
Anatomy of Cloud Monitoring and

Metering: A case study and open problems

Ali Anwar⋆, Anca Sailer†, Andrzej Kochut†, Ali R. Butt⋆

⋆Virginia Tech, †IBM Research – TJ Watson

{ali,butta}@cs.vt.edu, {ancas,akochut}@us.ibm.com

Abstract

Microservices based architecture has recently gained trac-

tion among the cloud service providers in quest for a more

scalable and reliable modular architecture. In parallel with

this architectural choice, cloud providers are also facing the

market demand for fine grained usage based prices. Both the

management of the microservices complex dependencies, as

well as the fine grained metering require the providers to

track and log detailed monitoring data from their deployed

cloud setups. Hence, on one hand, the providers need to

record all such performance changes and events, while on

the other hand, they are concerned with the additional cost

associated with the resources required to store and process

this ever increasing amount of collected data.

In this paper, we analyze the design of the monitoring

subsystem provided by open source cloud solutions, such

as OpenStack. Specifically, we analyze how the monitoring

data is collected by OpenStack and assess the characteristics

of the data it collects, aiming to pinpoint the limitations of

the current approach and suggest alternate solutions. Our

preliminary evaluation of the proposed solutions reveals that

it is possible to reduce the monitored data size by up to 80%

and missed anomaly detection rate from 3% to as low as

0.05% to 0.1%.

1. Introduction

The cloud computing model has emerged as the de facto

paradigm for efficiently providing infrastructure, platform,

and application services for IT industry. As a result, vendors

such as IBM, Amazon, and RedHat offer cloud based solu-

tions to optimize the use of their data centers. Customers of

these cloud providers, particularly those building their crit-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ApSys’15, July 27-28, 2015, Tokyo, Japan.
Copyright c© 2015 ACM 978-1-4503-3554-6/15/07. . . $15.00.
http://dx.doi.org/10.1145/2797022.2797039

ical production businesses on cloud services, are interested

in detailed monitoring data to track in real time the health

of their thousands of service instances. Netflix, for instance,

collects tens of thousands of metrics per microservice every

1 to 5 seconds [1]. With service management datasets grow-

ing at a rate of 10 Billion+ records/day, typical monitoring

and analysis tools break or require significant additional ca-

pacity for storage and computation.

Furthermore, the charge model most sought after by the

customers of those providers is the fine-grained pay-per-use,

where users are charged for the amount of specific resources,

e.g., volume of transactions, CPU usage, etc., consumed dur-

ing a given time period [18]. The cloud service providers,

looking to maintain the competitive advantage by effectively

adapting to versatile charging policies, have started to pro-

mote pay-per-use. However, usage based pricing brings a

new set of service management requirements for the service

providers, particularly for their revenue management [27].

The finer-grain metering requires monitoring of service re-

sources and applications at appropriate level to provide use-

ful information about the resource consumption that is to

be charged for. This may result in collecting significantly

large amounts of metered data. Additionally, this metered

data needs computational resources to be processed in order

to perform revenue management specific tasks.

The resource capacity requirement for such non-revenue

generating systems such as monitoring and metering fluc-

tuates largely with the service demand (e.g., the number

of service instances), the service price policy updates (e.g.,

from single metric based charge to complex multi-metric

based charge), the resolution of the system behavior exposed

(e.g., from higher-level aggregations to individual runaway

thread), while their unit cost changes depending on the op-

erational infrastructure solution (e.g., on premise, traditional

outsourcing or IaaS). A crucial challenge for the cloud ser-

vice providers and their customers is how to control the

quickly escalating data size of their service management,

and implicitly its costs, in order to profitably remain in the

race for the cloud market.

Hence there is a clear need to understand and improve the

design of underlying architecture provided by open source

cloud solutions, such as OpenStack, to efficiently carry out

monitoring and metering tasks. In this paper, we present a

deep analysis of how OpenStack facilitates monitoring and

metering. We specifically focus on how the monitoring data

is collected by OpenStack and by analyzing the collected

data we identify open problems in OpenStack. Furthermore,

we also present solutions for those open problems and dis-

cuss the challenges therein.

