i-ks <= kl: 

    acc = acc + (matrix[i-ks+ki][j-ks+kj] * kernel[ki][kj])

 matrix[i][j] = acc

Figure 3: A sample application of control-flow-based decomposition followed by data-flow-based analysis. The grey box on
the left presents a part of a monolithic Python application that performs a convolution operation on a given image, matrix.

can be considered as a function and transformed into FaaS. How-
ever, better decomposition locations–either of the orange, green,
grey or blue boxes–would lead to more parallelism and scalability.
We recognize this limitation and incorporate static and dynamic
program analysis techniques in our approach to fully explore such
parallelizable components.

4.2 Control-flow-based Decomposition
To further explore opportunities to parallelize, we leverage static
program analysis techniques to identify code blocks independent
of other code blocks, which lie at the branching locations (e.g.,
IF, FOR, WHILE, and SWITCH) of the program. For this purpose,
we employ existing static analysis for Python, e.g., control flow
analysis [21], to generate a control-flow graph (CFG) of a given
pipeline. Once the CFG is generated, we traverse the graph to
identify sub-paths in the program that emerge from branching
conditions but do not have cyclic dependencies. Code blocks outside
of these branching locations are composed in their own functions. A
function invocation to a method defined within the given block also
counts as a branching location. Due to our technique’s recursive
nature, the control-flow-based decomposition will be applied on
the CFG in a top-to-bottom fashion, i.e., level-order traversal. The
succeeding stages will be responsible for all other decomposition
locations in the bottom or middle part of the CFG.

The insight behind using control flow as a criterion to decompose
a program is that if we want to achieve deep Faasification, splitting
code at the control points maintains correctness and sequential
order, and is also coarse-grained. For example, in Figure 3, the
FOR loop at line 6 represents such branching location where the
code block (lines 6-12) will be executed if the loop-predicate is
true. Thus, the orange box represents D(1), the decomposition set
constructed after the first CFG based decomposition. As another
example, consider an IF clause, where both true and false sides of
the branches are independent of each other and can be viewed as a
candidate for FaaS.

However, the decomposition of a program based solely on con-
trol flow may overlook some trivial parallelizing opportunities.
Consider a program with an IF condition where the branch’s true
side invokes external heavy libraries, and the false side invokes

lightweight computations. The computation disparity in two inde-
pendent program paths may lead to Faasifying a relatively light
computation instead of the one depending on large-sized library
packages. This would entail profiling in the next data-flow-based
analysis step.

4.3 Data-flow-based Analysis
After defining a set of decomposition boundaries, it is critical to
identify the data dependencies of an extracted function. For exam-
ple, in Figure 3, the extracted code in blue box depends on variables
such as kl, matrix, i, and j. Similarly, the variable acc is used by
line 12, and therefore, line 12 depends on a complete execution of
the blue box. To perform a dependency analysis, we extend our
static analysis to construct a data dependency graph (DDG) of the
given pipeline. DDG provides fine-grained information on how a
variable or a code region is formed and what variables are needed
for its correct execution.

We observe that an edge in the data dependency graph can inter-
changeably be interpreted as a happens-before relationship between
two code statements. Based on this observation, we first explore
all variables used in the current FaaS candidate and then isolate
their dependencies (i.e., other variable and code statements) via a
DDG. This exercise also helps with constructing a legal function
definition with input parameters and return type.

During the data dependency analysis, we recognize more room
for improvement. Using the edges in the DDG, we can also find a
code statement that satisfies the following two conditions: 1) the
statement is adjacent (1-edge away) to the FaaS candidate under
investigation and the candidate is data-dependent on the statement,
and (2) no other code block in the sibling path depends on the state-
ment. When such statements are presented, they are appended to
the current candidate FaaS without affecting the original pipeline’s
sequential order.

After the data dependency analysis and function expansion, a
profiling stage, as described in §4.2, will be performed to compare
the two decomposition sets to distinguish the one that delivers
better performance than the other. Ultimately, we expect multi-
ple aspects of a function to be measured during this final profiling,
among which execution time and memory footprint would be given
heavier weights. The profiling stage will also decide whether this
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Figure 4: A sample evolution of the decomposition on a monolithic application. Each code snippet is decomposed into a set of
multiple smaller functions. If the overall performance of the resulting set is better than the preceding set, then we keep the
resulting set, otherwise the original set is preserved.

generation of decomposition is successful or not, if the perfor-
mance of the decomposed result is better than the code prior to
this generation’s decomposition efforts, we keep the decomposed
code as the new generation. Figure 4 shows an example of how
fine-grained decomposition is achieved for an application code after
several generations of control-flow-based decomposition (§4.2) and
data-flow-based analysis (§4.3).

