
Taming the Cloud Object Storage with MOS

Ali Anwar⋆, Yue Cheng⋆, Aayush Gupta†, Ali R. Butt⋆

⋆Virginia Tech, †IBM Research – Almaden

Abstract

Cloud object stores have become the most widely used form

of cloud storage in recent years. They combine key advan-

tages such as high availability, elasticity and a pay-as-you-

go pricing model, which allows applications to scale as the

usage increases or decreases, with HTTP-based RESTful

APIs for data management. Cloud object stores today are

deployed using a single set of configuration parameters for

all different types of applications. This homogeneous setup

results in all applications experiencing the same service level

(e.g., data transfer throughput, etc.). However, the vast vari-

ety of applications expose extremely different latency and

throughput requirements. To this end, we propose MOS, a

Micro Object Storage architecture with independently con-

figured microstores each tuned dynamically for a particular

type of workload.

1. Motivation

Cloud object stores, such as S3 [1], Swift [3] and Ceph [2],

have become the most widely used form of cloud storage

in recent years. Cloud object stores today are deployed us-

ing a single set of configuration parameters for all differ-

ent types of applications. This homogeneous setup results

in all applications experiencing the same service level (e.g.,

average latency per request, data transfer throughput, and

queries per second (QPS)). However, the vast variety of ap-

plications expose extremely different latency and through-

put requirements. For example, a social networking or photo

sharing application requires low latency to keep a respon-

sive user experience, whereas backup services can tolerate

higher latency but require sustained high throughput. Ex-

tant object storage services compromise application perfor-

mance to gain the flexibility advantages. The situation is fur-

ther complicated by the fact that due to regular system up-

grades and introduction of new storage architectures, data

centers hosting these object stores are becoming increas-

ingly heterogeneous. However, with the “one-size-fits-all”

style of object store deployment, it is impossible to match

each set of specific types of hardwares with the right type of

application workload. For example, latency-sensitive small-

object workloads would require low-latency storage devices

and powerful CPU processing capacity whereas large object

write-only workloads can be supported with a combination

Load balancer/
Load redirector

Microstore 1

Object 
storage

Object 
storage

Object 
storage

Proxy Proxy Proxy…

…

Workload monitor

Microstore N

Object 
storage

Object 
storage

Object 
storage

Proxy Proxy Proxy…

…

Workload monitor

Resource 
manager

Free resource pool

ServerServerProxy
Object 
storage
Object 
storage
Object 
storage

Load balancer/
Load redirector

Load balancer/
Load redirector

…

…

MOS setup

Figure 1: Overview of MOS design.

of high network bandwidth and weaker CPU power. Under

this scenario, meeting SLA requirement for one of the work-

load may require, i) adding hardware resources which may

not improve the performance for other workloads, ii) soft-

ware tuning which may decrease the performance for the

other workloads.

In this paper, we argue that it is more beneficial to sep-

arately entertain these workloads in finer-grained object

stores launched on sub-clusters formed using the available

hardware resources.

2. MOS Design Overview

MOS performs dynamic resource partitioning and provi-

sioning, allowing each microstore within an object storage

setup to run as a fully-functional object store unit. As de-

picted in Figure 1, MOS consists of two layers: (1) Micro-

stores: consists of multiple instances of object stores, each

called a microstore that is allocated a subset of proxy and

storage nodes that matches the requirements of application

it is meant to support. (2) MOS substrate: consists of a

resource manager that monitors load on each microstore us-

ing a workload monitor and automatically reconfigures re-

sources assigned to microstore to cope with workload shifts.

References

[1] Amazon s3. http://aws.amazon.com/s3/.

[2] Ceph. http://ceph.com/.

[3] Openstack swift. http://docs.openstack.org/develope

r/swift/.

http://aws.amazon.com/s3/
http://ceph.com/
http://docs.openstack.org/developer/swift/
http://docs.openstack.org/developer/swift/

	Motivation
	MOS Design Overview