2. OpenStack – Ceilometer Background

In OpenStack, Ceilometer [3] is the module that provides

an infrastructure to collect detailed measurements about

resources managed by OpenStack. The main components

of ceilometer can be divided into two categories, namely

agents, e.g., compute agents, central agents, etc., and ser-

vices, e.g., collector service, API service, etc. The compute

agents poll the local libvirt daemon to fetch resource uti-

lization of launched VMs and emit this data as AMQP [2]

notifications on the message bus called Ceilometer bus. Sim-

ilarly, central agents poll the public RESTful APIs of Open-

Stack services, such as Cinder and Glance, to track resources

and emit this data onto the OpenStack’s common message

bus called Notification bus. On the other hand, the collec-

tor service collects the AMQP notifications from the agents

and other OpenStack services, and dispatches the collected

information to the metering database. Finally, the job of the

API service is to present aggregated metering data to the

billing engine. In Ceilometer, resource usage measurement,

e.g., CPU utilization, Disk Read Bytes, etc., is done by me-

ters or counters. Typically there is a meter for each resource

being tracked, and there is a separate meter for each instance

of the resource. It is important to note that the lifetime of a

meter is decoupled from the associated resource, and a me-

ter continues to exist even after the resource it was tracking

has been terminated [3]. Each data item collected by a meter

is referred to as a “sample,” and consists of a timestamp to

mark the time of collected data, and a volume that records

the value. The polling interval between two events is speci-

fied in the pipeline.yaml file and can be adjusted according

to the cloud provider requirements. Once configured, the

same polling interval is used to monitor all the instances

launched in that particular setup, unless the cloud provider

manually changes it.

3. Open Problems in Cloud Monitoring

In this section we present our analysis of how monitoring

and metering has been implemented in OpenStack and pin-

point existing problems.

3.1 Constant polling frequency

The frequency at which samples are collected for a certain

meter is called the polling frequency for that meter. Open-

Stack allows cloud service providers to manually configure

the polling frequency for different types of meters, however,

once configured it remains constant unless updated manu-

ally. Hence, cloud service providers end up collecting large

Category # of VMs Duration

AP 737 3 months

Africa 400 8 days

Australia 999 3 months

EMEA 1223 3 months

Table 1: Range of IBM production servers used in our study.

amounts of close to identical samples often carrying infor-

mation of low significance about the usage or state of the

tracked resource. This results in high storage volume and in-

creased computational resource requirements to first collect

and then process the collected data in view of metering, in-

cident, or problem management purposes, to name a few. To

understand the problem and potential solutions, lets assume

a concrete case where the utilization of a certain resource

remains constant at a specific value for 5 hours. Assuming

the polling frequency is per second, we collect in total 18000

samples. From the metering point of view this same informa-

tion would have been inferred from data collected according

to a polling frequency of one or a few samples 1 per hour.

If we scale this calculation to hundreds of metrics on thou-

sands VMs in a typical cloud setup, the problem increases

by many folds.

The logical question to ask is how prevalent is in a typical

cloud environment this scenario where the resource utiliza-

tion remains unchanged? To answer this question we col-

lected and analyzed the data from 3359 machines launched

in geographically distributed IBM production servers. Ta-

ble 1 shows the range of IBM production servers used in

our study, in Asia Pacific, Africa, Australia, and Europe. The

data was collected over a period of 3 months with a sample

collected after every 15 minutes.
∣

∣

∣

∣

dRvmi(t)

dt

∣

∣

∣

∣

= |Rvmi(t)−Rvmi(t− 1)| (1)

µR(t) =

N
∑

i=1

∣

∣

∣

dRvmi(t)
dt

∣

∣

∣

N
(2)

To study the variance of resource utilization, we calcu-

lated the mean of absolute rate of change, µ(t), for different

monitored resources of randomly picked 338 VMs from all

the regions. We analyzed two different kinds of meters: i)

Meters used to directly monitor the infrastructure usage like

CPU and memory utilization, and ii) Meters used to track

the load imposed by VMs on the physical infrastructure like

number of TCP/IP connections established by VM and pages

accessed per second from the disk. We first calculated the ab-

solute value of the rate of change at time t in each resource

usage (e.g., CPU utilization, memory utilization, number of

TCP/IP connections, pages accessed from disk/sec. etc.), for

each VM i, as shown in equation 1. Then we average across

all VMs as shown in equation 2.