4.4 Just-in-Time Analyzer
After the control-flow and data-flow analysis within a stage, we
evaluate the performance of the current generation on user input
data. If the current decomposition step performs better than the
previous one, we move to the next stage, with finer-grained decom-
position. The profiling step helps us keep on track while searching
for the best decomposition set and acts as a stopping condition.

However, the decision of this step will vary hugely based on
the user’s input. Different inputs will lead to different execution
paths at runtime, and different input sizes might have different
resource footprints and execution times. Therefore, we need to de-
cide the decomposition of our functions dynamically. We propose
a Just-in-Time Analyzer to perform all the decomposition stages
on the application before running it, offloading the responsibility
of profiling to a back-end workload manager (Figure 5). The config-
uration on a monolithic application with a single set of input will
come to an asymptotic state after several generations when further
decomposition no longer brings performance gain if not loss. After
a set of decomposed functions is finalized, the analyzer will keep
all the information of each generation, including the decomposed
functions, their signature, and their dependency relations.

A challenge in this context is as users execute more and more
application instances, the input data varies and its behavior will
change over time. Thus a generation that offered a desirable perfor-
mance in the past needs to be re-evaluated and the analyzer may
select a new generation. Such re-evaluation can be done at fixed
intervals, e.g., after a predetermined number of instances have been
run, or if the input changes drastically, e.g., the file size varies signif-
icantly. This re-evaluation can go both forward, i.e., decompose to a

new generation, or backward, i.e., retrace to a previous generation.
This would be akin to going down or up the tree of Figure 4. The
goal is for the analyzer to dynamically match the workload and use
a generation that can provide improved performance.

Figure 5: Overall structure of our decomposition runtime.

4.5 Discussion
In this section, we presented a vision of our tool and its overall
design; however, there are several open challenges related to gener-
alizability, completeness, efficacy, and soundness. For instance, the
data dependency graph does not incorporate the cold-start and data
transfer cost of a set of adjacent instructions separated by our tool.
A bare bone runtime measurement does not reflect all performance
characteristics essential to make decomposition decisions. Similarly,
at each generation’s decomposition, not all functions need to be
reevaluated, and a better performance could still be achieved if we
only keep decomposing the largest functions in the current set of
functions or only reconsider the smallest functions that are likely
suffering cold-start overhead. We look forward to addressing these
challenges in the future design and implementation of our tool.
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5 EVALUATION
We answer two questions: Does our decomposition implementa-
tion preserve correctness, and what are the performance loss and
potential gain exposed by our decomposition approach?

5.1 Experimentation Setup
Testbed. We focus on showing correctness so our testbed consists

of a single node with an 8 core Intel i7-9700K CPU, 32 GB RAM,
and a 500 GB SSD. We isolate the decomposed functions using
Docker 20.10.3[2], and build our own image based on the official
Python3 base image [4]. We run our decomposed applications on
Ubuntu 18.04.2 LTS. We test our decomposition approaches on the
MetaCompare and deepARG components of the CIWARS pipeline.

Dataset. We downloaded 100 FASTA-formatted [23] metage-
nomic sequence read data with a uniformed size of 500 MB from a
local wastewater management site in Christianburg, VA. The data is
pre-processed through a gene prediction tool called Prodigal [14] to
prepare it for annotation by MetaCompare. For DeepARG, we also
downloaded 100 metagenomic raw FASTQ-formatted [12] sequence
read data sets that come from the University of Hong Kong and
range from 6 GB to 7 GB [1]. The datasets are representative of
those used by the domain scientists in the field. Both MetaCompare
and DeepARG take two input files for an execution.

5.2 Preserving Correctness
WedecomposeMetaCompare into its “Annotation" and “Alignment"
components using our approach of §3. The resulting function set
{Annotation, Alignment} are arranged such that the input is pro-
vided to the Annotation function, whose output is then fed to the
Alignment, which then provide the output. The functions are run
using the system shown in Figure 2. Similarly, MetaCompare is
decomposed into {Short Read, Annotation} function set and exe-
cuted. First, we manually examined using compiler analysis the key
components in the original as well as the decomposed version to
check the correctness of the code, and found the two versions to be
achieving similar computations. Next we executed the original and
decomposed FaaS versions of the tools with 100 different inputs
from our datasets, and for each case compared the output files. We
determined that our decomposed version matched the output for
all of our tests. These experiments show that the approach is able
to correctly transform the monolithic components of CIWARS into
FaaS-ready function sets.