Figure 1(a) and 1(b) show µ(t) of the CPU and memory

respectively for the last 8 days of our collection of data. We

1 Cloud providers may be interested in collecting more samples to properly

track the health of the monitored resource. We will address this case later.

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600 700 800

µ
C

P
U

(t
)

CPU utilization variance

(a) CPU utilization

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600 700 800

µ
m

e
m

o
ry

(t
)

Memory utilization variance

(b) Memory utilization

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 100 200 300 400 500 600 700 800

µ
#
 o

f
c
o
n
n
(t

) # of TCP/IP con. variance

(c) # of TCP/IP connections

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800

µ
#
 o

f
p
a
g
e
s
(t

) Page access/sec variance

(d) Pages accessed per second

 0.5
 1
 2
 4
 8

 16
 32
 64

 0 100 200 300 400 500 600 700 800

µ
C

P
U

(t
)

low medium high

(e) Tiered ‘CPU utilization’

 0.125
 0.25

 0.5
 1
 2
 4
 8

 16
 32

 0 100 200 300 400 500 600 700 800

µ
m

e
m

o
ry

(t
)

low medium high

(f) Tiered ‘Memory utilization’

 1

 2

 4

 8

 16

 32

 64

 0 100 200 300 400 500 600 700 800

µ
#
 o

f
c
o
n
n
(t

) low medium high

(g) Tiered ‘# of TCP/IP con.’

 1
 4

 16
 64

 256
 1024
 4096

 0 100 200 300 400 500 600 700 800

µ
#
 o

f
p
a
g
e
s
(t

) low medium high

(h) Tiered ‘pages accessed per sec.’

Figure 1: Mean of absolute rate of change in utilization of resource R, i.e. µR(t), for studied VMs; and tiering of VMs in three different

clusters based on rate of change in utilization for resource R, i.e.
∣

∣

∣

dRvmi(t)
dt

∣

∣

∣
.

found over this period of 8 days the instantaneous variation

of the resource usage to be less than 5%. We repeated this

evaluation on the two other type of meters, ‘# of TCP/IP

connection’ and ‘pages accessed/sec’. We found the same

trend for meter monitoring as shown in figure 1(c) and 1(d).

This behavior hold true in average across VMs and the 3

month of data in our collection. Overall we found less than

5% of VMs having sudden variation in the tracked resource

utilization.

An additional observation is that for the 5% of VMs

having sudden variation in resource utilization, the polling

was not frequent enough to properly capture the evolution

of the change. Hence, if on one hand decreasing the polling

frequency can be beneficial for the majority of the VMs, on

the other hand it is advantageous to identify those VM that

benefit from an increased polling frequency compared to the

default in order to better capture their behavior in view of

modeling it.

3.2 Global polling frequency for all VMS

For each meter, Ceilometer uses the same polling frequency

globally across all the VMs launched in an OpenStack setup.

Tiering based on variation in resource utilization can enable

a cloud service provider to monitor and collect samples from

each tier at a different polling frequency, hence allowing to

track at a lower polling frequency the resources having less

resource usage variation. Let us consider the scenario where

a metric exhibits 3 types of behaviors across a set of VMs as

follows: high variance in utilization of monitored resource;

predictable or medium variance; and low variance.

Currently, the cloud providers are limited to monitor this

resource by sampling it at one and the same frequency in

all VMs, which would be the polling frequency to capture

a predefined volume of changes in the utilization of that re-

source, e.g., 98%,. This limitation of choice in the sampling

frequencies leads to resources in the low variance tier to be

over sampled by being monitored at a too high frequency,

whereas the resources in the high variance tier are under-

sampled.

To further understand the characteristics of our data, we

manually divided the VMs into three different tiers by cal-

culating mean rate of change in resource utilization for each

of the 338 VMs. We defined thresholds by dividing the

range between maximum and minimum found values in

three equal tiers for each of the four resources. Following the

levels of variance in µR(t) of the four monitored resource,

we found that for each meter used to track these resources,

more than 80% of the VMs fall in the tier with low vari-

ance; 15% were found in the tier with medium variance and

5% in the ties with high variance. Figure 1(e) and figure 1(f)

show the results for tiered CPU and tiered memory utiliza-

tion, respectively. Similarly, figure 1(g) and figure 1(h) show

the results for tiered ‘# of TCP/IP connections’ and ‘pages

accessed/sec’, respectively. This analysis shows that in case

of un-tiered sampling, 80% of resources were monitored at

a frequency higher than needed to capture their changes,

whereas 5% of the resources were monitored at a frequency

smaller than needed to capture their changes.

3.3 Lack of policy based monitoring

To enable custom, tier based polling frequencies, OpenStack

should support a policy based data monitoring. A monitoring

policy defines the sampling rules for a given metric profile.

Currently, Ceilometer lacks this feature, thus prohibiting the

cloud providers from defining metric profiles and associated

differentiating policies.

The applications hosted by a system dictate their monitor-

ing and data retention requirements. For instance, the mon-

itoring requirements for desktop clouds are different from

those for HPC application or for MapReduce jobs. Similarly,

monitoring and data retention requirements for charging pur-

poses are different from those for system health check. Met-

rics with higher (/lower) monitoring data resolution require-

ments should be able to configure in their profile that their

data is critical (/not critical) and hence an conservative (/re-

duced) sampling and storing policy can be associated to

them. Another advantage of policy based sampling is that

it enables cloud providers to separate those resources for

which prompt anomaly detection is required.

Furthermore, what monitoring data needs to be collected

and how monitoring data is collected highly depends on us-

age of these monitoring data. Our goal is to enable the cus-

Metric Profile Metric Policy

Critical Dependency root Used for usage based charging Independent metric

✓ ∗ ∗ ∗ Conservative sampling and storage

✗ ✓ ∗ ∗ Conservative sampling and storage

✗ ✗ ✓ ∗ Conservative sampling and aggregated storage a

✗ ✗ ✗ ✓ Per tier sampling and conservative storage

✗ ✗ ✗ ✗ Per tier sampling and aggregated storage

Table 2: Example of mapping between metric profile and metric policy (∗ means either of ✓or ✗).

a Replaced by conservative storage in case the provider is required to keep evidence of the raw metered data for financial regulations.

tomization of metric profiles by allowing the providers to

characterize each metric in terms of what it is used for (e.g.,

used for charging the tenant as part of the usage based price

definition, used for health check etc.), or in terms of its im-

portance in the inventory (e.g., belongs to VM hosting crit-

ical or non-critical applications), in terms of its precedence

in the application flows (e.g., belongs to a leaf or root item

in the dependency graph), or in terms of its dependence on

other metrics (e.g., independent or correlated metric). These

criterias, while extendable, represent key configuration items

to be defined in the metric profile. Based on the metric pro-

file, each metric is associated a metric policy. A polling pol-

icy can be as naive as collecting and storing only the data

from the last hour, day or even week initially at full granu-

larity and then aggregate over time; or it can be as complex

as collecting data, storing it, analyzing it and then fine tune

how to capture and store it in a more efficient way.

4. System Design

In this section we present a methodology which enables

the cloud providers to customize their service management

monitoring system for a policy based data monitoring such

that each tier of systems with similar monitoring data behav-

ior and business needs gets its VMs monitored according to

the same dedicated polling policy, different from the other

tiers.

4.1 Metric profiling

Our solution allows cloud providers to specify configura-

tion items such as: (i) REST URLs of the usage calcula-

tion classes for the usage based pricing -these classes typ-

ically calculate the transformation of the raw metered data

into the charged unit of measure, or the maximum or sum of

the metered values, or more complex metric aggregations;

(ii) inventory and interdependencies between servers, appli-

cations, network devices, software, configuration files, op-

erating systems and other IT infrastructure components ex-

pressed as graphs, xml files or spreadsheets [10]; (iii) event

correlation engine API [11].

The proposed solution programmatically and periodically

accesses the specified sources of data to automatically popu-

late or update the profile of each metric. A mapping between

each item in the profile and its corresponding sampling rule

is to be maintained manually by the cloud provider. For in-

stance, a metric that is critical or belongs to root item in

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180 200

CPU util

|µ
R

-
µ

L
|

CPD

(a) CPD

0
10
20
30
40
50
60
70
80

0 20 40 60 80 100 120 140 160 180 200

|µ
R

-
µ

L
|

a b
c

a

c

d d

ab
c c

b

CPD series

SAA series

(b) SAA

Figure 2: Change Point Detection and Symbolic Aggregation Ap-

proximation on CPU utilization of a VM over period of two days.

the dependency graph requires a more conservative sampling

and storage policy compared to a metric that is non-critical,

belongs to a leaf item in the dependency graph or is not used

for usage based charging.