5.3 Performance Analysis
In our next experiment, we study the execution time of the original
and decomposed versions of MetaCompare and DeepARG to gauge
the performance of our approach. We measure the execution time
of our decomposed code by placing python timing instructions at
its beginning and after the completion of state persistence, and
calculating the difference. For the original versions, we measure
the overall execution time of the monolithic instances; for our de-
composed implementation, we measure from the beginning of the
first component’s instance until the completion of the last compo-
nent’s instance. We repeat the experiment three times and report
the averages.

Figure 6: Execution time
for Monolithic Vs. Decom-
posed implementations.

Figure 7: Execution time
with Sequential vs. Paral-
lelized library invocations
in MetaCompare.

Figure 6 shows the average execution times for the two studied
versions of the tools. We observe that the FaaS version incurs 1.5%
and 2.0% overhead as compared to the monolithic version for Meta-
Compare and DeepARG, respectively. We note that while the raw
one-instance comparison of the original and FaaS version of the
tools incur the overhead, the FaaS version opens up the tools to
benefit from parallelism and on-demand scale out.

Transactions cost. The main reason for the degradation in per-
formance in the decomposed version is due to transactions between
the functions. The functions need to utilize intermediate storage to
persist state. This overhead is dependent on how the original tools
persisted states between their various components. MetaCompare
adopted an in-memory in the monolithic version, which added an
explicit intermediate storage in the decomposed version. However,
the overhead is small as the intermediate dataset for the tool is
not as large (500 MB) incurring a smaller number of accesses to
the storage. In contrast, DeepARG already relied on intermediate
storage for communication between its components. Thus, even
though it processed a much larger amount of intermediate data in
our tests (27 GB), both versions of DeepARG use the intermediate
storage in a similar way, resulting in only a small overhead.

We infer that while the decomposed version of a monolithic
application would require intermediate storage for preserving state
between components, the original version would also do the same
due to smaller memory sizes compared to the very large dataset
sizes. Thus, the expected overhead in real tools arises from ex-
tra invocations to external libraries and APIs in the decomposed
version. By properly defining the component boundaries and by
optimized implementations, this overhead can be made negligible
or amortized over large dataset sizes. As observed above, our first
implementation of the tool incurred < 2.0% overhead.

What we can learn from the observation is that persisting states
is inevitable in original monolithic applications, both invocations to
external libraries and the application itself already tend to store the
states that are too big to fit in the memory on to disks. Therefore,
under the assumption that the monolithic application has well-
defined component boundaries, in many situations, decomposition
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of existing monolithic code may not bring too much performance
degradation.

Exploiting Parallelism. During the decomposition of Meta-
Compare, we observed that its implementation involves three ex-
ternal library function invocations, and that these invocations are
independent of each other. In the previous experiment, our decom-
posed version had these external invocations grouped into a single
instance. In this experiment, we also parallelize these external li-
brary function invocations using FaaS. We measure the execution
time under this approach and compare it with our previous version.
Figure 7 shows the result and breakdown of the time taken by each
of the library invocations. In our first decomposed version, the
library invocations are sequential, whereas in our parallel version
the three can run simultaneously. As a result, the overall execution
time for the parallel version is reduced—though still dictated by the
longest invocation, i.e., #3—by 17%.

We note that even after the parallelization of the library invo-
cations, the overall execution time is well over 30 minutes, which
is much more than the average life cycle of a typical serverless
instance [18]. This can be remedied by scaling out the system, i.e,
instead of just one FaaS instance processing all of the input data,
create a large number of instances each processing a fraction of data.
However, this may significantly increase function-to-function com-
munication. We plan to explore such optimizations and trade-offs
therein in our future work.

6 CONCLUSION
Serverless computing offers great promise for legacy and emerging
scientific computing applications. In this paper, we presented a
systematic approach to decompose a scientific workflow into a set
of functions that can be deployed on serverless platforms such as
AWD Lambda. We demonstrate our approach in the context of a
bioinformatics pipeline (CIWARS). Our decomposition goal is to
preserve correctness of the original application without compromis-
ing performance. We also presented the design of an automation
tool that can provide finer-grained FaaS functions. The tool employs
a two-step approach of control-flow decomposition and data-flow
analysis to transform a monolithic application into functions for
the target CIWARS. The tool also provides the foundation for build-
ing general-purpose automatic tools for FaaS implementations of
general monolithic applications. Our evaluation shows that our ap-
proach is able to preserve correctness, and incur only small ( 2.0%)
overhead compared to the original application. In the future, we
aim to fully automate our process, and test our solutions more
rigorously and at scale.
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