Table 2 illustrates a potential mapping between metric

profiles and metric policies. A conservative sampling im-

plies using the default high frequency sampling of the moni-

toring system; a conservative storage means recording all the

collected data samples; a per tier sampling denotes a reduced

sampling frequency as inferred by our solution for the be-

havior of the metrics in that tier; an aggregate storage means

applying a corresponding aggregation rule e.g., keeping the

independent metric only in case of correlated metrics, or ag-

gregating as indicated by the usage calculation class for a

metered metric, etc., and then recording only the value of

the aggregate.

4.2 Tiered polling frequency

Once configured and enabled, the service management mon-

itoring system, e.g., Ceilometer, polls the systems metrics

initially at a regular, default frequency. We first identify the

metrics suitable for aggregated storage and apply the aggre-

gation technique on the fly. For instance, for metrics charac-

terized as correlated to another metric, we compare the new

sample to the last stored sample and store the new one in the

database only if its value is different than the last one. The

metrics used for usage based charging will be applied the

usage calculation logic (e.g., sum, max, min) and the result

will update the current value without creating a new entry in

the database.

Then we identify the metrics suitable for tiered sampling.

Each sample of data collected from the cloud environment is

a data point in the time series of that metric on a given con-

figuration item. After sufficient data is collected, e.g., for a

few weeks, we apply a Change Point Detection (CPD) analy-

sis algorithm [12] on their time series to identify the number

and timing of the changes that occur in each metric. Fig-

ure 2(a) shows an example of CPD applied on a CPU uti-

lization of a VM over period of two days. We subsequently

apply Symbolic Aggregate Approximation [7, 21] on the

change point time series to convert the data into a discrete

format of a sequence of symbols with a small alphabet size

as shown in figure 2(b). The strings obtained, e.g. ‘abcacb-

dacdbc’ in given example, encode the change behavior of the

metrics selected for a reduced sampling. Thus, one symbol

corresponds to the flat, monotone segments of invariable be-

havior, while a few other symbols indicate when the metric

changed. Therefore, we are interested to collect precise data

around the timing of the change occurrences which corre-

spond to changes in the metrics statistical properties, while

collecting samples during the monotone stretches of consec-

utive identical symbols is of less interest. When these seg-

ments of unchanged performance keep for many hours, it is

unnecessary to poll and store data at 1 to 5 seconds inter-

val. In consequence, a few samples only are to be collected

during those segments of unchanged performance.

Furthermore, we notice that large groups of metrics have

similar change point time series, with spikes corresponding

to seasonal periods of the day and of the week/week-end.

To reduce the number of metric policies to maintain, we

split the sequences in segments corresponding to weekly

periods (Monday to Sunday) and group them. We employ

the Structural Similarity algorithm [7, 21, 26] to cluster the

symbol segments generated above into tiers of metrics with

similar sequences. A metric having all its weekly segments

in one group indicates that its weekly pattern is stable across

the analyzed weeks. We filter out of the tiers all the metrics

with segments scattered in different clusters. We infer then

the polling frequency for the remaining metrics in a tier from

their weekly sequence of symbols as follows:
• For each isolated occurrence of a spike symbol in any

metric segment, data is collected from the timing of the

beginning of the spike until the end of the spike (e.g.,

every second during a minute).
• For the segments with unchanged performance, data is

collected hourly only if no isolated spike has already

triggered data collection during that hour.

The signature of the polling timing identified in each tier

represents the sampling metric policy of that tier. As these

policies are made available by our solution, the service man-

agement monitoring system can switch to from the default

policy and start making an efficient usage of storage and

computational resources.

Online Analysis: as a metric behavior or monitoring pol-

icy evolves over time, its classification in a particular tier

may become unsuitable for the new sampling and storage re-

quirements. A metric policy update will directly trigger the

reclassification of the metric into the default, full sampling

tier, where the process of classification described above will

be re-applied. However, a metric behavior update is not di-

rectly signaled unless it is monitored. To this end, we com-

pare the samples collected for tier based sampling to the

most recent average of the past collected values correspond-

ing to the metrics sequence symbol generated by the Sym-

bolic Aggregate Approximation for that particular time in

the sequence. If the difference is bigger than a threshold

(e.g., 10%), we place the metric into the default, conser-

vative sampling tier, for reclassification. An additional goal

is to identify and use in the meter profile those configura-

tion items that have a reduced sensitivity to the changes in

the monitored environment, and hence a limited potential of

causing the metrics to oscillate between the tiers.

5. Preliminary Results

We used Python and R [8] for this preliminary evaluation of

our solution. The data analyzed was collected from IBM pro-

duction servers over a period of 3 months (Table 1 and §3.1).

Policy Data Reduction Miss Detecion Rate

Non Aggressive Aggressive

Cons Sam + Cons Stor 0 % 0 % 3 %

Cons Sam + Aggr Stor 61.17 % 70.17 % 3 %

Tier Sam + Cons Stor 72.7 % 76.8 % 0.05 - 0.1 %

Tier Sam + Aggr Stor 76.32 % 80.04 % 0.05 - 0.1 %

Table 3: Data reduction and miss detection rate under different

policies.

For evaluation purposes we compared default or conser-

vative sampling and storage with tiered sampling and ag-

gregated storage. The policies introduced in §4.1 and Ta-

ble 2, were defined based on two procedures, one aggressive

and the other non aggressive. In the aggressive approach, i)

we set a higher threshold for aggregated storage, and ii) we

aggressively reduce the polling frequency when collecting

monitoring data from tiers with low variance in the resource

utilization. For each policy, we measured the reduction in

the collected data size, as well as the missed anomaly de-

tection rate. The missed anomaly detection rate was calcu-

lated by comparing the data collected for each policy with

the anomalies found by examining the system logs collected

for the same time period using sysstat utilities [9]. The sys-

stat data was collected at a frequency double than the maxi-

mum polling frequency used to collect the monitoring sam-

ples. We defined anomaly as a missed sample having a sud-

den increase or decrease in utilization as compared to its ad-

jacent samples. Furthermore, for the policies involving me-

tered data we enforced that we store enough samples so that

metering tasks can be successfully performed in following

revenue calculation stages.

Table 3 illustrates the results of our evaluation. Notice

that by storing aggregated data instead of conservatively

storing all samples, we obtained a 60% to 70% reduction in

data collected for monitoring purpose. The decrease in data

size was due to storing only samples which either conveyed

useful information about the current health of the monitored

resource or were required for charging purposes. The missed

anomaly detection rate for conservative sampling was found

3% as the default polling frequency was not high enough

to track the changes in VMs having sudden variations in

resource utilization.

Next, when tiered sampling was enabled with conserva-

tive storing of every sample, we were able to reduce the

data size by 72% to 76% whereas missed anomaly de-

tection rate was found to be only 0.05% to 0.1% due to

higher polling frequency used for the set of VMs having

sudden variations in resource utilization. Further evaluation

revealed that 99.99% of the anomalies were from the tier

for which reduced the polling frequency was used. Hence

missed anomaly detection rate can be further reduced by

using less aggressive approach.

Finally, when applying both tiered sampling and aggre-

gated storage, we obtained up to 80% reduction in data size.

Missed anomaly detection rate remained the same as in the

case of tiered sampling with conservative storing, since shift-

ing from conservative to aggregated storage without chang-

ing the sampling policy does not affect the anomaly detec-

tion.

6. Potential Impact and Current Work

We estimated the storage savings by considering an aver-

age object size of a sample of 1024 bytes [4]. This size is

due to the information related the resource usage plus the

additional fields, e.g., instance id, timestamp, resource id,

user id, project id, etc. If a single VM produces 100 coun-

ters per second and storage costs $0.07 per GB then a rough

estimate of savings for an environment of 1000 VM, per year

can be calculated as following:

0.8 x $0.07 per GB / month x 100 samples / sec x 1024

bytes x 60 sec / min x 60 min / hour x 24 hours / day x

30 days / month / 10 ˆ 9 bytes / GB = $14.864 / VM /

month x 1000 VMs = $14,864 / environment / month, which

accumulated over one year results in a saving of $1,159,392

/ environment / year 2.

It is important to note that in some cases (e.g. metering

data for charging) cloud providers are bound by SLA to

keep customer data for as long as 3 to 5 years. Therefore,

our solution is beneficial to both tenant (for the savings) and

provider (for the competitive advantage).

On-going efforts We are looking for new criterias of

evaluation besides the missed anomaly detection that could

shed additional light on the impact of our policy based mon-

itoring on the service management functionality. Also, the

current solution attributes fixed weights to the profile items

in the different policies, while a change in the environment,

e.g., an incident, may increase the relevance of leaf systems

detailed monitoring data and hence require an augmented

weight to be reflected in an increased polling frequency. Fur-

thermore, we are evaluating our solution in real time scenar-

ios. Our plan is to have our solution integrated with IBM pro-

duction servers to directly evaluate it by comparing it with

existing more conservative setups used to collect monitoring

data. This will help in gaining more confidence on our ap-

2 The amount of stored data increases each month and can be represented

by an arithmetic progression. Hence, n
(a1+an)

2
was used to calculate the

cost accumulated over period of 12 months.

proach and carve the aspects that lead to positive results. We

are also investigating the effects of using different window

sizes for CPD analysis, and performing more fine grained

symbolic approximation of data generated by CPD, on the

resource requirements for cloud management. This evalua-

tion will provide to the cloud providers further control on

the monitoring setup as it will enable them to perform in-

formed tradeoffs between the degree of monitoring and the

cost associated with the monitoring setup.

7. Related Work

The focus of several recent works [13–15, 19, 25] is on pro-

viding an efficient and scalable cloud monitoring setup, how-

ever, these works do not consider or discuss reduction in

collected monitoring data. Similarly, some other works in

distributed state monitoring such as [20, 24] are either to

study the problem of employing distributed constraints to

minimize the communication cost or to ensure trustworthi-

ness of resource accounting [17, 22]. While these works ei-

ther provide communication efficient detection or verifiable

resource accounting, we study the lower level problem on

efficiently collecting monitoring data for both anomaly de-

tection as well as cloud metering purposes. Recently, there

has also been work done to evaluate the idea of using Time-

Series storage for the metering data but unlike us the goal of

this work is limited to reducing the avgObjSize of each sam-

ple [5, 6]. Volley [23] proposes violation likelihood based

state monitoring for datacenters and perhaps is closest to

our work as it also utilizes node-level adaption algorithms

to minimize monitoring cost. Our work differs from Volley

in a sense that we not only study the effect of controlled

monitoring on anomaly detection but also study its impact

on cloud metering. Finally, some works make assumption

on value distribution[16] in clustering VMs for multi-cloud

systems, while our approach makes no such assumption.

8. Conclusion

In this paper, we presented an analysis of how monitoring

data is collected by OpenStack. By analyzing the character-

istics of the collected monitoring data, we identified several

open problems and presented alternative solutions. Our pre-

liminary evaluation using actual data from IBM production

servers reveals that it is possible to reduce the monitoring

data size upto 80% and missed anomaly detection rate from

3% to as low as 0.05% to 0.1%.. We believe that we have

looked deeply into how monitoring subsystem provided by

open source cloud solutions collect data and this paper will

lead to lots of discussion on how these subsystems can be

improved.

Acknowledgments Thanks to the anonymous reviewers and

our shepherd, Jia Wang, for their valuable feedback. This work

was sponsored in part by the NSF under CNS-1405697 and CNS-

1422788 grants.

References

[1] A Microscope on Microservices. http://goo.gl/1BXHRH.

[2] Advanced Message Queuing Protocol. https://www.amqp.

org/.

[3] Ceilometer Quickstart. http://goo.gl/LEYBiM.

[4] Ceilometer Samples and Statistics. http://goo.gl/u2hBK

e.

[5] OpenTSDB as a metering storage for OpenStack Telemetry.

https://goo.gl/3I6L6J.

[6] Rethinking Ceilometer metric storage with Gnocchi: Time-

series as a Service. https://goo.gl/68jXaO.

[7] Symbolic Aggregate approXimation. http://goo.gl/30X8

f1.

[8] The R Project for Statistical Computing. http://www.r-pr

oject.org/.

[9] The SYSSTAT utilities. http://goo.gl/21243V.

[10] Tivoli Application Dependency Discovery Manager. http:/

/goo.gl/tO8a4b.

[11] Writing rules for the state correlation engine. http://goo.g

l/Z5McMT.

[12] M. Agarwal, M. Gupta, V. Mann, N. Sachindran, N. Aner-

ousis, and L. Mummert. Problem determination in enterprise

middleware systems using change point correlation of time

series data. In IEEE/IFIP NOMS, 2006.

[13] A. Anwar, A. Sailer, A. Kochut, C. O. Schulz, S. Alla, and

A. R. Butt. Cost-aware cloud metering with scalable service

management infrastructure. In IEEE CLOUD, 2015.

[14] A. Anwar, A. Sailer, A. Kochut, C. O. Schulz, S. Alla, and

A. R. Butt. Scalable metering for an affordable it cloud service

management. In IEEE IC2E, 2015.

[15] A. Brinkmann, C. Fiehe, A. Litvina, I. Luck, L. Nagel,

K. Narayanan, F. Ostermair, and W. Thronicke. Scalable mon-

itoring system for clouds. In IEEE/ACM UCC, 2013.

[16] C. Canali and R. Lancellotti. Automatic virtual machine clus-

tering based on bhattacharyya distance for multi-cloud sys-

tems. In International workshop on Multi-cloud applications

and federated clouds. ACM, 2013.

[17] C. Chen, P. Maniatis, A. Perrig, A. Vasudevan, and V. Sekar.

Towards verifiable resource accounting for outsourced com-

putation. In ACM SIGPLAN Notices, 2013.

[18] R. Iyer, R. Illikkal, L. Zhao, D. Newell, and J. Moses. Virtual

platform architectures for resource metering in datacenters.

ACM SIGMETRICS, 2009.

[19] X. Jiang and X. Wang. out-of-the-box monitoring of vm-

based high-interaction honeypots. In Recent Advances in

Intrusion Detection, pages 198–218. Springer, 2007.

[20] S. Kashyap, J. Ramamirtham, R. Rastogi, and P. Shukla. Effi-

cient constraint monitoring using adaptive thresholds. In IEEE

ICDE, 2008.

[21] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing sax:

a novel symbolic representation of time series. Data Mining

and knowledge discovery, 15(2):107–144, 2007.

[22] M. Liu and X. Ding. On trustworthiness of cpu usage metering

and accounting. In IEEE ICDCSW, 2010.

[23] S. Meng, A. K. Iyengar, I. M. Rouvellou, and L. Liu. Volley:

Violation likelihood based state monitoring for datacenters. In

IEEE ICDCS, 2013.

[24] S. Meng, A. K. Iyengar, I. M. Rouvellou, L. Liu, K. Lee,

B. Palanisamy, and Y. Tang. Reliable state monitoring in cloud

datacenters. In IEEE CLOUD, 2012.

[25] W. Richter, C. Isci, B. Gilbert, J. Harkes, V. Bala, and

M. Satyanarayanan. Agentless cloud-wide streaming of guest

file system updates. In IEEE IC2E, 2014.

[26] P. Siirtola, H. Koskimäki, V. Huikari, P. Laurinen, and

J. Röning. Improving the classification accuracy of stream-

ing data using sax similarity features. Pattern Recognition

Letters, 32(13):1659–1668, 2011.

[27] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lind-

ner. A break in the clouds: towards a cloud definition. ACM

SIGCOMM Computer Communication Review, 2008.

http://goo.gl/1BXHRH
https://www.amqp.org/
https://www.amqp.org/
http://goo.gl/LEYBiM
http://goo.gl/u2hBKe
http://goo.gl/u2hBKe
https://goo.gl/3I6L6J
https://goo.gl/3I6L6J
https://goo.gl/68jXaO
http://goo.gl/30X8f1
http://goo.gl/30X8f1
http://www.r-project.org/
http://www.r-project.org/
http://goo.gl/21243V
http://goo.gl/tO8a4b
http://goo.gl/tO8a4b
http://goo.gl/Z5McMT
http://goo.gl/Z5McMT

	Introduction
	OpenStack – Ceilometer Background
	Open Problems in Cloud Monitoring
	Constant polling frequency
	Global polling frequency for all VMS
	Lack of policy based monitoring

	System Design
	Metric profiling
	Tiered polling frequency

	Preliminary Results
	Potential Impact and Current Work
	Related Work
	Conclusion

